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Principaux objectifs du cours

Rappels sur l'échantillonnage et l'estimation en population �nie

Compléments sur les méthodes d'échantillonnage à probabilités inégales

Méthodes d'échantillonnage équilibré et applications

Méthodes d'échantillonnage spatial

Nous utiliserons :

le package R sampling pour l'échantillonnage,

le package R gustave pour l'estimation de variance (créé et maintenu
par Martin Chevalier et Khaled Larbi, Insee).

#Appel des packages

> library(sampling)

> help(package="sampling")

> library(gustave)

> help(package="gustave")



Bases de sondage

Nous utiliserons deux bases de sondage disponibles avec le package sampling.

La base de sondage belgianmunicipalities fournit des informations sur
les 589 communes de Belgique au 01/07/2004, ainsi que des informations
�nancières datées de 2001.
La base de sondage MU284 fournit des informations sur les 284 communes
de Suède datées de 1985.

#Récupération de deux bases de données du package

> data("belgianmunicipalities")

> attach(belgianmunicipalities)

> data("MU284")

> attach(MU284)
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Variables de "belgianmunicipalities"

Commune Municipality name
INS INS Code INS
Province Province number
Arrondiss Administrative division number
Men04 Number of men on July 1, 2004
Women04 Number of women on July 1, 2004
Tot04 Total population on July 1, 2004
Men03 Number of men on July 1, 2003
Women03 Number of women on July 1, 2003
Tot03 Total population on July 1, 2003
Di�men Men04 minus Men03
Di�wom Women04 minus Women03
Di�TOT Tot04 minus Tot03
TaxableIncome Total taxable income in euros in 2001
Totaltaxation Total taxation in euros in 2001
Averageincome Average of the income-tax return in euros in 2001
Medianincome median of the income-tax return in euros in 2001.
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Variables de "MU284"

LABEL Identi�er number from 1 to 284
P85 1985 population (in thousands)
P75 1975 population (in thousands)
RMT85 Revenues from 1985 municipal taxation

(in millions of kronor)
CS82 Number of Conservative seats in municipal council
SS82 Number of Social-Democratic seats in municipal council
S82 Total number of seats in municipal council
ME84 Number of municipal employees in 1984
REV84 Real estate values according to 1984 assessment

(in millions of kronor)
REG Geographic region indicator
CL Cluster indicator (a cluster consists of a set of neighboring)
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Variables de "commune" (hors package)

IDENT Variable identi�ant l'adresse

NLOG Nombre de logements de l'adresse

ACTIFS Nombre d'actifs
INACTIFS Nombre d'inactifs

NATFN Nombre de français de naissance
NATHE Nombre d'étrangers hors Union Européenne
NATUE Nombre d'étrangers de l'Union Européenne
NATFA Nombre de français par acquisition

HOMMES Nombre d'hommes
FEMMES Nombre de femmes

_0019 Nombre de personnes de moins de 20 ans
_2039 Nombre de personnes de 20 à 39 ans
_4059 Nombre de personnes de 40 à 59 ans
_6074 Nombre de personnes de 60 à 74 ans
_7599 Nombre de personnes de 75 ans et plus

H0019 Nombre d'hommes de moins de 20 ans
... ...
F7599 Nombre de femmes de plus de 75 ans



1 Rappel sur les méthodes d'échantillonnage
Principes généraux
Etude par simulations
Calcul de variance
Modèle de travail

2 Méthodes d'échantillonnage à probabilités inégales
Tirage systématique
Méthode du pivot
Tirage de Poisson
Tirage réjectif

3 Echantillonnage équilibré
Principe
La méthode du Cube
Le Recensement

4 Echantillonnage spatial
Echantillonnage spatial en population �nie
Sampling in a continuous population



Rappel sur les méthodes d'échantillonnage

Rappel sur les méthodes

d'échantillonnage
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Rappel sur les méthodes d'échantillonnage Principes généraux

Principes généraux
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Rappel sur les méthodes d'échantillonnage Principes généraux

Notations

Nous nous plaçons dans le cadre d'une population �nie U d'unités statistiques
supposées identi�ables par un label. Nous noterons

U = {1, . . . , k, . . . , N}

où N désigne la taille de la population U , qui n'est pas forcément connue.

Nous nous intéressons à une variable d'intérêt y prenant la valeur yk sur
k ∈ U . Nous souhaitons disposer d'indicateurs pour la population U :

total : ty =
∑

k∈U yk,
Ex : Nombre total d'actifs dans la population française

total sur un domaine Ud : tyd =
∑

k∈Ud yk,
Ex : Nombre total d'actifs dans l'Aire Urbaine de Rennes

ratio de deux totaux : R = ty/tx.
Ex : Taux de chômage en Bretagne
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Plan de sondage

La variable d'intérêt est mesurée sur un échantillon aléatoire S obtenu selon
un plan de sondage p. Il s'agit d'une loi de probabilité sur les parties de U :

∀s ⊂ U p(s) ≥ 0 et
∑
s⊂U

p(s) = 1. (1)

En pratique, nous utilisons un algorithme de tirage pour sélectionner S, et
le plan de sondage n'est pas complètement spéci�é. Deux quantités sont
importantes pour calculer des estimateurs et mesurer leur précision :

les probabilités d'inclusion d'ordre 1

πk ≡ Pr(k ∈ S),

sont utilisées pour le calcul des estimateurs ponctuels,

les probabilités d'inclusion d'ordre 2

πkl ≡ Pr(k, l ∈ S),

sont utilisées pour le calcul des estimateurs de variance.

Nous noterons n(S) la taille de l'échantillon S, qui peut être aléatoire.



Rappel sur les méthodes d'échantillonnage Principes généraux

Exemples

Exemple 1 : Les enquêtes-ménages de l'Insee visent à décrire les condi-
tions de vie des ménages (emploi, logement, patrimoine, ...). Les ménages
enquêtés sont sélectionnés dans un échantillon de zones appelé l'Echantillon-
Maître.

Exemple 2 : Les enquêtes-entreprises sont réalisées à l'aide d'une base de
sondage (répertoire SIRUS) et de sources externes.

Exemple 3 : Les inventaires forestiers nationaux sont réalisés en sélec-
tionnant un échantillon de points sur le territoire. Des motifs sont ensuite
construits autour de ces points (e.g., des placettes circulaires) pour sélec-
tionner les arbres qui dont l'objet de mesures sur le terrain.
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Rappel sur les méthodes d'échantillonnage Principes généraux

Mesures de précision

La qualité d'un estimateur θ̂ est évaluée par :

son biais
Bp(θ̂) = Ep(θ̂ − θ) =

∑
s⊂U

p(s){θ̂(s)− θ},

sa variance

Vp(θ̂) = Ep

{
θ̂ − Ep(θ̂)

}2
,

ou encore son Erreur Quadratique Moyenne (EQM)

EQMp(θ̂) = Ep(θ̂ − θ)2 = Bp(θ̂)
2 + Vp(θ̂).
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Rappel sur les méthodes d'échantillonnage Etude par simulations

Etude par simulations
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Rappel sur les méthodes d'échantillonnage Etude par simulations

Etude par simulations

Il est possible de véri�er les propriétés théoriques d'un estimateur (biais,
variance, EQM) en utilisant une base de sondage sur laquelle les variables
d'intérêt sont connues sur toute la population.

La première possibilité consiste à lister tous les échantillons s sélectionnables,
avec leur probabilité de sélection. Il est alors possible de calculer :

Le biais Bp(θ̂) =
∑

s⊂U p(s)
{
θ̂(s)− θ

}
,

La variance Vp(θ̂) =
∑

s⊂U p(s)
{
θ̂(s)−

∑
s′⊂U p(s

′)θ̂(s′)
}2
,

L'EQM EQMp(θ̂) =
∑

s⊂U p(s)
{
θ̂(s)− θ

}2
.

Cette méthode n'est possible que sur de petites populations pour laquelle il
n'est pas trop coûteux de lister l'ensemble des échantillons.
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Rappel sur les méthodes d'échantillonnage Etude par simulations

Simulations de Monte-Carlo

Une autre possibilité consiste à répéter un grand nombre de fois B, indépen-
damment, le tirage d'échantillons Sb selon le plan de sondage p(·), pour
obtenir des répliques i.i.d de θ̂ notées θ̂b, b = 1, . . . , B.

Rappelons que pour un échantillon (X1, . . . , Xn) i.i.d., nous avons

X̄n ≡
1

n

n∑
i=1

Xi →Pr E(X) et s2
X ≡

1

n− 1

n∑
i=1

(
Xi − X̄n

)2 →Pr V (X).

Nous avons donc pour la simulation de Monte Carlo :

¯̂
θB ≡

1

B

B∑
b=1

θ̂b →Pr Ep(θ̂) et s2
θ̂
≡ 1

B − 1

B∑
b=1

(
θ̂b −

¯̂
θB

)2
→Pr Vp(θ̂).

Si le nombre B de simulations est grand, nous pouvons obtenir une bonne
approximation par simulations de Ep(θ̂) et Vp(θ̂).
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Rappel sur les méthodes d'échantillonnage Etude par simulations

Estimateur de Horvitz-Thompson
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Rappel sur les méthodes d'échantillonnage Etude par simulations

Probabilités d'inclusion d'ordre 1

La probabilité pour l'unité k d'être sélectionnée dans l'échantillon est notée

πk = Pr(k ∈ S)

Les valeurs de ces probabilités sont �xées avant le tirage.

En l'absence d'information auxiliaire, les unités sont tirées à probas égales

πk =
n

N
.

Exemple : tirage de Bernoulli, sondage aléatoire simple.

Si une variable auxiliaire xk est connue pour tout k ∈ U , nous pouvons
utiliser des probabilités d'inclusion proportionnelles à la taille

πk = n
xk∑
l∈U xl

. (2)

Exemple : tirage systématique, méthode du pivot, tirage de Poisson, tirage
réjectif.
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Recalcul des probabilités d'inclusion

Si certaines unités sont particulièrement grosses (au sens de x), certaines
probabilités d'inclusion peuvent être supérieures à 1. Dans ce cas les unités
correspondantes sont sélectionnées d'o�ce, et les probabilités d'inclusion des
autres unités sont recalculées.

#Calcul de probas d'inclusion proportionnelles à la taille

> n=50

> pi_50=inclusionprobabilities(averageincome,n)

> summary(pi_50)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.

[1]0.05693 0.07675 0.08375 0.08489 0.09113 0.14076

> n=400

> pi_400=inclusionprobabilities(averageincome,n)

> summary(pi_400)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.

