- Sampling
- Variance estimation
- Missing Data
- Resampling Techniques
- Asymptotic Results
Campus de Ker Lann
51 Rue Blaise Pascal
BP 37203
35172 BRUZ Cedex
I am a member of IRMAR (UMR CNRS 6625)
I obtained my PhD in Statistics from the University of Rennes 2
Title : Méthodes de Bootstrap en population finie (manuscript)
Defended on 2007, December the 14th
I obtained my Habilitation à Diriger des Recherches from the University of Rennes 1
Title : Some contributions to Sampling and Estimation in Surveys (manuscript and talk)
Defended on 2014, November the 28th
Book chapters
Chauvet G. (2020) Introduction to Sampling Techniques. In: Ros F., Guillaume S. (eds) Sampling Techniques for Supervised or Unsupervised Tasks, Springer, Cham, pp. 1-21.
Published or Accepted
[42] A. Kostouraki, D. Hajage, B. Rachet, E. J. Williamson, G. Chauvet, A. Belot, C. Leyrat. (2024), On variance estimation of the Inverse Probability-of-Treatment Weighting estimator: a tutorial for different types of propensity score weights. Statistics in Medicine, doi: 10.1002/sim.10078.
[43] G. Chauvet (2023), Discussion de l'article "Les contributions de Jean-Claude Deville à la théorie des sondages et à la statistique officielle". Survey Methodology, 49(2): 299-304,
[41] T-H. Vo, V. Garès, L-C. Zhang, A. Happe, E. Oger, S. Paquelet, G. Chauvet (2023), Cox regression with linked data. Statistics in Medicine, 43(2): 296-314, doi: 10.1002/sim.9960.
[40] T-H. Vo, G. Chauvet, A. Happe, E. Oger, S. Paquelet, V. Garès (2023), An extension of Fellegi-Sunter probabilistic record linkage model for mixed-type data with application to the French national health data system. Computational Statistics and Data Analysis, 179.
[39] O. Bouriaud, P. Brion, G. Chauvet (2023), An extension of the weight share method when using a continuous sampling frame. Survey Methodology, 49(1), pp. 139-162.
[38] Z. Chupeau, F. Mercier, E. Rouxel, B. Le Bot, G. Chauvet, T. Siméon, N. Bonvallot, C. Zaros, C. Chevrier, P. Glorennec (2022), Pre- and post-natal exposure of children to organophosphate flame retardants: A nationwide survey in France. Environment International, 168.[37] G. Chauvet (2022), A cautionary note on the Hanurav-Vijayan sampling algorithm. Journal of Survey Statistics and Methodology.
[36] M-A. Metten, N. Costet, J-F. Viel, G. Chauvet (2022), Inverse probability weighting to handle attrition in cohort studies: some guidance and a call for caution. BMC Medical Research methodology, 22(45).
[35] V. Garès, G. Chauvet, D. Hajage (2022), Variance estimators for weighted and stratified linear dose-response function estimators using generalized propensity score. Biomedical Journal, 64(1), pp. 33-56.
[34] G. Chauvet, C. Goga (2022), Asymptotic efficiency of the calibration estimator in a high-dimensional data setting. Journal of Statistical Planning and Inference, 217, pp. 177-187.
[33] P. Bessonneau, G. Brilhault, G. Chauvet, C. Garcia (2021). With-replacement bootstrap variance estimation for household surveys: principles, examples and implementation. Survey Methodology, 47(2), pp. 313-347.
[32] L. Daniel, M. Michot, M. Esvan, P. Guérin, G. Chauvet, F. Pelé (2020), Perceptions, knowledge and practices regarding indoor environmental pollution: a quantitative study among adults of childbearing age. International journal of Environment Research and Public Health, 17(20), p. 7669.
[31] G. Chauvet (2021). A note on Chromy's sampling procedure. Journal of Survey Statistics and Methodology, 9(5), pp. 1050-1061.
[30] G. Chauvet, A.A. Vallée (2020), Consistency of estimators and variance estimators in two-stage sampling. Journal of the Royal Statistical Society, Series B, vol 82, n° 3, pp. 797-815.
[29] G. Chauvet (2020). Large sample properties of the Midzuno sampling scheme with probabilities proportional to size. Statistics and Probability Letters, vol 159.
[28] G. Chauvet, R. Le Gleut (2020), Inference under pivotal sampling: properties, variance estimation and application to tesselation for spatial sampling. Scandinavian Journal of Statistics, pp. 1-24. [Présentation]
[27] B. Gelein, G. Chauvet (2020). Preserving the distribution function in surveys in case of imputation for zero inflated data. Journal of Statistical Planning and Inference, vol n° 206, pp. 84-99.
[26] L. Belin, G. Chauvet, Y. De Rycke, D. Hajage, F. Tubach (2018), Closed-form variance estimator for weighted propensity score estimators with survival outcome. Biometrical Journal, vol n° 60(6), pp. 1151-1163.
[25] H. Chaput, G. Chauvet, D. Haziza, L. Salembier, J. Solard (2018), Joint imputation procedures for categorical variables with application to the French Wealth Survey. Statistics and Applications, vol. 16, pp.123-144 (Invited paper for a special issue in honor of the 80th birthday of Professor J.N.K. Rao) [Présentation]
[24] G. Chauvet, W. Do Paco (2018), Exact balanced random imputation for sample survey data. Computational Statistics and Data Analysis.Computational Statistics and Data Analysis, vol n° 118(C), pp. 1-16.
[23] H. Juillard, G. Chauvet (2018), Variance estimation under monotone non-response for a panel survey. Survey Methodology, vol. 44(2), pp. 269-289.
