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Principaux objectifs du cours

Rappels sur I'échantillonnage et I'estimation en population finie
Compléments sur les méthodes d’échantillonnage a probabilités inégales

Méthodes d’échantillonnage équilibré et applications

Méthodes d’échantillonnage spatial

Nous utiliserons :
@ le package R sampling pour |'échantillonnage,

@ le package R gustave pour |'estimation de variance (créé et maintenu
par Martin Chevalier et Khaled Larbi, Insee).

#Appel des packages

> library(sampling)

> help(package="sampling")
> library(gustave)

> help(package="gustave")




Bases de sondage

Nous utiliserons deux bases de sondage disponibles avec le package sampling.

La base de sondage belgianmunicipalities fournit des informations sur
les 589 communes de Belgique au 01/07/2004, ainsi que des informations
financieres datées de 2001.

La base de sondage MU284 fournit des informations sur les 284 communes
de Suéde datées de 1985.

#Récupération de deux bases de données du package
> data("belgianmunicipalities")

> attach(belgianmunicipalities)

> data("MU284")

> attach(MU284)
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Variables de "belgianmunicipalities"

Commune Municipality name

INS INS Code INS

Province Province number

Arrondiss Administrative division number

Men04 Number of men on July 1, 2004

Women04 Number of women on July 1, 2004

Tot04 Total population on July 1, 2004

Men03 Number of men on July 1, 2003

Women03 Number of women on July 1, 2003

Tot03 Total population on July 1, 2003

Diffmen Men04 minus Men03

Diffwom Women04 minus Women03

DiffTOT Tot04 minus Tot03

Taxablelncome | Total taxable income in euros in 2001
Totaltaxation Total taxation in euros in 2001

Averageincome | Average of the income-tax return in euros in 2001
Medianincome | median of the income-tax return in euros in 2001.
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|
Variables de "MU284"

LABEL
P85
P75
RMT85

CS82
SS582
S82
MEB84
REV84

REG
CL

Identifier number from 1 to 284

1985 population (in thousands)

1975 population (in thousands)

Revenues from 1985 municipal taxation

(in millions of kronor)

Number of Conservative seats in municipal council
Number of Social-Democratic seats in municipal council
Total number of seats in municipal council

Number of municipal employees in 1984

Real estate values according to 1984 assessment

(in millions of kronor)

Geographic region indicator

Cluster indicator (a cluster consists of a set of neighboring)
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Variables de "commune" (hors package)

IDENT Variable identifiant |'adresse

NLOG Nombre de logements de |'adresse

ACTIFS Nombre d'actifs

INACTIFS | Nombre d'inactifs

NATFN Nombre de francais de naissance

NATHE Nombre d'étrangers hors Union Européenne
NATUE Nombre d'étrangers de I'Union Européenne
NATFA Nombre de francais par acquisition

HOMMES Nombre d'hommes

FEMMES Nombre de femmes

_0019 Nombre de personnes de moins de 20 ans
_2039 Nombre de personnes de 20 a 39 ans
_4059 Nombre de personnes de 40 a 59 ans
_6074 Nombre de personnes de 60 & 74 ans
_7599 Nombre de personnes de 75 ans et plus
HO0019 Nombre d'hommes de moins de 20 ans
F7599 Nombre de femmes de plus de 75 ans




@ Rappel sur les méthodes d’échantillonnage
@ Principes généraux
@ Etude par simulations
@ Calcul de variance
o Modéle de travail

© Méthodes d’échantillonnage a probabilités inégales
@ Tirage systématique
o Méthode du pivot
o Tirage de Poisson
o Tirage réjectif

© Echantillonnage équilibré
@ Principe
@ La méthode du Cube
@ Le Recensement

@ Echantillonnage spatial
@ Echantillonnage spatial en population finie
@ Sampling in a continuous population



Rappel sur les méthodes d’échantillonnage

Rappel sur les méthodes
d'échantillonnage
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Rappel sur les méthodes d’échantillonnage Principes généraux

Principes généraux
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Rappel sur les méthodes d’échantillonnage Principes généraux

Notations

Nous nous placons dans le cadre d'une population finie U d’ unités statistiques
supposées identifiables par un label. Nous noterons

u={1,...,k,...,N}
ol N désigne la taille de la population U, qui n'est pas forcément connue.

Nous nous intéressons a une variable d'intérét y prenant la valeur yi sur
k € U. Nous souhaitons disposer d'indicateurs pour la population U :

o total : &y =D 1y Uk
Ex : Nombre total d’actifs dans la population francaise

o total sur un domaine Uy : t,q = ZkeUd Yk

Ex : Nombre total d’actifs dans I'Aire Urbaine de Rennes
e ratio de deux totaux : R =t,/t,.

Ex : Taux de chémage en Bretagne
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Plan de sondage

La variable d'intérét est mesurée sur un échantillon aléatoire .S obtenu selon
un plan de sondage p. Il s'agit d’une loi de probabilité sur les parties de U :

Vs CU p(s) >0 et Zp(s) = 1. (1)
sCU
En pratique, nous utilisons un algorithme de tirage pour sélectionner S, et
le plan de sondage n’est pas complétement spécifié. Deux quantités sont
importantes pour calculer des estimateurs et mesurer leur précision :
@ les probabilités d'inclusion d’ordre 1
m, = Pr(kes),
sont utilisées pour le calcul des estimateurs ponctuels,
@ les probabilités d’inclusion d’ordre 2

TR = PT(]{?,ZES),

sont utilisées pour le calcul des estimateurs de variance.
Nous noterons n(S) la taille de I'échantillon S, qui peut étre aléatoire.



Rappel sur les méthodes d’échantillonnage Principes généraux

Exemples

Exemple 1 : Les enquétes-ménages de I'Insee visent a décrire les condi-
tions de vie des ménages (emploi, logement, patrimoine, ...). Les ménages
enquétés sont sélectionnés dans un échantillon de zones appelé I' Echantillon-
Maitre.

Exemple 2 : Les enquétes-entreprises sont réalisées a I'aide d’une base de
sondage (répertoire SIRUS) et de sources externes.

Exemple 3 : Les inventaires forestiers nationaux sont réalisés en sélec-
tionnant un échantillon de points sur le territoire. Des motifs sont ensuite
construits autour de ces points (e.g., des placettes circulaires) pour sélec-
tionner les arbres qui dont |'objet de mesures sur le terrain.
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Rappel sur les méthodes d’échantillonnage Principes généraux

Mesures de précision

La qualité d'un estimateur 0 est évaluée par :

@ son biais

By(8) = Ep(6 - 6) = ) _ p(s){8(s) — 6},

sCU

@ sa variance )
Vo) = B, {0 - E,(0)}

@ ou encore son Erreur Quadratique Moyenne (EQM)

EQM,(9) = Ey(0 —6)* = By(6)* + V,(6).
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Rappel sur les méthodes d’échantillonnage Etude par simulations

Etude par simulations
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Etude par simulations
[l est possible de vérifier les propriétés théoriques d'un estimateur (biais,

variance, EQM) en utilisant une base de sondage sur laquelle les variables
d’intérét sont connues sur toute la population.