[1]0.4556 0.6142 0.6702 0.6791 0.7293 1.0000



Rappel sur les méthodes d'échantillonnage Etude par simulations

L'estimateur de Horvitz-Thompson

La connaissance des probabilités πk permet une estimation sans biais d'un
total sous le plan de sondage. Le total ty est estimé sans biais par l'estimateur
de Horvitz-Thompson (HT)

t̂yπ =
∑
k∈S

yk
πk

=
∑
k∈U

yk
πk
Ik (3)

si tous les πk sont > 0, en notant Ik = 1(k ∈ S) l'indicatrice d'appartenance
à l'échantillon.

C'est un estimateur pondéré, où les poids de sondage dk = 1/πk ne dépen-
dent pas de la variable d'intérêt.

Si certaines probabilités d'inclusion sont nulles, nous sommes en présence
d'un biais de couverture.
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Rappel sur les méthodes d'échantillonnage Etude par simulations

L'estimateur de Horvitz-Thompson (2)

La connaissance des probabilités πk permet une estimation sans biais d'un
total sous le plan de sondage. Le total ty est estimé sans biais par l'estimateur
de Horvitz-Thompson (HT)

t̂yπ =
∑
k∈S

yk
πk

=
∑
k∈U

yk
πk
Ik (4)

si tous les πk sont > 0, en notant Ik = 1(k ∈ S) l'indicatrice d'appartenance
à l'échantillon.

#Tirage d'un échantillon selon un plan réjectif

>ech=UPmaxentropy(pi_50)

#Estimation de HT du total de TaxableIncome

>y=TaxableIncome

>est_ht=HTestimator(y[ech==1],pi_50[ech==1])

>est_ht

[1,] 1.092e+11
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Calcul de variance
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Probabilités d'inclusion d'ordre 2

La probabilité pour deux unités distinctes k et l d'être sélectionnées conjoin-
tement dans l'échantillon est notée

πkl = Pr(k, l ∈ S).

Ces probabilités πkl ne sont pas choisies avant le tirage : elles dépendent des
probabilités d'inclusion πk, et du plan de sondage utilisé. Elles interviennent
dans le calcul des estimateurs de variance.

Ces probabilités sont souvent di�ciles à calculer exactement, sauf pour cer-
tains plans de sondage particuliers. Même si elles sont calculables, on préfère
souvent utiliser des estimateurs de variance simpli�és n'utilisant que les prob-
abilités d'inclusion d'ordre 1.
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Probabilités d'inclusion d'ordre 2 (2)

Le package sampling permet de calculer la matrice des probabités d'inclusion
d'ordre deux pour 5 plans de sondage à probabilités inégales:

le tirage réjectif ou tirage de Poisson conditionnel,

la méthode de Midzuno,

le tirage de Rao-Sampford,

le tirage systématique,

la méthode de Tillé.

#Calcul de probas d'inclusion d'ordre 2 pour le réjectif

pikl_rej_50=UPmaxentropypi2(pi_50)

#Calcul de probas d'inclusion d'ordre 2 pour Rao-Sampford

pikl_sam_50=UPsampfordpi2(pi_50)

#Calcul de probas d'inclusion d'ordre 2 pour le systématique

pikl_sys_50=UPsystematicpi2(pi_50)
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Estimateur de variance de Horvitz-Thompson

Pour un plan de sondage quelconque, la variance de l'estimateur de HT est
donnée par

Vp(t̂yπ) =
∑
k,l∈U

yk
πk

yl
πl

∆kl avec ∆kl = πkl − πkπl. (5)

Cette variance peut être estimée sans biais par

vHT (t̂yπ) =
∑
k,l∈S

yk
πk

yl
πl

∆kl

πkl
(6)

si tous les πkl sont strictement positifs.

Principe : un couple (k, l) d'individus de l'échantillon représente 1/πkl cou-
ples de la population.

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 25 / 162



Rappel sur les méthodes d'échantillonnage Calcul de variance

Estimateur de variance de Horvitz-Thompson (2)

#Tirage d'un échantillon selon un plan réjectif

>ech=UPmaxentropy(pi_50)

#Estimation de HT du total de TaxableIncome

>y=TaxableIncome

>est_ht=HTestimator(y[ech==1],pi_50[ech==1])

#Estimation de variance de HT (PACKAGE SAMPLING)

>vest_ht=varHT(y[ech==1],pikl_rej_50[ech==1,ech==1],1)

>options("scipen"=-100,digits="4")

>est_ht

[1,] 1.092e+11

>vest_ht

[1] 2.518e+20
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Estimateur de variance de Yates-Grundy

Pour un plan de sondage de taille �xe, la variance peut se réécrire

Vp(t̂yπ) = −1

2

∑
k 6=l∈U

(
yk
πk
− yl
πl

)2

∆kl. (7)

Cette variance peut être estimée sans biais par

vY G(t̂yπ) = −1

2

∑
k 6=l∈S

(
yk
πk
− yl
πl

)2 ∆kl

πkl
(8)

si tous les πkl sont strictement positifs. Il s'agit de l'estimateur de variance
de Yates-Grundy.

Si le plan de sondage véri�e les conditions de Yates-Grundy :
∀k 6= l ∈ U ∆kl ≤ 0, cet estimateur de variance est toujours à valeurs
positives.
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Estimateur de variance de Yates-Grundy

#Tirage d'un échantillon selon un plan réjectif

>ech=UPmaxentropy(pi_50)

#Estimation de HT du total de TaxableIncome

>y=TaxableIncome

>est_ht=HTestimator(y[ech==1],pi_50[ech==1])

#Estimation de variance de YG (PACKAGE SAMPLING)

>vest_yg=varHT(y[ech==1],pikl_rej_50[ech==1,ech==1],2)

>vest_yg

[1] 2.804e+20

#Estimation de variance de YG (PACKAGE GUSTAVE)

>vest_yg_gus=varSYG(y[ech==1],pikl_rej_50[ech==1,ech==1])

>vest_yg_gus

[1] 2.804e+20

Tous les algorithmes de tirage à probabilités inégales dans sampling sont
de taille �xe, sauf le tirage de Poisson (fonction UPpoisson).
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Rappel sur les méthodes d'échantillonnage Calcul de variance

Intervalle de con�ance

En l'absence de biais de couverture, l'estimateur de HT t̂yπ estime sans biais
ty. Un intervalle de con�ance pour ty de niveau 1− α est donné par :

IC1−α(ty) =

[
t̂yπ ± z1−α

2

√
v(t̂yπ)

]
avec z1−α

2
le quantile d'ordre 1−α

2 d'une loi normale centrée réduiteN (0, 1).

L'intervalle de con�ance est asymptotiquement valide :

si l'estimateur t̂yπ centré-réduit est asympt. normalement distribué :

t̂yπ − ty√
Vp(t̂yπ)

−→L N (0, 1).

si l'estimateur de variance v(t̂yπ) est consistant :

v(t̂yπ)

Vp(t̂yπ)
−→Pr 1.
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Rappel sur les méthodes d'échantillonnage Modèle de travail

Modèle de travail
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Rappel sur les méthodes d'échantillonnage Modèle de travail

Principe

Au stade de l'échantillonnage, nous supposons disponible un q-vecteur xk
de variables auxiliaires connues pour chaque unité k ∈ U .

Cette information va nous servir à construire un plan de sondage. Ce qui
nous motive est une relation supposée entre la variable d'intérêt yk et les
variables auxiliaires xk, que nous appelons le modèle de travail :

yk = x>k β + εk avec

{
Em(εk) = 0,
Vm(εk) = σ2

k.

Quel que soit le plan de sondage choisi, l'estimateur de HT sera sans biais
en l'absence de biais de couverture. Si l'information auxiliaire xk peut être
utilisée pour dé�nir le plan de sondage, alors la variance sera réduite si ce
modèle re�ète (au moins partiellement) la relation entre yk et xk.
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Rappel sur les méthodes d'échantillonnage Modèle de travail

Calcul de variance pour un plan de taille �xe

En écrivant la variable d'intérêt selon le modèle de travail

yk = βπk + εk,

nous avons pour un plan de taille �xe

Vp(t̂yπ) = Vp(t̂επ).

La variance sera donc faible si les résidus εk sont petits, i.e. si la variable yk
est approximativement proportionnelle à πk.

Un bon choix consiste à utiliser des probabilités d'inclusion proportionnelles
à une mesure de taille xk (nombre d'employés d'une entreprise, nombre
de résidences principales d'une commune). Nous obtenons la formule des
probabilités d'inclusion proportionnelles à la taille :

πk = n
xk∑
l∈U xl

.
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En résumé

On utilise un plan de sondage p(·) respectant des probabilités d'inclusion
d'ordre 1 choisies, ce qui permet de calculer pour le total ty son estimateur
de Horvitz-Thompson

t̂yπ =
∑
k∈S

yk
πk
.

La variance sera faible si yk et πk sont approximativement proportionnels.
Pour un plan de taille �xe, cette variance est estimée par

vY G(t̂yπ) = −1

2

∑
k 6=l∈S

(
yk
πk
− yl
πl

)2 ∆kl

πkl

En utilisant une approximation normale pour t̂yπ, on obtient l'intervalle de
con�ance[
t̂yπ ± z1−α

2

√
v
[
t̂yπ
]]

où v(t̂yπ) ≡
{
vHT (t̂yπ) pds quelconque,

vY G(t̂yπ) pds de taille �xe.



Rappel sur les méthodes d'échantillonnage Modèle de travail

Cas du sondage aléatoire simple
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Sondage aléatoire simple (SRS)

Il s'agit du plan qui donne la même probabilité à tous les échantillons de
taille n d'être sélectionnés. L'estimateur de Horvitz-Thompson du total est
donné par

t̂yπ = N ȳ avec ȳ =
1

n

∑
k∈S

yk. (9)

Sa variance s'obtient à partir de la formule de Sen-Yates-Grundy :

Vp[t̂yπ] = N2 1− f
n

S2
y avec S2

y =
1

N − 1

∑
k∈U

(yk − µy)2. (10)

On l'estime sans biais par

vY G(t̂yπ) = N2 1− f
n

s2
y avec s2

y =
1

n− 1

∑
k∈S

(yk − ȳ)2. (11)

Le package sampling contient 2 algorithmes permettant de réaliser un SRS.



Rappel sur les méthodes d'échantillonnage Modèle de travail

Algorithme de sélection pour un SRS: méthode draw by draw

La première méthode consiste à utiliser un algorithme de sélection unité par
unité.