[22] G. Chauvet, C. Goga (2018), Gini coefficient and Gini coefficient change: linearization versus Bootstrap to estimate the variance. Survey Methodology, vol. 44(1), pp. 17-42.
[21] D. Hajage, Y. De Rycke, G. Chauvet, F. Tubach (2016), Estimation of conditional and marginal odds ratios using the prognostic score. Statistics in Medicine, vol n° 36(4), pp 687-716.
[20] G. Chauvet (2017), A comparison of pivotal sampling and unequal probability sampling with replacement. Statistics and Probability Letters, vol n° 121, pp 1-5. [Supplementary Material]
[19] H. Juillard, G. Chauvet, A. Ruiz-Gazen (2017), Estimation under cross-classified sampling with application to a childhood survey. Journal of the American Statistical Association, vol n°112(518), pp 850-858.
[18] H. Boistard, G. Chauvet, D. Haziza (2016), Doubly robust inference for the distribution function in the presence of missing survey data. Scandinavian Journal of Statistics, vol n°43(3), pp 683-699.
[17] G. Chauvet, D. Haziza et E. Lesage (2016), Examining some aspects of balanced sampling in surveys. Statistica Sinica, vol n°27, pp 313-334.
[16] G. Chauvet (2016), Variance Estimation for the 2006 French Housing Survey. Mathematical Population Studies, vol 23, n°3, pp 147-163. [Présentation]
[15] G. Chauvet (2015), Coupling Methods for multistage sampling. Annals of Statistics, vol 43, n°6, pp 2484-2506.[Présentation]
[14] D. Haziza, C-O. Nambeu, G. Chauvet (2014), Doubly robust imputation procedures for populations containing a large amount of zeroes in surveys. Canadian Journal of Statistics, vol 42, n°4, pp 650-669.
[13] G. Chauvet, G. Tandeau de Marsac (2014), Méthodes d'estimation sur bases de sondage multiples dans le cadre de plans de sondage à deux degrés. Technique d'Enquêtes, vol 40, n°2, pp 367-378. [Présentation]
[12] F.J. Breidt, G. Chauvet (2012), Penalized Balanced Sampling. Biometrika, vol 99, n° 4, pp 945-958.
[11] G. Chauvet (2012), On a characterization of ordered pivotal sampling. Bernoulli, vol 18, n° 4, pp 1320-1340.
[10] G. Chauvet, D. Haziza (2012), Fully efficient estimation of coefficients of correlation in the presence of imputed data. Canadian Journal of Statistics, vol. 40, n° 1, pp 124-149.
[9] M. Chandesris, G. Chauvet, J.C. Deville (2011), Allocation optimale pour un plan à plusieurs degrés. Application à l’estimation de la fraude tarifaire grandes lignes à la SNCF. Journal de la SFdS, vol. 152, n° 4, pp. 47-59.
[8] G. Chauvet (2011), On variance estimation for the French Master Sample. Journal of Official Statistics, vol. 27, n° 4, pp. 651–668. [Présentation]
[7] G. Chauvet, J.C. Deville, D. Haziza (2011), On balanced random imputation in surveys. Biometrika, vol. 98, pp. 459-471. [Présentation]
[6] G. Chauvet, D. Bonnery, J.C. Deville (2011), Optimal inclusion probabilities for balanced sampling. Journal of Statistical Planning and Inference, vol 141, pp. 984 - 994. [Présentation]
[5] F.J. Breidt, G. Chauvet (2011), Improved variance estimation for balanced samples drawn via the Cube method. Journal of Statistical Planning and Inference, vol 141, pp. 479 - 487. [Présentation]
[4] D. Haziza, G. Chauvet, J.C. Deville (2010), A note on sampling and estimation in the presence of cut-off sampling. Australian and New Zealand Journal of Statistics, vol 52, pp. 303 - 319.
[3] G. Chauvet (2009), Stratified Balanced Sampling, Survey Methodology, vol 35, pp. 115 - 119.
[2] G. Chauvet, Y. Tillé (2007), Application of Fast SAS Macros for Balancing Samples to the Selection of Addresses, Case Studies in Business, Industry and Government Statistics, vol 2, pp. 173 - 182.
[1] G. Chauvet, Y. Tillé (2006), A fast algorithm of Balanced Sampling, Computational Statistics, vol 21, pp. 53 - 61.
Submitted or in preparation
[44] J. Rubin, G. Chauvet (202X), Bootstrap methods for cross-classified sampling designs.
[45] M-A. Metten, N. Costet, J-F. Viel, G. Chauvet (202X), Reflection on modern methods: a note on variance estimation when using inverse probability weighting to handle attrition in cohort studies.
[46] G. Chauvet, M. Gerber (202x), Exponential inequalities for sampling designs.
[47] O. Bouriaud, P. Brion, G. Chauvet, T.H.K Duong, M. Pulkinnen (202X), The weight share method in forest inventories: refining the relation between points and trees.
[48] D. Hajage, G. Chauvet, Y. De Rycke, F. Tubach (201X), Variance estimation when weighting using the estimated propensity score to estimate a treatment effect on a binary outcome.
[49] J-Y. Bienvenue, G. Chauvet, M. Guadarrama (202X), Variance estimation in the survey "Racism and Ethno-racial discrimination in Luxembourg".
[50] T.H.K Duong, G. Chauvet, O. Bouriaud (202X), A new framework for spatial surveys in forest inventories.
[51] G. Chauvet (202X), Asymptotic properties of estimators for continuous sampling designs.
[52] G. Chauvet (201X), Bootstrap for multistage sampling and unequal probability sampling of primary sampling units.
[53] G. Chauvet (201X), Simplified variance estimation for multistage sample surveys.
[54] G. Chauvet (201X), A note on the consistency of the Narain-Horvitz-Thompson estimator.