La premiére possibilité consiste a lister tous les échantillons s sélectionnables,
avec leur probabilité de sélection. |l est alors possible de calculer :

Le biais By(0) = ey p(s) {é(s) - 9} :
La variance ‘/p(é) = ZSCU p(s) {é(s) - ZS/CU p(‘sl)é(sl)}Q ’
L'EQM EQM,(0) = ¥y p(s) {é(s) _ 9}2 .

Cette méthode n’est possible que sur de petites populations pour laquelle il
n'est pas trop coilteux de lister 'ensemble des échantillons.
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Rappel sur les méthodes d’échantillonnage Etude par simulations

Simulations de Monte-Carlo

Une autre possibilité consiste a répéter un grand nombre de fois B, indépen-
damment, le tirage d’échantillons Sy, selon le plan de sondage p(-), pour
obtenir des répliques i.i.d de 6 notées 0, b=1,...,B.

Rappelons que pour un échantillon (Xy,...,X,,) i.i.d., nous avons
X =izn:x% E(X) et s%= ! zn:(X»—X)Q—> V(X)
n—ni_l % Pr X—n_li_l % n Pr .

Nous avons donc pour la simulation de Monte Carlo :

1 &N X IR N .
EZ@(, — pr Ep(e) et 835 Z(Gb—GB) — pr Vp(e)

B-1
b=1 b=1

>

B

Si le nombre B de simulations est grand, nous pouvons obtenir une bonne

approximation par simulations de E,(0) et V,(6).
Techniques avancées d'échantillonnage Master Stat Publique 16 /162



Rappel sur les méthodes d’échantillonnage Etude par simulations

Estimateur de Horvitz-Thompson
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Rappel sur les méthodes d’échantillonnage Etude par simulations

Probabilités d'inclusion d'ordre 1

La probabilité pour I'unité k d'étre sélectionnée dans |'échantillon est notée
. = Pr(kes)

Les valeurs de ces probabilités sont fixées avant le tirage.

En I'absence d’information auxiliaire, les unités sont tirées a probas égales
n
T = —.

N
Exemple : tirage de Bernoulli, sondage aléatoire simple.

Si une variable auxiliaire x;, est connue pour tout k € U, nous pouvons
utiliser des probabilités d’inclusion proportionnelles a la taille

T,
T = Ne——. (2)

Dieu o
Exemple : tirage systématique, méthode du pivot, tirage de Poisson, tirage

réjectif.
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Recalcul des probabilités d'inclusion

Si certaines unités sont particuliérement grosses (au sens de x), certaines
probabilités d'inclusion peuvent étre supérieures 3 1. Dans ce cas les unités
correspondantes sont sélectionnées d’office, et les probabilités d'inclusion des
autres unités sont recalculées.

#Calcul de probas d’inclusion proportionnelles a la taille
> n=50

> pi_b0=inclusionprobabilities(averageincome,n)

> summary (pi_50)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.

[1]10.05693 0.07675 0.08375 0.08489 0.09113 0.14076

> n=400

> pi_400=inclusionprobabilities(averageincome,n)
> summary (pi_400)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.
[1]0.4556 0.6142 0.6702 0.6791 0.7293 1.0000




Rappel sur les méthodes d’échantillonnage Etude par simulations

L estimateur de Horvitz-Thompson

La connaissance des probabilités m;, permet une estimation sans biais d’un
total sous le plan de sondage. Le total ¢, est estimé sans biais par |'estimateur
de Horvitz-Thompson (HT)

2 Yk Yk
be=) =) I (3)
kes 'k keU

si tous les 7, sont > 0, en notant I, = 1(k € S) l'indicatrice d'appartenance
a I'échantillon.

C’est un estimateur pondéré, ou les poids de sondage dy, = 1/ ne dépen-
dent pas de la variable d'intérét.

Si certaines probabilités d'inclusion sont nulles, nous sommes en présence
d'un biais de couverture.
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Etude par simulations
L'estimateur de Horvitz-Thompson (2)

La connaissance des probabilités m;, permet une estimation sans biais d’un
total sous le plan de sondage. Le total ¢, est estimé sans biais par |'estimateur
de Horvitz-Thompson (HT)

Yk Yk
Z =2 —1I (4)
kes "k e TR

si tous les 7, sont > 0, en notant [, = 1(k € S) l'indicatrice d'appartenance
a I'échantillon.

#Tirage d’un échantillon selon un plan réjectif
>ech=UPmaxentropy(pi_50)

#Estimation de HT du total de TaxableIncome
>y=TaxableIncome

>est_ht=HTestimator (y[ech==1],pi_b0[ech==1])
>est_ht

[1,] 1.092e+11
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Calcul de variance
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Probabilités d'inclusion d'ordre 2

La probabilité pour deux unités distinctes k et [ d'étre sélectionnées conjoin-
tement dans I'échantillon est notée

Tl = P’I”(k,lES).

es probabilités mj; ne sont pas choisies avant le tirage : elles dépendent des
Ces probabilit t pas ch t le tirag lles dépendent d
probabilités d'inclusion 7, et du plan de sondage utilisé. Elles interviennent
dans le calcul des estimateurs de variance.

Ces probabilités sont souvent difficiles & calculer exactement, sauf pour cer-
tains plans de sondage particuliers. Mé&me si elles sont calculables, on préféere
souvent utiliser des estimateurs de variance simplifiés n’utilisant que les prob-
abilités d'inclusion d'ordre 1.
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Calcul de variance
Probabilités d'inclusion d'ordre 2 (2)

Le package sampling permet de calculer la matrice des probabités d’inclusion
d’ordre deux pour 5 plans de sondage a probabilités inégales:

o le tirage réjectif ou tirage de Poisson conditionnel,

la méthode de Midzuno,

°
@ le tirage de Rao-Sampford,
o le tirage systématique,

°

la méthode de Tillé.

#Calcul de probas d’inclusion d’ordre 2 pour le réjectif
pikl_rej_50=UPmaxentropypi2(pi_50)

#Calcul de probas d’inclusion d’ordre 2 pour Rao-Sampford
pikl_sam_50=UPsampfordpi2(pi_50)

#Calcul de probas d’inclusion d’ordre 2 pour le systématique
pikl_sys_b0=UPsystematicpi2(pi_50)
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Estimateur de variance de Horvitz-Thompson

Pour un plan de sondage quelconque, la variance de I'estimateur de HT est
donnée par

n Ye Yi
‘/p(tyw) = ?;Akl avec Akl = Mgl — 7. (5)
kieu kT

Cette variance peut étre estimée sans biais par

. Yk Yi D
vaT(tyr) = P (6)
Wags T T T

si tous les my; sont strictement positifs.

Principe : un couple (k,1) d’individus de I'échantillon représente 1 /7y cou-
ples de la population.
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Estimateur de variance de Horvitz-Thompson (2)

#Tirage d’un échantillon selon un plan réjectif
>ech=UPmaxentropy (pi_50)

#Estimation de HT du total de TaxableIncome
>y=TaxableIncome

>est_ht=HTestimator (y[ech==1],pi_b0[ech==1])
#Estimation de variance de HT (PACKAGE SAMPLING)
>vest_ht=varHT (y[ech==1] ,pikl_rej_50[ech==1,ech==1],1)
>options("scipen'"=-100,digits="4")

>est_ht

[1,] 1.092e+11

>vest_ht

[1] 2.518e+20
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Estimateur de variance de Yates-Grundy

Pour un plan de sondage de taille fixe, la variance peut se réécrire

2
Vp(tyr) = —% > (yk_yz> A (7)

T T,
kAley NK ¢

Cette variance peut étre estimée sans biais par

2
UYG(fyﬂ') = _1 Z (yk_yl> % (8)

T T, ™
hiies \Tk 1 ki

si tous les 7y sont strictement positifs. Il s'agit de I'estimateur de variance
de Yates-Grundy.