> n=100

> Npop=589

> ech_srs=srswor(n,Npop)

Algorithme 1 Méthode de sélection draw by draw
1 Pour k = 1, . . . , n, sélectionner une unité dans U à probabilités égales

parmi les unités qui n'ont pas déjà été tirées.
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Algorithme de sélection pour un SRS: sélection-rejet

La population est parcourue séquentiellement, en tirant chaque unité avec
la probabilité conditionnelle au nombre d'unités déjà tirées (Fan, Muller et
Rezucha, 1962).

> n=100

> Npop=589

> ech_srs=srswor1(n,Npop)

Algorithme 2 Méthode de sélection-rejet
1 On initialise j = 0.
2 Pour k = 1, . . . , N , faire :

Avec une probabilité

ProbCond =
n− j

N − (k − 1)

=
Nb d'unités restant à tirer

Nb d'unités restantes
,

on sélectionne l'unité k et j = j + 1.



Rappel sur les méthodes d'échantillonnage Modèle de travail

Méthode de sélection-rejet : exemple

Individu uk j ProbCond Ik
1 0.65 0 3/8=0.38 0
2 0.98 0 3/7=0.43 0
3 0.86 0 3/6=0.50 0
4 0.82 0 3/5=0.60 0
5 0.27 0 3/4=0.75 1
6 0.50 1 2/3=0.67 1
7 0.96 2 1/2=0.50 0
8 0.13 2 1/1=1.00 1
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Estimation pour un SRS

#Tirage d'un échantillon aléatoire simple

>n <- 100

>Npop <- 589

>ech=srswor1(n,Npop)

#Estimation

>pi <- rep(n/Npop,Npop)

>y=TaxableIncome

>est_ht=HTestimator(y[ech==1],pi_50[ech==1])

>est_ht

[1,] 2.517e+11

#Estimation de variance pour un SRS (PACKAGE SAMPLING)

>vest_srs=varest(y[ech==1],,pi[ech==1],)

>vest_srs

[1] 1.16e+20

#Estimation de variance pour un SRS (PACKAGE GUSTAVE)

>vest_srs_gus=var_srs(y[ech==1],pi[ech==1])

>vest_srs_gus

[1] 1.16e+20



Rappel sur les méthodes d'échantillonnage Modèle de travail

Exercice

Nous considérons la population belgianmunicipalities et les variables
d'intérêt Tot04 et TaxableIncome. Nous souhaitons estimer le total de ces
deux variables en utilisant un sondage aléatoire simple de taille n = 100.

Mettre en place une étude par simulations pour véri�er que :

1 L'estimateur de Horvitz-Thompson t̂yπ (équation 9) est sans biais pour
le total ty,

2 L'estimateur de variance vY G(t̂yπ) (équation 11) est sans biais pour la
vraie variance Vp(t̂yπ),

3 L'intervalle de con�ance estimé (cf diapo 29) possède un taux de cou-
verture de 95 %

Vous utiliserez au moins B = 10, 000 simulations.
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Exercice
Initialisation des paramètres

#Une étude par simulations pour le SRS

#Initialisation des paramètres

> n=100

> Npop=589

> pi=rep(n/Npop,589)

> sim=10000

#Pile des simulations format (Est,EstVar,Binf,Bsup)

> pile_Tot04=array(0,c(sim,4))

> pile_TaxableIncome=array(0,c(sim,4))

#Estimateur de HT

> ht=numeric(2)

#Estimateur de variance

> ev=numeric(2)

#Intervalle de confiance

> ic=numeric(4)



Exercice
Boucle de Monte-Carlo

#Etude par simulations : boucle de Monte-Carlo

> for(i in 1:sim)

{

cat("Simulation ",i,"\n")

#Selection de l'échantillon

ech=...

#Estimation et estimation de variance

ht[1]=...

...

ev[2]=...

#Intervalle de confiance

ic[1]=...

...

ic[4]=...

#Empilement

pile_Tot04[i,]=cbind(ht[1],ev[1],ic[1],ic[2])

pile_TaxableIncome[i,]=cbind(ht[2],ev[2],ic[3],ic[4])

}



Exercice
Comparaison totaux-espérance de Monte-Carlo de l'est.

#Comparaison vrais totaux et estimateurs de HT

>tot=c(sum(Tot04),sum(TaxableIncome))

>Emc_ht=c(mean(pile_Tot04[,1]),mean(pile_TaxableIncome[,1]))

>cat("Vrais totaux \n")

>tot

[1] 1.042e+07 1.211e+11

>cat("Espérance Monte Carlo \n")

>Emc_ht

[1] 1.042e+07 1.211e+11



Exercice
Comparaison variance -espérance de Monte-Carlo de l'estimateur de variance

#Comparaison Variance et estimateur de variance

>pikl_srs <- UPmaxentropypi2(pi)

>var_srs=numeric(2)

>var_srs[1] <- t(Tot04/pi)%*%(pikl_srs-pi%*%t(pi))

%*%(Tot04/pi)

>var_srs[2] <- t(TaxableIncome/pi)%*%(pikl_srs-pi%*%t(pi))

%*%(TaxableIncome/pi)

>Emc_ev=c(mean(pile_Tot04[,2]),mean(pile_TaxableIncome[,2]))

>cat("Vraies variance \n")

>var_srs

[1] 2.247e+12 2.977e+20

>cat("Espérance Monte Carlo \n")

>Emc_ev

[1] 2.249e+12 2.975e+20



Exercice
Taux de couverture

#Taux de couverture intervalle de confiance

>inside_Tot04=(pile_Tot04[,3]<tot[1]) *

(pile_Tot04[,4]>tot[1])

>inside_TaxableIncome=(pile_TaxableIncome[,3]<tot[2]) *

(pile_TaxableIncome[,4]>tot[2])

>tc=c(mean(inside_Tot04),mean(inside_TaxableIncome))

>cat("taux de couverture Monte Carlo \n")

options("scipen"=100,digits="3")

>tc

[1] 0.865 0.870

#Coefficient de variation des var. d'intérêt

>cv_Tot04 <- (sd(Tot04) / mean(Tot04)) * 100

>cv_Tot04

[1] 158

>cv_TaxInc <- (sd(TaxableIncome) / mean(TaxableIncome)) * 100

>cv_TaxInc

[1] 156



Méthodes d'échantillonnage à probabilités inégales

Méthodes d'échantillonnage à

probabilités inégales
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Méthodes d'échantillonnage à probabilités inégales

Introduction

La strati�cation est une méthode simple permettant de réduire la variance
des estimateurs. Si les strates sont homogènes, le sondage aléatoire simple
strati�é constitue une stratégie e�cace d'échantillonnage (fonction strata

du package sampling).

En pratique, il peut subsister une forte hétérogénéité dans les strates. C'est
notamment le cas pour un premier degré d'échantillonnage, e.g. lors de la
sélection d'un échantillon de communes pour une enquête auprès des mé-
nages. Dans ce cas, nous pouvons rechercher une stratégie d'échantillonnage
plus e�cace en individualisant les probabilités de sélection πk.

Nous devons ensuite faire le choix d'un algorithme de tirage, i.e. d'une
méthode pratique de sélection respectant les probabilités d'inclusion choisies.
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Méthodes d'échantillonnage à probabilités inégales

Algorithmes de tirage

Il existe en pratique des dizaines d'algorithmes de tirage permettant de re-
specter un jeu de probabilités d'inclusion �xé (voir Tillé, 2011), et le package
sampling permet d'implémenter plusieurs d'entre elles.

Nous présentons rapidement les di�érentes méthodes d'échantillonnage pro-
posées dans le package sampling, et nous étudierons plus en détail quatre
d'entre elles.

Remarque importante : la méthode d'échantillonnage sans remise à proba-
bilités inégales programmée dans la fonction de base sample est fausse.
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Méthodes d'échantillonnage à probabilités inégales

Fonction de base sample

> sample(x,[n],size,replace = FALSE, prob = NULL)

x : vecteur dans lequel sélectionner, ou entier positif.

size : taille d'échantillon (entier positif).

replace: échantillonnage sans remise (FALSE) ou avec remise (TRUE).
L'option FALSE donne une méthode biaisée d'échantillonnage à

probabilités inégales.

prob : vecteur de probabilités, les probabilités d'inclusion sont propor-
tionnelles à prob (NULL pour un tirage à probabilités égales).
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Fonction de base sample

> sample(1:10,6,replace = FALSE)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers selon un
SRS : Ok.

> prob <- c(1,1,1,1,1,2,2,2,2,2)

> sample(1:10,6,replace = TRUE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
avec remise à probabilités inégales : Ok.

> prob <- c(1,1,1,1,1,2,2,2,2,2)

> sample(1:10,6,replace = FALSE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
sans remise à probabilités inégales : méthode de tirage fausse.



Méthodes d'échantillonnage à probabilités inégales

Algorithmes du package sampling étudiés

Tirage systématique UPsystematic

Tirage systématique randomisé UPrandomsystematic

Tirage du pivot UPpivotal

Tirage du pivot randomisé UPrandompivotal

Tirage de Poisson UPpoisson

Tirage de Poisson conditionnel UPmaxentropy
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Méthodes d'échantillonnage à probabilités inégales

Autres algorithmes du package sampling

Méthode de Brewer (UPbrewer), méthode de Sampford (UPsampford),
échantillonnage ordonné (UPopips)
⇒ proches du tirage de Poisson conditionnel

Tirage à support minimal (UPminimalsupport), méthode de Midzuno
(UPmidzuno), méthode de Tillé (UPtille)
⇒ peu utilisées en pratique

Tirage multinomial (UPmultinomial)
⇒ equivalente à la fonction sample avec l'option replace=TRUE.
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Méthodes d'échantillonnage à probabilités inégales

Algorithmes étudiés

Le tirage systématique et la méthode du pivot (Deville et Tillé, 1998) tien-
nent compte de l'ordre des unités de la population.
Si cet ordre est informatif, cela peut permettre de diminuer la variance de
l'estimateur de HT.

Le tirage de Poisson et le tirage de Poisson conditionnel/réjectif (Hajek,
1964) ne tiennent pas compte de l'ordre des unités de la population.
Ce sont des méthodes de tirage beaucoup plus aléatoires que les deux méth-
odes précédentes.
L'avantage (et l'inconvénient) est que la variance ne dépend pas de l'ordre
des unités dans le �chier.

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 53 / 162



Méthodes d'échantillonnage à probabilités inégales Tirage systématique

Tirage systématique
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Principe

C'est une méthode simple et très rapide permettant de sélectionner un échan-
tillon à probabilités inégales et de taille �xe.
C'est la méthode la plus utilisée en pratique, même pour un tirage à proba-
bilités égales.

Principe :

Les unités de la population sont représentées sur un segment de longueur
n. Chaque unité k est représentée par un segment de longueur πk.

Nous générons un nombre aléatoire u ∼ U [0, 1], puis les nombres ui =
u+ (i− 1), i = 1, . . . , n− 1.

Une unité est sélectionnée si un de ces nombres aléatoire tombe dans
son segment.

#Probabilités d'inclusion proportionnelles à la taille

> n=50

> pi_50=inclusionprobabilities(averageincome,n)

#Tirage systématique

> ech_sys=UPsystematic(pi_50)



Méthodes d'échantillonnage à probabilités inégales Tirage systématique

Exemple

Population U de taille N = 14 avec n = 4 :

π1 = π2 = π5 = π6 = π7 = π8 = π12 = 1/7,

π3 = π4 = π9 = π10 = π11 = π13 = π14 = 3/7.

0 1 2 3 4

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11V12 V13 V14

u = 0.82 ∈ [V3, V4] ⇒ l'unité 4 est sélectionnée,

1 + u = 1.82 ∈ [V8, V9] ⇒ l'unité 9 est sélectionnée,

2 + u = 2.82 ∈ [V10, V11] ⇒ l'unité 11 est sélectionnée,

3 + u = 3.82 ∈ [V13, V14] ⇒ l'unité 14 est sélectionnée.
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Méthodes d'échantillonnage à probabilités inégales Tirage systématique

Probabilités d'inclusion

Les probabilités d'inclusion πk sont exactement respectées. Les probabilités
d'inclusion d'ordre deux sont calculables (Tillé, 2011, p. 126), mais beaucoup
d'entre elles sont nulles. Par conséquent, il n'existe pas d'estimateur sans
biais de variance pour l'estimateur HT.

#Probabilités d'inclusion d'ordre 2

> pikl_sys=UPsystematicpi2(pi_50)

> pikl_sys[1:6,1:6]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.114 0.0000 0.0000 0.0000 0.0000 0.000

[2,] 0.000 0.0747 0.0000 0.0000 0.0000 0.000

[3,] 0.000 0.0000 0.0997 0.0000 0.0000 0.000

[4,] 0.000 0.0000 0.0000 0.0741 0.0000 0.000

[5,] 0.000 0.0000 0.0000 0.0000 0.0901 0.000

[6,] 0.000 0.0000 0.0000 0.0000 0.0000 0.103
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Cas de probabilités d'inclusion égales

Dans le cas de probabilités d'inclusion égales, la méthode est généralement
plus e�cace que le SRS si la population est triée avant le tirage selon une
variable auxiliaire xk corrélée avec la variable d'intérêt.

#Corrélation entre Tot04 et TaxableIncome

> y=TaxableIncome

> cor(Tot04,y)

[1] 0.988

#Tri de la population selon la variable Tot04

> permutation <- order(Tot04)

> Tot04_rank <- Tot04[permutation]

> y_rank <- y[permutation]

#Paramètres de l'échantillonnage (probabilités égales)

> n <- 50

> Npop <- 589

> pi0_50 <- rep(n/Npop,Npop)



Cas de probabilités d'inclusion égales
Comparaison entre SRS et tirage systématique

#Probabilités d'inclusion d'ordre 2 pour un SRS

> pikl_srs <- UPsampfordpi2(pi0_50)

#Variance exacte sous un SRS

> var_srs <- t(y_rank/pi0_50)

%*%(pikl_srs-pi0_50%*%t(pi0_50))

%*%(y_rank/pi0_50)

#Probabilités d'inclusion d'ordre 2 pour le SYS

> pikl_sys <- UPsystematicpi2(pi0_50)

#Variance exacte sous un SYS

> var_sys <- t(y_rank/pi0_50)

%*%(pikl_sys-pi0_50%*%t(pi0_50))

%*%(y_rank/pi0_50)

> options("scipen"=-100,digits="3")

> var_srs

[1,] 6.56e+20

> var_sys

[1,] 3.08e+20



Estimateur de variance

Beaucoup d'estimateurs de variance ont été proposés dans la littérature pour
le tirage systématique, voir par exemple Iachan (1982).

Dans le cas d'un tirage à probabilités égales, on peut notamment citer :

l'estimateur de variance du sondage aléatoire simple

vSRS(t̂yπ) = N2 1− f
n

s2
y.

Estimateur de variance conservatif en cas d'e�et de strati�cation.

l'estimateur de variance des di�érences successives

vDIFF (t̂yπ) = N2 1− f
n
× 1

n

n/2∑
i=1

{
y(2i) − y(2i−1)

}2
,

avec y(i) la i
ème unité échantillonnée au sens de l'ordre initial du �chier.

C'est l'estimateur de variance correspondant à une strati�cation en n/2
strates, avec tirage de 2 éléments dans chacune.



Méthodes d'échantillonnage à probabilités inégales Méthode du pivot

Méthode du pivot
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Méthodes d'échantillonnage à probabilités inégales Méthode du pivot

Principe de la méthode (Deville et Tillé, 1998)

Basée sur des duels. A l'étape 1, les unités 1 et 2 s'a�rontent :

si π1 + π2 ≤ 1, une unité est éliminée et l'autre survit avec la
probabilité cumulée :

(π1, π2) =

{
(π1 + π2, 0) avec proba π1

π1+π2
,

(0, π1 + π2) avec proba π2
π1+π2

.

si π1 + π2 > 1, une unité est tirée et l'autre survit avec la probabilité
résiduelle :

(π1, π2) =

{
(1, π1 + π2 − 1) avec proba 1−π2

2−π1−π2 ,

(π1 + π2 − 1, 1) avec proba 1−π1
2−π1−π2 .

A l'étape t, le survivant a�ronte l'unité t+ 1 selon le même principe.
A l'étape N − 1, un échantillon de n unités a été tiré, en respectant les
probabilités d'inclusion souhaitées.
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Méthodes d'échantillonnage à probabilités inégales Méthode du pivot

Exemple

Population U de taille N = 11, avec n = 3 et

π = (0.4 0.2 0.1 0.5 0.4 0.2 0.4 0.2 0.1 0.2 0.3)> .

0 1 2 3

k = 3 k = 4 k = 9

C'est une méthode simple, séquentielle, qui respecte les probas πk.
Tirage d'une unité par microstrate ⇒ e�et de strati�cation.
Evite la sélection d'unités contigues ⇒ "well-spread sample" (Grafström et
al., 2012).
Plus aléatoire que le tirage systématique ⇒ bonnes propriétés statistiques.
Cas particulier de la méthode du cube (Deville et Tillé, 2004).
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Méthodes d'échantillonnage à probabilités inégales Méthode du pivot

Comparaison pour un tirage à probas égales

Pop. U de taille N = 12, avec n = 3 et πk = 3/12.
Tirage systématique : tirage à la même position dans chaque strate.

0 1 2 3

k = 3 k = 7 k = 11

Méthode du pivot : tirage indépendant dans chaque strate.

0 1 2 3

k = 3 k = 6 k = 12
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Méthodes d'échantillonnage à probabilités inégales Méthode du pivot

Probabilités d'inclusion

Il et possible de montrer que les probabilités d'inclusion πk sont exactement
respectées. Les probabilités d'inclusion d'ordre deux sont calculables (non
disponible dans sampling), mais les expressions sont complexes (Deville,
1998; Chauvet, 2012).

Cette méthode de tirage est plus aléatoire que le tirage systématique. Il est
possible d'obtenir des propriétés statistiques importantes pour l'estimateur
de Horvitz-Thompson (consistance, TCL).

Cette méthode reste peu aléatoire car elle est très contrainte (tirage d'une
unité exactement par microstrate). Cela entraîne une baisse de la variance
si l'ordre de la population est informatif de la variable d'intérêt.
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Estimateur de variance

Beaucoup de couples d'unités présentent des πkl = 0. Il n'existe donc pas
d'estimateur sans biais de variance.

Il est possible d'utiliser :

l'estimateur de variance pour un tirage avec remise:

vmult(t̂yπ) =
n

n− 1

∑
k∈S

(
yk
πk
− t̂yπ

n

)2

.

C'est un estimateur de variance (généralement très) conservatif.

un estimateur de variance utilisant des di�érences successives

vDIFF (t̂yπ) =

n/2∑
i=1

{
y(2i)

π(2i)
−
y(2i−1)

π(2i−1)

}2

,

avec y(i) la i
ème unité échantillonnée au sens de l'algorithme.

C'est un estimateur de variance (un peu moins) conservatif (Chauvet
et Le Gleut, 2019).



Mise en oeuvre sous R

#Probabilités d'inclusion proportionnelles à la taille

> n=50

> pi_50=inclusionprobabilities(averageincome,n)

#Tirage du pivot et estimation du total de TaxableIncome

> ech_piv=UPpivotal(pi_50)

> y=TaxableIncome

> HTestimator(y[ech_piv==1],pi_50[ech_piv==1])

[1,] 1.27e+11

#Tirage du pivot randomisé et estimation

> ech_rpiv=UPrandompivotal(pi_50)

> HTestimator(y[ech_rpiv==1],pi_50[ech_rpiv==1])

[1,] 9.08e+10



Méthodes d'échantillonnage à probabilités inégales Tirage de Poisson

Tirage de Poisson
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Principe

C'est un principe de piles ou faces indépendants, avec une pièce et un lancer
di�érents pour chaque unité.

Etape 1 : on génère u1 ∼ U [0, 1]. Si u1 ≤ π1, l'unité 1 est retenue
dans l'échantillon.

Etape 2 : on génère u2 ∼ U [0, 1] indépendamment de u1. Si u2 ≤ π2,
l'unité 2 est retenue dans l'échantillon.

. . .

Etape N : on génère uN ∼ U [0, 1] indépendamment de u1, . . . , uN−1.
Si uN ≤ πN , l'unité N est retenue dans l'échantillon.

En utilisant les propriétés d'une loi U [0, 1] et l'indépendance des tirages :

P(k ∈ S) = P(uk ≤ πk) = FU (πk) = πk,

πkl = πk πl si k 6= l.

Dans le cas d'un tirage à probabilités égales, on parle de plan de Bernoulli.



Méthodes d'échantillonnage à probabilités inégales Tirage de Poisson

Estimateur de Horvitz-Thompson

La variance s'obtient à partir de l'expression générale de HT :

Vpois(t̂yπ) =
∑
k∈U

(
yk
πk

)2

πk(1− πk),

qui est estimée sans biais par

v(t̂yπ) =
∑
k∈S

(
yk
πk

)2

(1− πk).

En particulier, cela implique que la taille d'échantillon est aléatoire :

Vpois{n(S)} =
∑
k∈U

πk(1− πk).