Si le plan de sondage vérifie les conditions de Yates-Grundy :
Vk #£1 €U Ay <0, cet estimateur de variance est toujours a valeurs
positives.
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Rappel sur les méthodes d’échantillonnage Calcul de variance

Estimateur de variance de Yates-Grundy

#Tirage d’un échantillon selon un plan réjectif
>ech=UPmaxentropy (pi_50)

#Estimation de HT du total de TaxableIncome
>y=TaxableIncome

>est_ht=HTestimator (y[ech==1],pi_b0[ech==1])
#Estimation de variance de YG (PACKAGE SAMPLING)
>vest_yg=varHT (y[ech==1] ,pikl_rej_50[ech==1,ech==1],2)
>vest_yg

[1] 2.804e+20

#Estimation de variance de YG (PACKAGE GUSTAVE)
>vest_yg_gus=varSYG(y[ech==1],pikl_rej_50[ech==1,ech==1])
>vest_yg_gus

[1] 2.804e+20

Tous les algorithmes de tirage a probabilités inégales dans sampling sont
de taille fixe, sauf le tirage de Poisson (fonction UPpoisson).

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 28 /162



Rappel sur les méthodes d’échantillonnage Calcul de variance

Intervalle de confiance

En I'absence de biais de couverture, I'estimateur de HT fy,r estime sans biais
ty. Un intervalle de confiance pour ¢, de niveau 1 — o est donné par :

ICl_a(ty) = [fyﬂizl_g U(tAyﬂ):|

avec z1_eo le quantile d'ordre 1—2 d’une loi normale centrée réduite N (0, 1).
1-5 q D) )

L’intervalle de confiance est asymptotiquement valide :
@ si |'estimateur fyﬂ centré-réduit est asympt. normalement distribué :

tum — 1t
MY . N(0,1).

Vp(tyx)
o si I'estimateur de variance v(f,,) est consistant :
t
L{M) —pr 1.
Vi (tyr)
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Rappel sur les méthodes d’échantillonnage Modéle de travail

Modéle de travail
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Rappel sur les méthodes d’échantillonnage Modéle de travail
Principe

Au stade de I'échantillonnage, nous supposons disponible un g-vecteur x;
de variables auxiliaires connues pour chaque unité k € U.

Cette information va nous servir a construire un plan de sondage. Ce qui
nous motive est une relation supposée entre la variable d'intérét y et les
variables auxiliaires x;, que nous appelons le modéle de travail :

Em(ek) =0,
Vin(€x) 0.

Y = xzﬁ—l—ek avec {

Quel que soit le plan de sondage choisi, |'estimateur de HT sera sans biais
en I'absence de biais de couverture. Si 'information auxiliaire x; peut étre
utilisée pour définir le plan de sondage, alors la variance sera réduite si ce
modéle refléte (au moins partiellement) la relation entre y;, et xx.
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Rappel sur les méthodes d’échantillonnage Modéle de travail

Calcul de variance pour un plan de taille fixe
En écrivant la variable d’intérét selon le modéle de travalil
Y = B+ e,
nous avons pour un plan de taille fixe
Vp(fyﬂ) = V},(fm).

La variance sera donc faible si les résidus ¢, sont petits, i.e. si la variable y;
est approximativement proportionnelle a .

Un bon choix consiste a utiliser des probabilités d'inclusion proportionnelles
a une mesure de taille 25 (nombre d'employés d'une entreprise, nombre
de résidences principales d'une commune). Nous obtenons la formule des
probabilités d’inclusion proportionnelles a la taille :
Tk
= Ne———01.
Dieu o
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En résumé

On utilise un plan de sondage p(-) respectant des probabilités d'inclusion
d'ordre 1 choisies, ce qui permet de calculer pour le total ¢, son estimateur
de Horvitz-Thompson

yk

La variance sera faible si ¥, et 7, sont approximativement proportionnels.
Pour un plan de taille fixe, cette variance est estimée par

) " A
vye(tys _ & Z (Z/ > 2kl
k;éles Tkl

En utilisant une approximation normale pour t,., on obtient l'intervalle de
confiance

£ £ 7 v t ds quelconque,
[tyﬂizl_g U[ty'fr]:| ol v(y)z{ HT(t}/”) pds g ‘ q



Rappel sur les méthodes d’échantillonnage Modéle de travail

Cas du sondage aléatoire simple
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Sondage aléatoire simple (SRS)

Il s'agit du plan qui donne la méme probabilité a tous les échantillons de
taille n d’étre sélectionnés. L'estimateur de Horvitz-Thompson du total est
donné par

o 1
tyr =Ny avec §= - Z Yk- (9)
kesS

Sa variance s'obtient a partir de la formule de Sen-Yates-Grundy :

1 1
V[yﬂ'] N? nfSQ avec SSZﬁZ(yk—My)Q- (10)

keU

On I'estime sans biais par

) 1—f 1 .
vy (byr) = N?—= - sy avec s, = — > -2 (11)
kes

Le package sampling contient 2 algorithmes permettant de réaliser un SRS.



Rappel sur les méthodes d’échantillonnage Modéle de travail

Algorithme de sélection pour un SRS: méthode draw by draw

La premiére méthode consiste a utiliser un algorithme de sélection unité par
unité.

> n=100
> Npop=589
> ech_srs=srswor (n,Npop)

Algorithme 1 Méthode de sélection draw by draw

@ Pour k=1,...,n, sélectionner une unité dans U a probabilités égales
parmi les unités qui n'ont pas déja été tirées.
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Algorithme de sélection pour un SRS: sélection-rejet

La population est parcourue séquentiellement, en tirant chaque unité avec
la probabilité conditionnelle au nombre d'unités déja tirées (Fan, Muller et
Rezucha, 1962).

> n=100
> Npop=589
> ech_srs=srsworl(n,Npop)

Algorithme 2 Méthode de sélection-rejet
© On initialise j = 0.
@ Pourk=1,...,N, faire :

e Avec une probabilité

n—j
N-—-(k-1)
Nb d’unités restant & tirer

ProbCond =

Nb d’unités restantes

on sélectionne I'unité ket j =5+ 1.