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 70 / 162



Méthodes d'échantillonnage à probabilités inégales Tirage de Poisson

Utilisation

Le tirage de Poisson présente une grande variance d'échantillonnage. Il est
cependant utilisé pour certaines enquêtes auprès des entreprises, car il permet
de simpli�er la coordination du tirage de plusieurs échantillons.

On parle de coordination :

négative quand on tire plusieurs échantillons a�n qu'ils soient aussi dis-
joints que possible,

positive quand on tire plusieurs échantillons a�n qu'ils se recouvrent
autant que possible.

Le tirage de Poisson est également utilisé dans un contexte de non-réponse,
pour modéliser le mécanisme de réponse totale dans l'échantillon S complet.
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Mise en oeuvre sous R

#Probabilités d'inclusion proportionnelles à la taille

> n=50

> pi_50=inclusionprobabilities(averageincome,n)

#Tirage de Poisson et estimation du total de TaxableIncome

> ech_poi=UPpoisson(pi_50)

> y=TaxableIncome

> HTestimator(y[ech_poi==1],pi_50[ech_poi==1])

[1,] 1.220165e+11

#Estimation de variance de HT

> pikl_poi_50=pi_50 %*% t(pi_50) +diag(pi_50-pi_50*pi_50)

> varHT(y[ech_poi==1],pikl_poi_50[ech_poi==1,ech_poi==1],1)

[1] 6.1382e+20

#Estimation de variance (package GUSTAVE)

y_mat <- matrix(y, ncol = 1)

var_pois(y_mat[ech_poi==1, , drop = FALSE],pi_50[ech_poi==1])

[1] 6.1382e+20



Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Tirage réjectif ou tirage de Poisson

conditionnel
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Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Principe

Nous cherchons à obtenir un plan de sondage :

avec les avantages du tirage de Poisson : une grande entropie

L(p) = −
∑
s⊂U

p(s) ln{p(s)},

qui assure que l'échantillonnage n'est pas sensible à l'ordre des données,

sans ses inconvénients : taille d'échantillon aléatoire.

Le plan de sondage réjectif est obtenu :

en tirant un échantillon selon un plan de Poisson de probabilités d'inclusion
pk, k ∈ U , avec

∑
k∈U pk = n;

en rejetant l'échantillon tant qu'il n'est pas de la taille voulue n.
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Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Plan de sondage

Nous notons :

p(·) le plan de Poisson et Sp l'échantillon aléatoire correspondant,

pr(·) le plan réjectif associé, et Sr l'échantillon associé.

Pour tout s ⊂ U , nous avons

pr(s) ≡ Pr(Sp = s|n(Sp) = n).

Les probabilités d'inclusion πk du plan pr(·) ne sont pas égales aux proba-
bilités d'inclusion pk du plan p(·).

Pour pouvoir calculer l'estimateur de Horvitz-Thompson, il faut pouvoir cal-
culer les probabilités d'inclusion e�ectives πk.
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Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Exemple

Soit une population U de taille 5. Nous utilisons un plan de Poisson p(·)
avec les probabilités d'inclusion

p1 = p2 =
1

2
p3 = p4 = p5 =

1

3
.

Nous mettons en oeuvre ce plan de Poisson en ne retenant que les échan-
tillons de taille

∑
k∈U pk = 2. Le plan réjectif obtenu a pour probabilités

d'inclusion

π1 = π2 =
10

19
π3 = π4 = π5 =

6

19
.
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Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Mise en oeuvre d'un plan réjectif

Le tirage peut être réalisé à l'aide de la fonction UPmaxentropy du pack-
age sampling. Dans le cas particulier de probabilités d'inclusion égales, la
méthode est équivalente au sondage aléatoire simple sans remise.

Comme le tirage est de taille �xe par construction, il est possible d'utiliser
la formule de Yates-Grundy :

Vp(t̂yπ) =
1

2

∑
k 6=l∈U

(
yk
πk
− yl
πl

)2

(πkπl − πkl),

et l'estimateur de variance de Yates-Grundy correspondant.

La matrice des probabilités d'inclusion d'ordre 2 peut être déterminée à l'aide
de la fonction UPmaxentropypi2.
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Méthodes d'échantillonnage à probabilités inégales Tirage réjectif

Mise en oeuvre d'un plan réjectif (suite)

Il est également possible d'utiliser une approximation uniforme des πkl (Ha-
jek, 1964). Elle conduit à l'estimateur de variance (Deville, 1993) :

vdev(t̂yπ) =
1

1−
∑

k∈S(ak)2

∑
k∈S

(1− πk)

(
yk
πk
−
∑
l∈S

al
yl
πl

)2

avec al =
1− πl∑

m∈S 1− πm
.

Cet estimateur est couramment utilisé dans les enquêtes Insee (Caron et al.,
1998). Il est calculable :

avec la fonction varest du package "sampling",

avec la fonction varDT du package "gustave".
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Mise en oeuvre sous R

#Probabilités d'inclusion proportionnelles à la taille

> n=50

> pi_50=inclusionprobabilities(averageincome,n)

> options("scipen"=-100,digits="5")

#Tirage réjectif et estimation du total de TaxableIncome

> ech_rej=UPmaxentropy(pi_50)

> y=TaxableIncome

> est_ht=HTestimator(y[ech_rej==1],pi_50[ech_rej==1])

> est_ht

[1,] 1.3068e+11



Mise en oeuvre sous R
Estimation de variance

#Estimateur de variance de HT

> pikl_rej_50=UPmaxentropypi2(pi_50)

> varHT(y[ech_rej==1],pikl_rej_50[ech_rej==1,ech_rej==1],1)

[1] 1.1896e+21

#Estimateur de variance de YG

> varHT(y[ech_rej==1],pikl_rej_50[ech_rej==1,ech_rej==1],2)

[1] 1.1907e+21

#Estimateur de variance de Deville (package SAMPLING)

> varest(y[ech_r==1],,pi_50[ech_r==1],)

[1] 1.1897e+21

#Estimateur de variance de Deville (package GUSTAVE)

> varDT(y[ech_rej==1],pi_50[ech_rej==1])

[1] 1.1897e+21



Echantillonnage équilibré

Echantillonnage équilibré
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Echantillonnage équilibré Principe

Principe
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Echantillonnage équilibré Principe

Choix du plan de sondage

Le plan de sondage est choisi de façon à minimiser la variance des estima-
teurs, tout en respectant des contraintes de coût.

strati�cation, tirage à probabilités inégales
⇒ réduction de la variance

tirage multidegrés
⇒ réduction des coûts

La précision du plan repose sur des propriétés d'équilibrage : l'échantillon
est sélectionné de façon à respecter une information connue.

Exemples :

respect de structures âge-sexe (méthode des quotas),

répartition par e�ectif salarié (strati�cation),

taille �xe d'échantillon (tirage systématique, méthode du pivot, tirage
réjectif).
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Echantillonnage équilibré Principe

Echantillonnage équilibré

De façon générale, supposons que des variables xk sont disponibles au mo-
ment de l'échantillonnage pour chaque individu k de la population.

Un échantillon s est dit équilibré sur les totaux tx si

t̂xπ(s) = tx.

Le total tx est donc parfaitement estimé.

Par extension, un plan de sondage est dit équilibré sur les totaux tx si seuls les
échantillons équilibrés sur x ont une probabilité non nulle d'être sélectionnés.
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Echantillonnage équilibré Principe

Exemples d'équations d'équilibrage

Supposons que xk = πk. L'équation d'équilibrage implique que∑
k∈s

xk
πk

=
∑

k∈s
πk
πk

= n(s)

=
∑

k∈U πk = Ep [n (S)] .

Le plan de sondage est donc de taille �xe.

Supposons que xk = 1. L'équation d'équilibrage implique que∑
k∈s

xk
πk

=
∑

k∈s
1
πk

= N̂π

=
∑

k∈U 1 = N.

La taille de la population est donc parfaitement estimée.
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Echantillonnage équilibré Principe

Exemples de plans de sondage équilibrés

Les plans de sondage à probabilités inégales de taille �xe sont équilibrés sur
la variable xk = πk.

Le sondage aléatoire simple est équilibré sur la variable xk = 1
⇒ plan de taille �xe + taille de la population parfaitement estimée.

Le sondage aléatoire simple strati�é est équilibré sur le vecteur

xk = {1(k ∈ U1), . . . , 1(k ∈ UH)}

Conséquences ?
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Echantillonnage équilibré Principe

Motivation

Sous le modèle de travail

yk = x>k β + εk,

l'estimateur de HT peut être réécrit sous la forme

t̂yπ = {t̂xπ}>β + t̂επ.

Principe :

Le respect des probabilités d'inclusion permet d'obtenir une estimation
sans biais.

La restriction du support du plan de sondage aux échantillons équili-
brés permet d'annuler la variabilité du 1er terme.

Le choix des probabilités d'inclusion permet de limiter la variabilité du
2nd terme.

La variance n'est plus donnée que par les résidus du modèle de travail.
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Echantillonnage équilibré Principe

Remarques

Remarque 1 : en pratique, la base de sondage contient toujours au moins
deux variables : la probabilité d'inclusion πk et la variable constante. Par
rapport au tirage de taille �xe à probabilités inégales, cela revient à ajouter
une constante dans le modèle de régression

yk = β + α xk + εk.

Remarque 2 : la non-réponse totale va détruire l'équilibrage. L'échantillonnage
équilibré est donc particulièrement intéressant pour un premier degré de
tirage ou quand on anticipe une faible non-réponse:

tirage des Unités Primaires de l'Echantillon Maître,

tirage des Groupes de Rotation du Recensement.
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Echantillonnage équilibré La méthode du Cube

La méthode du Cube
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Représentation du Cube

Deville et Tillé (2004) ont proposé un algorithme général pour la sélection
d'échantillons équilibrés sur un nombre quelconque de variables, avec un jeu
de probabilités d'inclusion π = (π1, . . . , πN ) quelconque.

Un échantillon s est vu comme un sommet (s1, . . . , sN ) ∈ {0, 1}N du N -
cube C = [0, 1]N . Les équations d'équilibrage dé�nissent l'espace des con-
traintes : ∑

k∈S

xk

πk
=
∑
k∈U

xk

⇐⇒
∑
k∈U

xk

πk
(Ik − πk) = 0

⇐⇒ A× (I − π) = 0 avec A = (xk/πk)k∈U

⇐⇒ I ∈ π +Ker(A).

L'algorithme consiste à arrondir aléatoirement des composantes du vecteur
π par une marche aléatoire dans l'espace des contraintes.