Rappel sur les méthodes d’échantillonnage Modéle de travail

Méthode de sélection-rejet : exemple

Individu | wg | 7 | ProbCond | I}
1 0.65 | 0 | 3/8=0.38 | 0
2 098 |0 |3/7=0.43 | 0
3 0.86 | 0 | 3/6=0.50 | 0
4 0.82 | 0 | 3/5=0.60 | 0
5 0.27 | 0 | 3/4=0.75 | 1
6 0.50 | 1| 2/3=0.67 | 1
7 096 | 2 | 1/2=0.50 | 0
8 0.13 2| 1/1=1.00 | 1
Techniques avancées d'échantillonnage Master Stat Publique 38 /162



Estimation pour un SRS

#Tirage d’un échantillon aléatoire simple

>n <- 100

>Npop <- 589

>ech=srsworl(n,Npop)

#Estimation

>pi <- rep(n/Npop,Npop)

>y=TaxableIncome

>est_ht=HTestimator (y[ech==1],pi_b0[ech==1])

>est_ht

[1,]1 2.517e+11

#Estimation de variance pour un SRS (PACKAGE SAMPLING)
>vest_srs=varest (y[ech==1], ,pil[ech==1],)

>vest_srs

[1] 1.16e+20

#Estimation de variance pour un SRS (PACKAGE GUSTAVE)
>vest_srs_gus=var_srs(y[ech==1],pi[ech==1])
>vest_srs_gus

[1] 1.16e+20




Rappel sur les méthodes d’échantillonnage Modéle de travail

Exercice

Nous considérons la population belgianmunicipalities et les variables
d'intérét Tot04 et TaxableIncome. Nous souhaitons estimer le total de ces
deux variables en utilisant un sondage aléatoire simple de taille n = 100.

Mettre en place une étude par simulations pour vérifier que :

© L'estimateur de Horvitz-Thompson ,, (équation 9) est sans biais pour
le total t,,

© L'estimateur de variance vy (f,:) (équation 11) est sans biais pour la
vraie variance V,(tyr),

© L'intervalle de confiance estimé (cf diapo 29) posséde un taux de cou-
verture de 95 %

Vous utiliserez au moins B = 10,000 simulations.
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Exercice

Initialisation des paramétres

#Une étude par simulations pour le SRS
#Initialisation des paramétres

> n=100

> Npop=589

> pi=rep(n/Npop,589)

> sim=10000

#Pile des simulations format (Est,EstVar,Binf,Bsup)
> pile_TotO4=array(0,c(sim,4))
> pile_TaxableIncome=array(0,c(sim,4))

#Estimateur de HT

> ht=numeric(2)
#Estimateur de variance
> ev=numeric(2)
#Intervalle de confiance
> ic=numeric(4)




Exercice

Boucle de Monte-Carlo

#Etude par simulations : boucle de Monte-Carlo
> for(i in 1:sim)
{
cat("Simulation ",i,"\n")
#Selection de 1’échantillon
ech=...
#Estimation et estimation de variance
ht[1]=...

ev[2]=...
#Intervalle de confiance
ic[1]=...

ic[4]=...

#Empilement
pile_Tot04[i,]=cbind(ht[1],ev[1],ic[1],ic[2])
pile_TaxableIncome[i,]=cbind(ht[2],ev[2],ic[3],ic[4])
}




Exercice

Comparaison totaux-espérance de Monte-Carlo de I'est.

#Comparaison vrais totaux et estimateurs de HT
>tot=c(sum(Tot04) ,sum(TaxableIncome))
>Emc_ht=c(mean(pile_Tot04[,1]) ,mean(pile_TaxableIncome[,1]))
>cat("Vrais totaux \n")

>tot

[1] 1.042e+07 1.211e+11

>cat ("Espérance Monte Carlo \n")

>Emc_ht

[1] 1.042e+07 1.211e+11




Exercice

Comparaison variance -espérance de Monte-Carlo de |'estimateur de variance

#Comparaison Variance et estimateur de variance

>pikl_srs <- UPmaxentropypi2(pi)

>var_srs=numeric(2)

>var_srs[1] <- t(Tot04/pi)%*%(pikl_srs-pilk*%t(pi))
%*%(Tot04/pi)

>var_srs[2] <- t(TaxableIncome/pi)%*% (pikl_srs-pi%*%t(pi))

%*%(TaxableIncome/pi)

>Emc_ev=c(mean(pile_Tot04[,2]) ,mean(pile_TaxableIncomel[,2]))

>cat("Vraies variance \n'")

>var_srs

[1] 2.247e+12 2.977e+20

>cat ("Espérance Monte Carlo \n")

>Emc_ev

[1] 2.249e+12 2.975e+20




Exercice

Taux de couverture

#Taux de couverture intervalle de confiance

>inside_Tot04=(pile_Tot04[,3]<tot[1]) *
(pile_Tot04[,4]1>tot[1])

>inside_TaxableIncome=(pile_TaxableIncome[,3]<tot[2]) *
(pile_TaxableIncomel[,4]>tot[2])

>tc=c(mean(inside_Tot04) ,mean(inside_TaxableIncome))

>cat("taux de couverture Monte Carlo \n")

options("scipen"=100,digits="3")

>tc

[1] 0.865 0.870

#Coefficient de variation des var. d’intérét

>cv_Tot04 <- (sd(Tot04) / mean(Tot04)) * 100

>cv_Tot04

[1] 158

>cv_TaxInc <- (sd(TaxableIncome) / mean(TaxableIncome)) * 100
>cv_TaxInc

[1] 156




Méthodes d’échantillonnage a probabilités inégales

Méthodes d'échantillonnage a
probabilités inégales
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Méthodes d’échantillonnage a probabilités inégales

Introduction

La stratification est une méthode simple permettant de réduire la variance
des estimateurs. Si les strates sont homogeénes, le sondage aléatoire simple
stratifié constitue une stratégie efficace d'échantillonnage (fonction strata
du package sampling).

En pratique, il peut subsister une forte hétérogénéité dans les strates. C'est
notamment le cas pour un premier degré d’échantillonnage, e.g. lors de la
sélection d'un échantillon de communes pour une enquéte auprés des meé-
nages. Dans ce cas, nous pouvons rechercher une stratégie d'échantillonnage
plus efficace en individualisant les probabilités de sélection .

Nous devons ensuite faire le choix d'un algorithme de tirage, i.e. d’une
méthode pratique de sélection respectant les probabilités d’inclusion choisies.
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Méthodes d’échantillonnage a probabilités inégales

Algorithmes de tirage

Il existe en pratique des dizaines d'algorithmes de tirage permettant de re-
specter un jeu de probabilités d'inclusion fixé (voir Tillé, 2011), et le package
sampling permet d'implémenter plusieurs d’entre elles.

Nous présentons rapidement les différentes méthodes d’échantillonnage pro-
posées dans le package sampling, et nous étudierons plus en détail quatre

d’entre elles.

Remarque importante : la méthode d’échantillonnage sans remise a proba-
bilités inégales programmeée dans la fonction de base sample est fausse.
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Méthodes d’échantillonnage a probabilités inégales

Fonction de base sample

> sample(x, [n],size,replace = FALSE, prob = NULL)

@ x : vecteur dans lequel sélectionner, ou entier positif.

@ size : taille d’échantillon (entier positif).

e replace: échantillonnage sans remise (FALSE) ou avec remise (TRUE).
L'option FALSE donne une méthode biaisée d’échantillonnage a
probabilités inégales.

@ prob : vecteur de probabilités, les probabilités d’inclusion sont propor-
tionnelles a prob (NULL pour un tirage a probabilités égales).
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Fonction de base sample

> sample(1:10,6,replace = FALSE)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers selon un

SRS : Ok.