Echantillonnage équilibré La méthode du Cube

Etape de base de l'algorithme

Nous initialisons avec π(0) = π.
A l'étape t, soit π(t) = π(t−1) + δ(t) avec

δ(t) =

{
+λ1(t) u(t) avec proba. λ2(t)/(λ1(t) + λ2(t))
−λ2(t) u(t) avec proba. λ1(t)/(λ1(t) + λ2(t))

,

où

λ1(t), λ2(t) > 0
→ assure qu'au moins une unité est sélectionnée ou dé�nitivement re-
jetée.

u(t) ∈ Ker(A) est un vecteur (non aléatoire)
→ assure que les équations d'équilibrage sont exactement respectées

le choix aléatoire assure que les probabilités d'inclusion sont exactement
respectées.

La méthode du pivot est un cas particulier de la méthode du Cube, obtenue
avec xk = πk (échantillonnage de taille �xe).
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Echantillonnage équilibré La méthode du Cube

La phase d'atterrisage

L'algorithme précédent est appelé la phase de vol. A l'issue de cet algo-
rithme :

Le statut (tiré/non tiré) est connu pour au moins N − p individus.

Les contraintes d'équilibrage et les probabilités d'inclusion sont exacte-
ment respectées.

En revanche, il n'est plus possible de �nir l'échantillonnage en respectant
ces deux contraintes.

La phase de vol est complétée par une phase d'atterrissage. Elle permet
de statuer sur les individus restant en respectant exactement les probabilités
d'inclusion, et en respectant approximativement les équations d'équilibrage.
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Echantillonnage équilibré La méthode du Cube

Phase d'atterrissage : relâchement des contraintes

La 1ère possibilité consiste à relâcher les contraintes une par une.

Nous introduisons donc un degré de liberté à chaque fois, ce qui permet de
poursuivre l'échantillonnage.

C'est l'option la plus générale, au sens où elle permet de travailler sur un
nombre quelconque de variables d'équilibrage. Mais les premières variables
relâchées peuvent être mal équilibrées.
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Echantillonnage équilibré La méthode du Cube

Phase d'atterrissage : échantillon optimal

La 2ème possibilité consiste à dé�nir un plan de sondage sur les unités
restantes :

respectant les probabilités d'inclusion de départ,

minimisant (en moyenne) l'écart à l'équilibre, à l'aide d'un critère de
type

minE
∥∥t̂xπ − tx∥∥2

.

Cette option permet d'obtenir un bon équilibrage global. Elle nécessite de
dé�nir entièrement un plan de sondage sur une population de p individus.
C'est possible si le nombre de contraintes est faible, mais impraticable si p
est grand
(p = 19⇒ 500 000 échantillons possibles environ)
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Echantillonnage équilibré La méthode du Cube

Fonction "samplecube"
Extrait de la documentation de "sampling"

Selects a balanced sample (a vector of 0 and 1) or an almost balanced
sample. Firstly, the �ight phase is applied. Next, if needed, the landing
phase is applied on the result of the �ight phase.

samplecube(X,pik,order=1,comment=TRUE,method=1)

Arguments:

X: matrix of auxiliary variables on which the sample must be balanced.

pik: vector of inclusion probabilities.

order

1: the data are randomly arranged,

2: no change in data order,

3: the data are sorted in decreasing order.
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Echantillonnage équilibré La méthode du Cube

Fonction "samplecube"
Extrait de la documentation de "sampling"

Selects a balanced sample (a vector of 0 and 1) or an almost balanced
sample. Firstly, the �ight phase is applied. Next, if needed, the landing
phase is applied on the result of the �ight phase.

samplecube(X,pik,order=1,comment=TRUE,method=1)

Arguments (continued):

comment: a comment is written during the execution if comment is
TRUE.

method

1: for a landing phase by linear programming,

2: for a landing phase by suppression of variables.
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Exemple extrait de la documentation de "sampling"

> data(MU284)

# Computation of the inclusion probabilities

> pik=inclusionprobabilities(MU284$P75,50)

# Definition of the matrix of balancing variables

> X=cbind(MU284$P75,MU284$CS82,

MU284$SS82,MU284$S82,MU284$ME84)

# Computation of the Horvitz-Thompson estimator for a

balanced sample

> s=samplecube(X,pik,1,TRUE)

BEGINNING OF THE FLIGHT PHASE

The matrix of balanced variable has 5e+00 variables and 284

units

The size of the inclusion probability vector is 284

The sum of the inclusion probability vector is 5e+01

The inclusion probability vector has 281 non-integer elements

Step 1



Exemple extrait de la documentation de "sampling"

BEGINNING OF THE LANDING PHASE

At the end of the flight phase, there remain 5 non integer

probabilities

The sum of these probabilities is 3e+00

This sum is integer

The linear program will consider 10 possible samples

The mean cost is 1.561e-02

The smallest cost is 7.617e-04

The largest cost is 3.63e-02

The cost of the selected sample is 7.617e-04

QUALITY OF BALANCING

TOTALS HorvitzThompson_estimators Relative_deviation

1 8.182e+03 8.182e+03 -5.558e-14

2 2.583e+03 2.589e+03 2.248e-01

3 6.301e+03 6.354e+03 8.423e-01

4 1.350e+04 1.361e+04 7.909e-01

5 5.052e+05 5.051e+05 -3.000e-02



Echantillonnage équilibré La méthode du Cube

Estimation de variance
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Echantillonnage équilibré La méthode du Cube

Estimation de variance

Il est théoriquement possible d'utiliser l'estimateur de variance de HT, ou
celui de YG si la probabilité d'inclusion fait partie des contraintes d'équilibrage.

En pratique, les probabilités d'inclusion d'ordre 2 sont presque impossibles à
calculer, en dehors de cas particuliers (e.g., méthode du pivot).

Il est possible d'obtenir une approximation par simulations de la matrice des
probabilités d'inclusion d'ordre 2 (e.g., Breidt et Chauvet, 2011), mais un
très grand nombre de simulations est nécessaire pour obtenir un estimateur
numériquement stable.
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Echantillonnage équilibré La méthode du Cube

Approximation de variance de Deville et Tillé

Deville et Tillé (2005) ont proposé une classe d'estimateurs de variance, sous
les hypothèses suivantes :

1 le plan de sondage est exactement équilibré,

2 le plan de sondage est à entropie maximale, parmi les plans équilibrés
sur les mêmes variables xk, avec les mêmes probabilités d'inclusion πk.

La condition 1 (équilibrage exact) n'est généralement pas véri�ée en raison
de la phase d'atterrissage. L'approximation de variance de Deville et Tillé
(2005) prend essentiellement en compte la variance due à la phase de vol.

La condition 2 (entropie maximale) n'est pas nécessairement réalisée, notam-
ment si l'algorithme du Cube est appliqué sur un �chier trié préalablement
selon une variable auxiliaire.
Pour qu'elle soit approximativement véri�ée, il est possible de trier aléa-
toirement les unités de la population avant d'appliquer la méthode du Cube
(option order=1 de la fonction "samplecube").
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Approximation de variance de Deville et Tillé

Deville et Tillé (2005) montrent que la variance est approx. celle d'un tirage
de Poisson, pour les résidus de la régression de y sur x :

Vapp(t̂yπ) =
N

N − p
∑
k∈U

πk(1− πk)
(
Ek
πk

)2

,

avec Ek = yk − x>kB

et B =

{∑
k∈U

πk(1− πk)
xk
πk

x>k
πk

}−1 ∑
k∈U

πk(1− πk)
xk
πk

yk
πk
.

Par substitution, nous obtenons l'estimateur de variance :

V̂DT (t̂yπ) =
n

n− p
∑
k∈S

(1− πk)
(
ek
πk

)2

,

avec ek = yk − x>k B̂π

et B̂π =

(∑
k∈S

(1− πk)
xk
πk

x>k
πk

)−1∑
k∈S

(1− πk)
xk
πk

yk
πk
.



Echantillonnage équilibré La méthode du Cube

Mise en oeuvre sous R

# Matrice des variables d'équilibrage

> X=cbind(MU284$P75,MU284$CS82,MU284$SS82,MU284$S82)

# Estimateur de Horvitz-Thompson

> s=samplecube(X,pik,1,TRUE)

> y <- MU284$RMT85

> HTestimator(y[s==1],pik[s==1])

[1,] 68783

# Estimation de variance DT : package GUSTAVE

> varDT(y[s==1],pik[s==1],X[s==1,])

[1] 487627
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Echantillonnage équilibré La méthode du Cube

Application

La base de sondage est le �chier commune. Nous nous intéressons à l'estimation
des variables : nombre d'actifs (variable ACTIFS), nombre d'inactifs (variable
INACTIFS), nombre d'étrangers de l'Union européenne (variable NATUE).

1- Sélectionner un échantillon de taille 50, à probabilités égales, équilibré sur
la variable : probabilité d'inclusion. Commenter les sorties.
A quelle contrainte correspond l'équilibrage sur la probabilité d'inclusion ?

2- Procéder aux estimations demandées, et donner l'estimateur de variance
de Deville-Tillé associé.
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Echantillonnage équilibré La méthode du Cube

Application

3- Sélectionner un échantillon de taille 50, à probabilités égales, équilibré sur
les variables :

Probabilité d'inclusion,

Nombre de logements.

A quelles contraintes correspond l'équilibrage sur ces deux variables?

4) Procéder aux estimations demandées. Comparer avec les estimations de
variance obtenues à la question 2.
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Echantillonnage équilibré La méthode du Cube

Application

5- Sélectionner un échantillon de taille 100, à probabilités proportionnelles
au nombre de logements, équilibré sur les variables :

Nombre de logements,

Variable constante égale à 1,

Variables croisées âge-sexe : F0019 , ..., H7599 (10 variables).

A quelle contrainte correspond l'équilibrage sur la variable constante égale à
1? Pourquoi ne pas équilibrer sur la probabilité d'inclusion ?

6- Commenter les sorties, et procéder aux estimations demandées.
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Echantillonnage équilibré Le Recensement

Le Recensement
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Echantillonnage équilibré Le Recensement

Principe

La méthode du Cube a été utilisée pour les Enquêtes Annuelles de Recense-
ment. Le plan de sondage utilisé (Godinot, 2005) distingue :

les grandes communes (10 000 habitants ou plus au RP 1999)
⇒ au sein de chacune, sélection et enquête auprès d'un échantillon
d'adresses.

les petites communes (moins de 10 000 habitants)
⇒ au sein de chaque région, échantillonnage de petites communes dont
toutes les adresses sont enquêtées.