> prob <- ¢(1,1,1,1,1,2,2,2,2,2)
> sample(1:10,6,replace = TRUE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
avec remise a probabilités inégales : Ok.

> prob <- ¢(1,1,1,1,1,2,2,2,2,2)
> sample(1:10,6,replace = FALSE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
sans remise a probabilités inégales : méthode de tirage fausse.




Méthodes d’échantillonnage a probabilités inégales

Algorithmes du package sampling étudiés

Tirage systématique UPsystematic

Tirage systématique randomisé UPrandomsystematic
Tirage du pivot UPpivotal

Tirage du pivot randomisé UPrandompivotal

Tirage de Poisson UPpoisson

® 6 6 o6 o o

Tirage de Poisson conditionnel UPmaxentropy
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Méthodes d’échantillonnage a probabilités inégales

Autres algorithmes du package sampling

e Méthode de Brewer (UPbrewer), méthode de Sampford (UPsampford),
échantillonnage ordonné (UPopips)
= proches du tirage de Poisson conditionnel

e Tirage a support minimal (UPminimalsupport), méthode de Midzuno
(UPmidzuno), méthode de Tille (UPtille)
= peu utilisées en pratique

e Tirage multinomial (UPmultinomial)
= equivalente a la fonction sample avec I'option replace=TRUE.
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Méthodes d’échantillonnage a probabilités inégales

Algorithmes étudiés

Le tirage systématique et la méthode du pivot (Deville et Tillé, 1998) tien-
nent compte de l'ordre des unités de la population.

Si cet ordre est informatif, cela peut permettre de diminuer la variance de
I'estimateur de HT.

Le tirage de Poisson et le tirage de Poisson conditionnel/réjectif (Hajek,
1964) ne tiennent pas compte de I'ordre des unités de la population.

Ce sont des méthodes de tirage beaucoup plus aléatoires que les deux méth-
odes précédentes.

L'avantage (et 'inconvénient) est que la variance ne dépend pas de |'ordre
des unités dans le fichier.
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Meéthodes chantillonnage a probabi iné Tirage systématique

Tirage systématique
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Principe
C’est une méthode simple et trés rapide permettant de sélectionner un échan-
tillon & probabilités inégales et de taille fixe.

C’est la méthode la plus utilisée en pratique, méme pour un tirage a proba-
bilités égales.

Principe :
@ Les unités de la population sont représentées sur un segment de longueur
n. Chaque unité k est représentée par un segment de longueur 7.
@ Nous générons un nombre aléatoire u ~ U|0, 1], puis les nombres u; =
u+(i—1),i=1,...,n—1
@ Une unité est sélectionnée si un de ces nombres aléatoire tombe dans
son segment.

#Probabilités d’inclusion proportionnelles a la taille
> n=50

> pi_bO=inclusionprobabilities(averageincome,n)
#Tirage systématique

> ech_sys=UPsystematic(pi_50)




Méthodes d’échantillonnage a probabilités inégales EENTEY-CREVE NI

Exemple

Population U de taille N =14 avecn =4
@ T =Ty =75 =Tg=m7 =7g =12 =1/7,
@ M3 =Ty =Tg =T =T = T3 =714 = 3/7.

TN SVOU E N & N
[y 1%11111 %1 ! | !

1 T LIS I T T 1 T
Vo V1 Va V3 Vi Vs Ve V7 Vg Vo Vio ViVia Vis

—1

=
s

u=0.82¢€[V3,V,
1+u=1.82¢€[Vg,Vy
24+u=282¢ [V107V11
3+u=23.82¢€ Vi3, Viu

I'unité 4 est sélectionnée,
I’unité 9 est sélectionnée,

I'unité 11 est sélectionnée,

]
]
]
]

Ll

l'unité 14 est sélectionnée.
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Méthodes d’échantillonnage a probabilités inégales

Probabilités d’inclusion

Tirage systématique

Les probabilités d'inclusion 7 sont exactement respectées. Les probabilités
d’inclusion d’ordre deux sont calculables (Tille, 2011, p. 126), mais beaucoup
d'entre elles sont nulles. Par conséquent, il n'existe pas d’estimateur sans
biais de variance pour |'estimateur HT.

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]

[,1]

O O O O O O

.114
.000
.000
.000
.000
.000

O O O O O O

L,
0.

0.
0.
0.
0.
0.

3]

0000
0000
0997
0000
0000
0000

[,4]
0.
0.0000
0.0000
0.
0
0

0000

0741

.0000
.0000

[,5]

O O O O OO

#Probabilités d’inclusion d’ordre 2
> pikl_sys=UPsystematicpi2(pi_50)
> pikl_sys[1:6,1:6]
[,2]

.0000
.0747
.0000
.0000
.0000
.0000

(.6
.0000
.0000
.0000
.0000
.0901
.0000

O O O O O o

.000
.000
.000
.000
.000
.103
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Cas de probabilités d'inclusion égales

Dans le cas de probabilités d'inclusion égales, la méthode est généralement
plus efficace que le SRS si la population est triée avant le tirage selon une
variable auxiliaire x), corrélée avec la variable d'intérét.

#Corrélation entre Tot04 et TaxableIncome
> y=TaxablelIncome

> cor(Tot04,y)

[1] 0.988

#Tri de la population selon la variable Tot04
> permutation <- order(Tot04)

> Tot04_rank <- TotO4[permutation]

> y_rank <- y[permutation]

#Paramétres de 1’échantillonnage (probabilités égales)
> n <- 50

> Npop <- 589

> pi0_50 <- rep(n/Npop,Npop)




Cas de probabilités d'inclusion égales

Comparaison entre SRS et tirage systématique

#Probabilités d’inclusion d’ordre 2 pour un SRS
> pikl_srs <- UPsampfordpi2(pi0_50)
#Variance exacte sous un SRS
> var_srs <-  t(y_rank/pi0_50)
%*% (pikl_srs-pi0_50%*J%t (pi0_50))
%*% (y_rank/pi0_50)
#Probabilités d’inclusion d’ordre 2 pour le SYS
> pikl_sys <- UPsystematicpi2(pi0_50)
#Variance exacte sous un SYS
> var_sys <-  t(y_rank/pi0_50)
%*% (pikl_sys-pi0_50%*%t (pi0_50))
%*% (y_rank/pi0_50)

> options("scipen"=-100,digits="3")
> var_srs

[1,] 6.56e+20

> var_sys

[1,]1 3.08e+20




Estimateur de variance

Beaucoup d’estimateurs de variance ont été proposés dans la littérature pour
le tirage systématique, voir par exemple lachan (1982).

Dans le cas d'un tirage a probabilités égales, on peut notamment citer

o |'estimateur de variance du sondage aléatoire simple

R 1-— f
2 2
USRS(tyﬂ) = N Sy
n
Estimateur de variance conservatif en cas d'effet de stratification
o |'estimateur de variance des différences successives

R 1_ n/2
vprrF(tys) = N*— Z{y 2i) — Y(2i— 1)} .

avec ;) la i®™€ ynité échantillonnée au sens de I'ordre initial du fichier

C'est |'estimateur de variance correspondant a une stratification en n/2
strates, avec tirage de 2 éléments dans chacune.



Meéthodes chantillonnage a probabi iné Méthode du pivot

Méthode du pivot
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Méthodes d’échantillonnage a probabilités inégales [VISEITY: 0 [T TIVZT

Principe de la méthode (Deville et Tillé, 1998)

Basée sur des duels. A I'étape 1, les unités 1 et 2 s’affrontent :
@ si m + m < 1, une unité est éliminée et I'autre survit avec la
probabilité cumulée :

(1, 7m3) = { (31 + m9,0) avec proEa — +7T2
(0,7 + m2) avec proba m+7r2

@ si my + w9 > 1, une unité est tirée et l'autre survit avec la probabilité

résiduelle :
1—mo
(1,7 +m — 1) avec proba P
1

(1, m2) = { (m +m2—1,1) avec proba - Tic.

A |'étape t, le survivant affronte I'unité ¢ + 1 selon le méme principe.
A I'étape N — 1, un échantillon de n unités a été tiré, en respectant les

probabilités d'inclusion souhaitées.
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Méthodes d’échantillonnage a probabilités inégales [VISEITY: 0 [T TIVZT

Exemple

Population U de taille N =11, avec n = 3 et

= = (04 02 0.1 05 04 0.2 04 0.2 0.1 0.2 0.3)T.

C’est une méthode simple, séquentielle, qui respecte les probas .

Tirage d'une unité par microstrate = effet de stratification.

Evite la sélection d'unités contigues = "well-spread sample" (Grafstrom et
al., 2012).

Plus aléatoire que le tirage systématique = bonnes propriétés statistiques.
Cas particulier de la méthode du cube (Deville et Tillé, 2004).
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Méthodes d’échantillonnage a probabilités inégales

Méthode du pivot

Comparaison pour un tirage a probas égales

Pop. U de taille N =12, avec n = 3 et m;, = 3/12.
Tirage systématique : tirage a la méme position dans chaque strate.

| |
l I I I l I I I I
0 1 9 T;
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Méthodes d’échantillonnage a probabilités inégales [VISEITY: 0 [T TIVZT

Probabilités d’inclusion

Il et possible de montrer que les probabilités d’inclusion 7 sont exactement
respectées. Les probabilités d'inclusion d’ordre deux sont calculables (non
disponible dans sampling), mais les expressions sont complexes (Deville,
1998; Chauvet, 2012).

Cette méthode de tirage est plus aléatoire que le tirage systématique. Il est
possible d'obtenir des propriétés statistiques importantes pour I’estimateur
de Horvitz-Thompson (consistance, TCL).

Cette méthode reste peu aléatoire car elle est trés contrainte (tirage d'une

unité exactement par microstrate). Cela entraine une baisse de la variance
si I'ordre de la population est informatif de la variable d’intérét.
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Estimateur de variance
Beaucoup de couples d'unités présentent des m;; = 0. Il n’existe donc pas

d’estimateur sans biais de variance.

Il est possible d'utiliser :

@ |'estimateur de variance pour un tirage avec remise:

A2
A _ n Yk tyr
Umult(tyﬂ) = n—1 Z <7_1_,C - 7”L> .

kesS

C'est un estimateur de variance (généralement trés) conservatif.

@ un estimateur de variance utilisant des différences successives

n/2

- Y(2i) Y(2i-1) 2
vpIFF(tyr) = Z{Z—Z} )

im1 \T(20) T(2i—1)

avec y;) la ™€ unité échantillonnée au sens de I'algorithme.

C'est un estimateur de variance (un peu moins) conservatif (Chauvet
et Le Gleut, 2019).



Mise en oeuvre sous R

#Probabilités d’inclusion proportionnelles a la taille
> n=50
> pi_bO=inclusionprobabilities(averageincome,n)

#Tirage du pivot et estimation du total de TaxableIncome
> ech_piv=UPpivotal (pi_50)

> y=TaxableIncome

> HTestimator (y[ech_piv==1],pi_50[ech_piv==1])

[1,] 1.27e+11

#Tirage du pivot randomisé et estimation

> ech_rpiv=UPrandompivotal (pi_50)

> HTestimator (y[ech_rpiv==1],pi_50[ech_rpiv==1])
[1,] 9.08e+10




Méthodes d’échantillonnage a probab iné Tirage de Poisson

Tirage de Poisson
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Principe

C’est un principe de piles ou faces indépendants, avec une piéce et un lancer
différents pour chaque unité.

e Etape 1 : on génére u; ~ U[0,1]. Si uy < mq, l'unité 1 est retenue
dans I'échantillon.

o Etape 2 : on génére uy ~ U|0, 1] indépendamment de u;. Si ug < o,
I'unité 2 est retenue dans |'échantillon.
° ...

e Etape N : on génére uy ~ U|0, 1] indépendamment de uq,...,un—_1.
Si uy <y, l'unité N est retenue dans I'échantillon.

En utilisant les propriétés d'une loi U0, 1] et I'indépendance des tirages :

P(keS) = P(up < mp) = Fy(m) =7,
Tl = Wkﬁlsik#l.

Dans le cas d'un tirage a probabilités égales, on parle de plan de Bernoulli.



Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CN: EWEIIEELT

Estimateur de Horvitz-Thompson

La variance s’obtient & partir de I'expression générale de HT :
Yk 2
Vinille) = 3 (%) mlt - ),
keU
qui est estimée sans biais par
Yk 2
V() = ) () (1 — 7).
T
keS

En particulier, cela implique que la taille d'échantillon est aléatoire :

pozs{n Z ﬂ-k: 1 - 7Tk

keU
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CN: EWEIIEELT

Utilisation

Le tirage de Poisson présente une grande variance d'échantillonnage. Il est
cependant utilisé pour certaines enquétes auprés des entreprises, car il permet
de simplifier la coordination du tirage de plusieurs échantillons.

On parle de coordination :

@ négative quand on tire plusieurs échantillons afin qu'ils soient aussi dis-
joints que possible,

@ positive quand on tire plusieurs échantillons afin qu'ils se recouvrent
autant que possible.

Le tirage de Poisson est également utilisé dans un contexte de non-réponse,
pour modéliser le mécanisme de réponse totale dans I'échantillon S complet.
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Mise en oeuvre sous R

#Probabilités d’inclusion proportionnelles a la taille
> n=50
> pi_b0O=inclusionprobabilities(averageincome,n)

#Tirage de Poisson et estimation du total de TaxableIncome
> ech_poi=UPpoisson(pi_50)

> y=TaxableIncome

> HTestimator (y[ech_poi==1] ,pi_50[ech_poi==1])

[1,]1 1.220165e+11

#Estimation de variance de HT

> pikl_poi_50=pi_50 %*% t(pi_50) +diag(pi_50-pi_50%pi_50)
> varHT(y[ech_poi==1],pikl_poi_50[ech_poi==1,ech_poi==1],1)
[1] 6.1382e+20

#Estimation de variance (package GUSTAVE)

y_mat <- matrix(y, ncol = 1)

var_pois(y_mat[ech_poi==1, , drop = FALSE],pi_50[ech_poi==1])
[1] 6.1382e+20




Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Tirage réjectif ou tirage de Poisson
conditionnel
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Principe

Nous cherchons a obtenir un plan de sondage :

@ avec les avantages du tirage de Poisson : une grande entropie

== p(s)In{p(s)},
sCU
qui assure que I'échantillonnage n’est pas sensible a I'ordre des données,

@ sans ses inconvénients : taille d'échantillon aléatoire.