Les échantillons du Nouveau Recensement ont été sélectionnés selon des
principes de coordination négative : les échantillons sont non chevauchants
d'une année sur l'autre.
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Echantillonnage équilibré Le Recensement

Principe de constitution des groupes de rotation

Soit U dans laquelle on dispose d'un vecteur xk de variables auxiliaires. On
tire S1 avec des probabilités d'inclusion π1k ≡ π, en équilibrant sur le vecteur
xk.
Alors l'échantillon U \ S1 est :

tiré avec des probabilités d'inclusion 1− π,
équilibré sur les variables xk.

Nous tirons dans U \ S1 un échantillon S2 avec des probabilités d'inclusion

conditionnelles π2k|1̄ ≡
π

1− π
, en équilibrant sur le vecteur xk.

Alors non conditionnellement, l'échantillon S2 est :

tiré avec des probabilités d'inclusion π,

équilibré sur les variables xk.
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Le cas des petites communes

Les résultats précédents sont utilisés pour partitionner aléatoirement, au
sein de chaque région, les petites communes en 5 groupes de rotation.
Ils sont tirés à probabilités égales, en équilibrant sur des variables socio-
démographiques et la population par département.

Les groupes de rotation sont sélectionnés successivement :

le GR S1 est tiré dans U avec des probas π ≡ 1

5
,

le GR S2 est tiré dans U \ S1 avec des probas
π

1− π
≡ 1

4
,

le GR S3 est tiré dans U \ {S1 ∪ S2} avec des probas
π

1− 2π
≡ 1

3
,

le GR S4 est tiré dans U \{S1∪S2∪S3} avec des probas
π

1− 3π
≡ 1

2
,

le GR S5 est donné par le reste de la population.

Une année donnée, toutes les adresses d'un groupe de rotation de petites
communes sont enquêtées. Nous avons donc l'exhaustivité sur un cycle de
5 ans, mais un décalage temporel dans les données collectées.



Echantillonnage équilibré Le Recensement

Application : découpage de "commune" en 4 groupes de
rotation

Partitionner aléatoirement la table commune en 4 échantillons de taille 250,
sélectionnés à probabilités égales et équilibrés sur les variables : probabilité
d'inclusion, nombre de Logements, nombre d'hommes, nombre de femmes.

#Tirage du 1er groupe de rotation

> n=250

> Npop=1000

> pi=rep(n/Npop,Npop)

> FEM=f0019+f2039+f4059+f6074+f7599

> HOM=h0019+h2039+h4059+h6074+h7599

> X=cbind(pi,FEM,HOM,NLOG)

> ech1=samplecube(X,pi,1,TRUE)

> ident_ech1=ident[ech1==1]
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Echantillonnage équilibré Le Recensement

Application (suite)

#Tirage du second groupe de rotation

> n=250

> Npop=750

> pi=rep(n/Npop,Npop)

> ident_reste=ident[ech1==0]

> Xreste=X[ech1==0,]

> ech2=samplecube(Xreste,pi,1,TRUE)

> ident_ech2=ident_reste[ech2==1]
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Echantillonnage équilibré Le Recensement

Application (�n)

#Tirage des groupes de rotation 3 et 4

> n=250

> Npop=500

> pi=rep(n/Npop,Npop)

> ident_reste=ident_reste[ech2==0]

> Xreste=Xreste[ech2==0,]

> ech3=samplecube(Xreste,pi,1,TRUE)

> ident_ech3=ident_reste[ech3==1]

> ident_ech4=ident_reste[ech3==0]
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Echantillonnage équilibré Le Recensement

Le cas des grandes communes

Au sein de chaque grande commune, les adresses sont (schématiquement)
réparties en trois strates :

Les grandes adresses (plus de 60 logements),

Les adresses neuves,

Les autres adresses.

Chacune de ces strates fait l'objet d'un plan de sondage spéci�que.

Les grandes adresses sont réparties (aléatoirement ou non) en 5 groupes de
rotation, et un groupe est enquêté exhaustivement chaque année (idem pour
les adresses neuves).
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Echantillonnage équilibré Le Recensement

Le cas des grandes communes (suite)

Les autres adresses sont partitionnées aléatoirement en 5 groupes de ro-
tation, sélectionnés à probabilités égales, en équilibrant sur des variables
socio-démographiques et le nombre de logements par IRIS.

La technique est la même que pour les petites communes. Une année donnée,
40% (environ) des adresses d'un groupe de rotation sont sélectionnées et
enquêtées.

En résumé, le plan de sondage est ici strati�é par grande commune et type
d'adresse. Selon la strate, l'échantillon annuel est sélectionné en une ou deux
phases de tirage, aléatoirement ou non.
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Echantillonnage spatial

Echantillonnage spatial
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Echantillonnage spatial Echantillonnage spatial en population �nie

Echantillonnage spatial en

population �nie
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Echantillonnage spatial Echantillonnage spatial en population �nie

Application à l'échantillonnage spatial

Dans un contexte spatial, première loi de géographie de Tobler :
"Everything is related to everything else, but near things are more related
than distant things".

Modèle de travail de type (voir Grafström and Tillé, 2013) :

yk = βπk + εk,

Em(εk) = 0 et Covm(εk, εl) = σkσlρ
d(k,l).

⇒ il vaut mieux éviter de tirer des unités contigues, qui portent une infor-
mation similaire.
⇒ il est préférable de bien répartir l'échantillon dans l'espace.

Il est possible d'incorporer plus d'information auxiliaire dans le plan de sondage,
ce qui permet d'avoir des stratégies plus e�caces (Grafström and Tillé, 2013;
Le Gleut, 2017).
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".

Les adresses sont triées sur une ligne.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".

Les adresses sont triées sur une ligne.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".

Les adresses sont triées sur une ligne.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".

Les adresses sont triées sur une ligne.

L'échantillon est sélectionné par tirage
systématique.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
régulière, avec des "adresses".

Les adresses sont triées sur une ligne.

L'échantillon est sélectionné par tirage
systématique.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Pivotal Tesselation Sampling (PTS)

La méthode GRTS donne des échantillons bien équilibrés dans l'espace (Ste-
vens and Olsen, 2004), mais avec un tirage systématique les propriétés statis-
tiques des estimateurs sont di�ciles à établir, même si les unités sont par-
tiellement randomisées le long de la ligne.

Une possibilité consiste à utiliser la méthode de tesselation, mais en rem-
plaçant le tirage systématique par la méthode du pivot (Chauvet et Le Gleut,
2019). L'échantillon est toujours bien réparti dans l'espace, et avec de bonnes
propriétés statistiques.

Il est également possible d'utiliser la méthode du pivot avec d'autre plans de
sondage spatiaux qui utilisent une forme de tri des unités (voir par exemple
Dickson and Tillé, 2015).
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Echantillonnage spatial Echantillonnage spatial en population �nie

Méthode du pivot local

Les méthodes précédentes (GRTS, PTS) consistent à projeter un espace de
dimension d ≥ 2 dans un espace de dimension 1, dans lequel un algorithme
d'échantillonnage usuel peut être appliqué (tirage systématique ou méthode
du pivot).

Grafström et al. (2012) ont proposé une autre méthode appelée le pivot
local, qui ne nécessite pas de se projeter dans une dimension plus petite.

L'idée consiste à utiliser la méthode du pivot, en choisissant à chaque étape
des unités très proches pour leur appliquer l'étape de base. La méthode
permet donc d'éviter la sélection d'unités contigues.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Méthode du pivot local : version 1

1 Une unité i est choisie aléatoirement.

2 L'unité j qui est le plus proche voisin de i est choisie (tirage aléatoire
en cas d'égalité).

3 L'étape de base de la méthode du pivot est appliquée à i et j si i est
également un plus proche voisin de j. Sinon, retour à l'étape 1.

4 Si toutes les probabilités des unités sont arrondies aléatoirement à 0 ou
1, l'algorithme s'arrête. Sinon, retour à l'étape 1.

Le nombre d'opérations pour sélectionner un échantillon selon cette méthode
est de l'ordre de N3.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Méthode du pivot local : version 2

1 Une unité i est choisie aléatoirement.

2 L'unité j qui est le plus proche voisin de i est choisie (tirage aléatoire
en cas d'égalité).

3 L'étape de base de la méthode du pivot est appliquée à i et j si i est
également un plus proche voisin de j. Sinon, retour à l'étape 1.

4 Si toutes les probabilités des unités sont arrondies aléatoirement à 0 ou
1, l'algorithme s'arrête. Sinon, retour à l'étape 1.

Le nombre d'opérations pour sélectionner un échantillon selon cette méthode
est de l'ordre de N2.
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Echantillonnage spatial Echantillonnage spatial en population �nie

Echantillonnage spatial doublement équilibré

Grafström et Tillé (2013) ont proposé une méthode d'échantillonnage spatial
doublement équilibrée :

l'échantillon est tiré de façon à être bien réparti dans l'espace (premier
équilibrage),

l'échantillon est tiré selon la méthode du Cube pour être équilibré sur p
variables de contrôle (second équilibrage).

Cette méthode est notamment utilisée par l'Insee pour le tirage du nouvel
échantillon maître NAUTILE (Costa et al., 2018).
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Echantillonnage spatial Echantillonnage spatial en population �nie

Echantillonnage spatial doublement équilibré

Le principe est similaire à celui du pivot local :

1 Une unité i est choisie aléatoirement. Le sous-ensemble des p unités les
plus proches de i est utilisé.

2 Calcul du barycentre du nuage de points, et recherche des p+ 1 points
les plus proches. L'opération est réitèrée tant que la somme des carrés
des distances au barycentre diminue.

3 L'étape de base de la méthode du cube est appliquée aux p+ 1 points
retenus, en équilibrant sur xk.

4 Si toutes les probabilités des unités sont arrondies aléatoirement à 0 ou
1, l'algorithme s'arrête. Sinon, retour à l'étape 1.
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Echantillonnage spatial Sampling in a continuous population

Sampling in a continuous

population
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Echantillonnage spatial Sampling in a continuous population

Notations

Suppose that we are no more interested in a �nite population U , but in a
continuous territory UA ⊂ R2. The area of the territory is denoted as A.

We are interested in a variable of interest ρ(·), taking the value ρ(x) for
point x ∈ UA. The variable ρ(·) is also seen as deterministic.

We wish to estimate parameters over the population UA, like the integral of
the variable ρ(·):

τρ =

∫
UA

ρ(x)dx.
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Echantillonnage spatial Sampling in a continuous population

A toy example on a square of length a

ρ1(x) = 1∫
UA

ρ1(x)dx = A = a2

ρ2(x) = x1∫
UA

ρ2(x)dx =
a3

2

ρ3(x) = x1x2∫
UA

ρ3(x)dx =
a4

4
.
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Sampling design

A random sample S = {s1, . . . , sn} of n locations is selected by means of a
continuous sampling design. We assume the existence of the joint probability
density function (PDF) of the sample locations:

f(x1, . . . , xn).

We also suppose the existence of the marginal PDF fi(·):

fi(x) =

∫
f(x1, . . . , xi−1, x, xi+1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn.

The inclusion density function is de�ned as

π(x) =
n∑
i=1

fi(x).

For any UD ⊂ UA,
∫
UD

π(x)dx is the average number of points which is

selected in UD.



Unit square of length a
Uniform sampling of size n

We have

f(x1, . . . , xn) =
1

An

n∏
i=1

1
(
xi ∈ UA

)
,

fi(xi) =
1

A
1
(
xi ∈ UA

)
,

π(x) =

n∑
i=1

fi(x)

=
n

A
for x ∈ UA,

∫
UD

π(x)dx = n
AD

A
.



Echantillonnage spatial Sampling in a continuous population

Horvitz-Thompson estimation

For the estimation of the population integral τρ =
∫
UA ρ(x)dx, we consider

the Horvitz-Thompson estimator

τ̂ρπ =

n∑
i=1

ρ(si)

π(si)
=

n∑
i=1

d(si)ρ(si),

with d(si) the sampling weights.

This is a weighted estimator, which is unbiased for τρ provided that π(x) > 0
almost everywhere on UA (no coverage bias).

Under this condition, it is unbiased for any variable of interest collected
during the survey.
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Uniform sampling

Under uniform sampling of size n, the joint PDF is the same for all the points
inside the territory. We obtain

fi(x) =
1

A
and π(x) =

n

A
for any x ∈ UA.

The Horvitz-Thompson estimator is

τ̂ρπ =

n∑
i=1

ρ(si)

π(si)
= A ρ̄,

with ρ̄ =
1

n

n∑
i=1

ρ(si) the sample mean.

An unbiased variance estimator is

V̂ (τ̂ρπ) = A2
s2
ρ

n

with s2
ρ =

1

n− 1

n∑
i=1

{ρ(si)− ρ̄}2 the sample dispersion.



Echantillonnage spatial Sampling in a continuous population

Grid sampling

In practice, uniform sampling is
hardly ever used. Some areas may
be covered by several points, while
others may not be surveyed.
⇒ poor spatial balance.

Grid sampling is very common in
forest inventories.

A sample of cells is selected (possi-
bly all), and a sample of points is se-
lected inside each selected cell (usu-
ally one).
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Echantillonnage spatial Sampling in a continuous population

Some possible grid sampling designs
Spatially systematic aligned sample Spatially systematic unaligned sample
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Echantillonnage spatial Sampling in a continuous population

Some possible grid sampling designs (2)

Like with uniform sampling, the two previous sampling designs lead to a
constant inclusion density function:

π(x) =
n

A
for any x ∈ UA.

The Horvitz-Thompson estimator is

τ̂ρπ =

n∑
i=1

ρ(si)

π(si)
= A ρ̄,

with ρ̄ =
1

n

n∑
i=1

ρ(si) the sample mean.

Unbiased variance estimation is not possible.
It is common practice to treat this design as uniform sampling for variance
estimation, which usually results in an overestimation of the variance (con-
servative approach).
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Echantillonnage spatial Sampling in a continuous population

Forest inventories

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 142 / 162



Echantillonnage spatial Sampling in a continuous population

The French National Forest Inventory

The French National Forest Inventory (NFI) follows a design-based sampling
protocol, in order to produce useful and relevant information for the data
production on the French forest.

The French NFI was created in 1958 to assess French forest resources. The
methodology was changed in November 2004, and currently makes use of
sample points on a grid de�ned for a 10-year period, from which one tenth
is dealt with each year (Hervé, 2017).

The French NFI collects dendrometric, ecological and �oristic information.
The sampled data are used to create forest maps by administrative county
through interpreting aerial photographs. The survey can also take additional
data on request (dead wood, forest health, ...)
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Objectives

We are interested in a �nite population U of trees. Let yk denote the
attribute of interest for k ∈ U . We wish to estimate the total

ty =
∑
k∈U

yk, (12)

which may be the total volume of wood, for example.

Some form of indirect sampling is used. Let UA denote a continuous territory
containing all the units in U . A typical inventory design consists in:

1 selecting a large 1st-phase sample of points in UA (continuous sampling
design),

2 classifying the points according to the land cover (photo-interpretation),

3 selecting a smaller, 2nd-phase sample using the 1st-phase auxiliary in-
formation (�nite sampling design),

4 using �xed-shape supports from these points to survey the units in U .



Echantillonnage spatial Sampling in a continuous population

Step 1: 1st-phase sampling
French annual sample: a two-stage design

A sample of cells is �rst selected,
by using some form of systematic
sampling with equal probabilities.

One point is randomly selected
inside each cell.
⇒ First-phase sample of points SA1p.

The cells are randomly partitioned
into 10 rotation groups (negative
coordination).
All the cells are surveyed in ten years.
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Echantillonnage spatial Sampling in a continuous population

Steps 2-3: photo-interpretation and 2nd phase sampling

The 1st phase points are classi�ed
according to the land cover (for-
est, shrub land, non forest), using
photo-interpretation.

The 1st phase sample is strati�ed,
with 6= sub-sampling intensities
inside strata.

For France,
f2g = 1/2 for forest,
f2g = 1/4 for shrub land,
f2g = 1 for non-forest,
(no visit on the �eld in this last case).
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Echantillonnage spatial Sampling in a continuous population

Steps 2-3: photo-interpretation and 2nd phase sampling

The 1st phase points are classi�ed
according to the land cover (for-
est, shrub land, non forest), using
photo-interpretation.

The 1st phase sample is strati�ed,
with 6= sub-sampling intensities
inside strata.

For France,
f2g = 1/2 for forest,
f2g = 1/4 for shrub land,
f2g = 1 for non-forest,
(no visit on the �eld in this last case).
⇒ Second-phase sample SA2p.
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Echantillonnage spatial Sampling in a continuous population

Step 4: use of �xed shape supports

A plot with �xed radius r is centered
at the sampled point, and the trees
within are surveyed.

For the French NFI, 3 plot radiuses:

Plot radius Tree's circonference
at 1.3m

6m 23.5-70.5cm (ST)
9m 70.5-117.5cm (MT)
15m ≥ 117.5cm (LT)
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Echantillonnage spatial Sampling in a continuous population

Step 4: use of �xed shape supports

Remark: there can be a third phase
of sampling (not covered here).

Cheap attributes (e.g., basal diame-
ter) are collected on the whole 2nd
phase sample, while expensive at-
tributes (e.g., volume) are collected
on a sub-sample only, and imputed
on the complementary.

This is the case in the French NFI.
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Echantillonnage spatial Sampling in a continuous population

Step 4: use of �xed shape supports

The trees within the plot(s) are
surveyed, if they belong to the
corresponding circonference class.

In summary:

a sample of points SA is se-
lected in a continuous territory
UA,
a sample of trees SB is surveyed
on the �eld.

How to obtain estimators for the

population of trees?
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Echantillonnage spatial Sampling in a continuous population

Weight share method

The weight share method (Deville
and Lavallée, 2006; Chauvet et al.,
2023) enables to use the weights
of the sampled points to give esti-
mation weights to the sampled trees.

We illustrate the principle on a toy
example. Suppose that the popula-
tion of interest if a square of length
50 m (A = 2, 500 m2) containing
only 5 trees.
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Echantillonnage spatial Sampling in a continuous population

Weight share method (2)

A sample SA = {z1, z2} of 2 points
is selected in UA with a constant
inclusion density.

We have

d(z1) = d(z2) =
A

n
= 1, 250.

All the trees in U inside the plots of
radius r centered on z1, z2 are sur-
veyed (namely, k = 1, 4 or 5).
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Weight share method (3)

The inclusion area of a tree k is
the sub-territory which leads to the
selection of k is a point is sampled
inside.

The weight of the trees are given by:

dk =

∑n
i=1 d(zi)1 {zi ∈ i.a. of k }
Surface of the i.a. of k

=


1,250
211.27 = 5.92 for k = 1,
1,250
314.16 = 3.98 for k = 4,
1,250
314.16 = 3.98 for k = 5.



Echantillonnage spatial Sampling in a continuous population

Application to the French NFI
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Echantillonnage spatial Sampling in a continuous population

French annual sample: a �rst-phase two-stage design

Sample of nI cells �rst selected
among the NI cells, with equal
probabilities.
One point randomly selected inside
each cell of area Ac.

The �rst-phase inclusion density/HT
estimator are

π1p(x) =
nI
NI
× 1

Ac
=
n1p

A

for any x ∈ UA,

τ̂y,1p =
A

n1p

∑
x∈SA1p

yA(x).
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Echantillonnage spatial Sampling in a continuous population

French annual sample: second-phase sampling design

The 1st phase points are classi�ed
according to the land cover (e.g.,
forest, shrub land, non forest).
Sub-sampling fraction f2g in the
category g.

Second-phase inclusion density:

π2p(x) = π1p(x) f2g for x ∈ SA1p,g.
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Echantillonnage spatial Sampling in a continuous population

French annual sample: second-phase sampling design

The 1st phase points are classi�ed
according to the land cover (e.g.,
forest, shrub land, non forest).
Sub-sampling fraction f2g in the
category g.

Second-phase inclusion density:

π2p(x) = π1p(x) f2g for x ∈ SA1p,g.

Expansion estimator:

τ̂y,2p =
A

n1p

G∑
g=1

1

f2g

∑
x∈Sb2p,g

yA(x).
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Echantillonnage spatial Sampling in a continuous population

French annual sample: second-phase sampling design

The estimator

τ̂y,2p =
A

n1p

G∑
g=1

1

f2g

∑
x∈Sb2p,g

yA(x)

is post-strati�ed using 1st phase in-
formation:

τ̂y,post =
A

n1p

G∑
g=1

n1p,g

n2p,g

∑
x∈Sb2p,g

yA(x).

For example:

n1p,Shrub = 5,

n2p,Shrub = 1.
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Echantillonnage spatial Sampling in a continuous population

French annual sample: variance estimation

Unbiased variance estimation is
not possible (one point per cell
selected).
We compute a variance estimator
with two components.

One accounts for the two-stage
�rst-phase design. Expected to
improve on the classical uniform
random sampling approximation.

One accounts for the second-
phase design and poststrati�cation
(Duong, Bouriaud and Chauvet,
202X).
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