Le plan de sondage réjectif est obtenu :

@ en tirant un échantillon selon un plan de Poisson de probabilités d'inclusion
pr, k€U, avec ), ypp =n;
@ en rejetant I'échantillon tant qu’il n'est pas de la taille voulue n.
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Plan de sondage

Nous notons :

@ p(-) le plan de Poisson et S, I'échantillon aléatoire correspondant,
@ p,(-) le plan réjectif associé, et S, I'échantillon associé.
Pour tout s C U, nous avons

pr(s) = Pr(Sp=sn(Sp) =n).

Les probabilités d'inclusion 73 du plan p,.(-) ne sont pas égales aux proba-
bilités d'inclusion py du plan p(-).

Pour pouvoir calculer I'estimateur de Horvitz-Thompson, il faut pouvoir cal-
culer les probabilités d'inclusion effectives .
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Exemple

Soit une population U de taille 5. Nous utilisons un plan de Poisson p(-)
avec les probabilités d’inclusion

1 1
pl—p2—2 p3—P4—P5—3‘

Nous mettons en oeuvre ce plan de Poisson en ne retenant que les échan-

tillons de taille >, ., pr = 2. Le plan réjectif obtenu a pour probabilités

d’inclusion
10 6

7'(‘1:71'2:@ 71'3:7'('4:77'5:@.
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Mise en oeuvre d'un plan réjectif

Le tirage peut &tre réalisé a |'aide de la fonction UPmaxentropy du pack-
age sampling. Dans le cas particulier de probabilités d’inclusion égales, la
méthode est équivalente au sondage aléatoire simple sans remise.

Comme le tirage est de taille fixe par construction, il est possible d’utiliser
la formule de Yates-Grundy :

A 1 2
Vp(tyr) = 5 > <ykyl) (TR — Thr),

T, T,
ktley Nk T

et I'estimateur de variance de Yates-Grundy correspondant.

La matrice des probabilités d’inclusion d’ordre 2 peut étre déterminée a I'aide
de la fonction UPmaxentropypi2.
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Méthodes d’échantillonnage a probabilités inégales [ERNTEV-CWII( X113

Mise en oeuvre d'un plan réjectif (suite)

[l est également possible d'utiliser une approximation uniforme des mx; (Ha-
jek, 1964). Elle conduit a |'estimateur de variance (Deville, 1993) :

2
A Yk Ui
Udev(tyw) = E - — a;—
1-— a 2 T T
ZkES ) kes Y e
1—m
avec @ = —————.
ZmES I—mm

Cet estimateur est couramment utilisé dans les enquétes Insee (Caron et al.,
1998). Il est calculable :

@ avec la fonction varest du package "sampling",
@ avec la fonction varDT du package "gustave".
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Mise en oeuvre sous R

#Probabilités d’inclusion proportionnelles a la taille
> n=50

> pi_bO=inclusionprobabilities(averageincome,n)

> options("scipen'"=-100,digits="5")

#Tirage réjectif et estimation du total de TaxableIncome
> ech_rej=UPmaxentropy(pi_50)

> y=TaxableIncome

> est_ht=HTestimator(y[ech_rej==1],pi_60[ech_rej==1])

> est_ht

[1,] 1.3068e+11




Mise en oeuvre sous R

Estimation de variance

#Estimateur de variance de HT

> pikl_rej_50=UPmaxentropypi2(pi_50)

> varHT (y[ech_rej==1],pikl_rej_50[ech_rej==1,ech_rej==1],1)
[1] 1.1896e+21

#Estimateur de variance de YG
> varHT (y[ech_rej==1],pikl_rej_50[ech_rej==1,ech_rej==1],2)
[1] 1.1907e+21

#Estimateur de variance de Deville (package SAMPLING)
> varest(ylech_r==1],,pi_60[ech_r==1],)
[1] 1.1897e+21

#Estimateur de variance de Deville (package GUSTAVE)
> varDT(y[ech_rej==1],pi_50[ech_rej==1])
[1] 1.1897e+21




Echantillonnage équilibré

Echantillonnage équilibré
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Echantillonnage équilibré Principe

Principe
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Principe
Choix du plan de sondage

Le plan de sondage est choisi de facon & minimiser la variance des estima-
teurs, tout en respectant des contraintes de codt.

@ stratification, tirage a probabilités inégales
= réduction de la variance

@ tirage multidegrés
= réduction des colits

La précision du plan repose sur des propriétés d’équilibrage : I'échantillon
est sélectionné de facon a respecter une information connue.

Exemples :
@ respect de structures age-sexe (méthode des quotas),
@ répartition par effectif salarié (stratification),
o taille fixe d’échantillon (tirage systématique, méthode du pivot, tirage
réjectif).
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Echantillonnage équilibré Principe

Echantillonnage équilibré

De facon générale, supposons que des variables x; sont disponibles au mo-
ment de I'échantillonnage pour chaque individu k de la population.

Un échantillon s est dit équilibré sur les totaux tx si

tyr(8) = tx.

Le total ¢x est donc parfaitement estimé.

Par extension, un plan de sondage est dit équilibré sur les totaux ¢ si seuls les
échantillons équilibrés sur x ont une probabilité non nulle d'étre sélectionnés.
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Echantillonnage équilibré Principe

Exemples d’'équations d'équilibrage

Supposons que x; = 7. L'équation d'équilibrage implique que
ZkES T ZICES er: = n(s)

= 2kev ™ = Ep[n(9)].

Le plan de sondage est donc de taille fixe.

Supposons que x; = 1. L'équation d’équilibrage implique que

~

_ 1 _
ZkES T Zk‘ES T Nr
= Yeewvl = N
La taille de la population est donc parfaitement estimée.
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Echantillonnage équilibré Principe

Exemples de plans de sondage équilibrés

Les plans de sondage a probabilités inégales de taille fixe sont équilibrés sur
la variable x;, = 7.

Le sondage aléatoire simple est équilibré sur la variable x; = 1
= plan de taille fixe + taille de la population parfaitement estimée.

Le sondage aléatoire simple stratifié est équilibré sur le vecteur

T = {1(k E Ul),...,l(k & UH)}

Conséquences 7
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Echantillonnage équilibré Principe
Motivation

Sous le modéle de travall

k=X B+ €,
I'estimateur de HT peut &tre réécrit sous la forme
tyr = {txn} ' B+ ter.
Principe :
@ Le respect des probabilités d'inclusion permet d’obtenir une estimation

sans biais.
@ La restriction du support du plan de sondage aux échantillons équili-
brés permet d'annuler la variabilité du ler terme.

@ Le choix des probabilités d’inclusion permet de limiter la variabilité du
2nd terme.

La variance n’est plus donnée que par les résidus du modéle de travail.
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Echantillonnage équilibré Principe

Remarques

Remarque 1 : en pratique, la base de sondage contient toujours au moins
deux variables : la probabilité d’inclusion 7, et la variable constante. Par
rapport au tirage de taille fixe a probabilités inégales, cela revient a ajouter
une constante dans le modéle de régression

Yk = B+ a o) + €.

Remarque 2 : la non-réponse totale va détruire I'équilibrage. L'échantillonnage
équilibré est donc particuliérement intéressant pour un premier degré de
tirage ou quand on anticipe une faible non-réponse:

o tirage des Unités Primaires de I'Echantillon Maitre,

o tirage des Groupes de Rotation du Recensement.

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 88 /162



[SLEV AU LEFCRSIHIIII La méthode du Cube

La méthode du Cube
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Représentation du Cube

Deville et Tillé (2004) ont proposé un algorithme général pour la sélection
d’échantillons équilibrés sur un nombre quelconque de variables, avec un jeu
de probabilités d'inclusion © = (71, ..., 7xN) quelconque.

Un échantillon s est vu comme un sommet (s1,...,sy) € {0,1} du N-

cube C = [0,1]"V. Les équations d’équilibrage définissent I'espace des con-
traintes :

Xk
PR B
T

kesS keU
Xk
@Z?(Ik—wk):()
keU 'k
— A x (I— 7T) =0 avec A = (Xk/ﬁk)keU
< I e+ Ker(A).

L’algorithme consiste a arrondir aléatoirement des composantes du vecteur
7 par une marche aléatoire dans 'espace des contraintes.



La méthode du Cube
Etape de base de I'algorithme

Nous initialisons avec 7(®) = 7.
A 'etape t, soit 7 = 7(t=1) 4 §®) avec

~—

)

s® — { +A1(t) u(t) avec proba. Aa(t)/(A1(t) + Aa(t .

—Xa(t) u(t) avec proba. A1(t)/(A1(t) + Aa(t

~—

ou
@ A\ (t),A2(t) >0
— assure qu’au moins une unité est sélectionnée ou définitivement re-
Jetée.
o u(t) € Ker(A) est un vecteur (non aléatoire)
— assure que les équations d'équilibrage sont exactement respectées
@ le choix aléatoire assure que les probabilités d'inclusion sont exactement
respectées.
La méthode du pivot est un cas particulier de la méthode du Cube, obtenue
avec xi = 7 (échantillonnage de taille fixe).
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[SLEV AU LEFCRSIHIIII La méthode du Cube

La phase d'atterrisage

L'algorithme précédent est appelé la phase de vol. A l'issue de cet algo-
rithme :

o Le statut (tiré/non tiré) est connu pour au moins N — p individus.

@ Les contraintes d'équilibrage et les probabilités d'inclusion sont exacte-
ment respectées.

@ Enrevanche, il nest plus possible de finir I'échantillonnage en respectant
ces deux contraintes.

La phase de vol est complétée par une phase d’atterrissage. Elle permet
de statuer sur les individus restant en respectant exactement les probabilités
d’inclusion, et en respectant approximativement les équations d’équilibrage.
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Phase d'atterrissage : relachement des contraintes

La 1°™® possibilité consiste a relacher les contraintes une par une.

Nous introduisons donc un degré de liberté a chaque fois, ce qui permet de
poursuivre |'échantillonnage.

C’est 'option la plus générale, au sens ou elle permet de travailler sur un
nombre quelconque de variables d'équilibrage. Mais les premiéres variables
reldchées peuvent étre mal équilibrées.
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Phase d'atterrissage : échantillon optimal

La 2°™€ possibilité consiste a définir un plan de sondage sur les unités
restantes :

@ respectant les probabilités d’inclusion de départ,
e minimisant (en moyenne) I'écart a I'équilibre, & I'aide d'un critére de
type
. - 2
min F Htx7T — txH

Cette option permet d’obtenir un bon équilibrage global. Elle nécessite de
définir entiérement un plan de sondage sur une population de p individus.
C’est possible si le nombre de contraintes est faible, mais impraticable si p
est grand

(p = 19 = 500 000 échantillons possibles environ)
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Fonction "samplecube"

Extrait de la documentation de "sampling"

Selects a balanced sample (a vector of 0 and 1) or an almost balanced

sample. Firstly, the flight phase is applied. Next, if needed, the landing
phase is applied on the result of the flight phase.

samplecube (X,pik,order=1, comment=TRUE ,method=1)

Arguments:

e X: matrix of auxiliary variables on which the sample must be balanced.
@ pik: vector of inclusion probabilities.
@ order

1: the data are randomly arranged,
2: no change in data order,
3: the data are sorted in decreasing order.
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Fonction "samplecube"

Extrait de la documentation de "sampling"

Selects a balanced sample (a vector of 0 and 1) or an almost balanced
sample. Firstly, the flight phase is applied. Next, if needed, the landing
phase is applied on the result of the flight phase.

samplecube (X,pik,order=1, comment=TRUE ,method=1)

Arguments (continued):

@ comment: a comment is written during the execution if comment is
TRUE.

@ method

1: for a landing phase by linear programming,
2: for a landing phase by suppression of variables.
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Exemple extrait de la documentation de "sampling"

data(MU284)

Computation of the inclusion probabilities

pik=inclusionprobabilities(MU284$P75,50)

Definition of the matrix of balancing variables

X=cbind (MU284$P75,MU284$CS82,
MU284$S582,MU284$582,MU284$ME84)

# Computation of the Horvitz-Thompson estimator for a

balanced sample
> s=samplecube(X,pik,1,TRUE)

vV & V & V

BEGINNING OF THE FLIGHT PHASE

The matrix of balanced variable has 5e+00 variables and 284
units

The size of the inclusion probability vector is 284

The sum of the inclusion probability vector is be+01

The inclusion probability vector has 281 non-integer elements

Step 1




Exemple extrait de la documentation de "sampling"

BEGINNING OF THE LANDING PHASE

At the end of the flight phase, there remain 5 non integer
probabilities

The sum of these probabilities is 3e+00

This sum is integer

The linear program will consider 10 possible samples

The mean cost is 1.561e-02

The smallest cost is 7.617e-04

The largest cost is 3.63e-02

The cost of the selected sample is 7.617e-04

QUALITY OF BALANCING
TOTALS HorvitzThompson_estimators Relative_deviation

1 8.182e+03 8.182e+03 -5.558e-14
2 2.583e+03 2.589e+03 2.248e-01
3 6.301e+03 6.354e+03 8.423e-01
4 1.350e+04 1.361e+04 7.909e-01
5 5.052e+05 5.051e+05 -3.000e-02




[SLEV AU LEFCRSIHIIII La méthode du Cube

Estimation de variance
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Estimation de variance

Il est théoriquement possible d’utiliser |'estimateur de variance de HT, ou
celui de YG si la probabilité d’inclusion fait partie des contraintes d’équilibrage.

En pratique, les probabilités d'inclusion d’ordre 2 sont presque impossibles a
calculer, en dehors de cas particuliers (e.g., méthode du pivot).

Il est possible d'obtenir une approximation par simulations de la matrice des
probabilités d'inclusion d’ordre 2 (e.g., Breidt et Chauvet, 2011), mais un
trés grand nombre de simulations est nécessaire pour obtenir un estimateur
numériquement stable.
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[SLEV AU LEFCRSIHIIII La méthode du Cube

Approximation de variance de Deville et Tillé

Deville et Tillé (2005) ont proposé une classe d'estimateurs de variance, sous
les hypothéses suivantes :

O le plan de sondage est exactement équilibré,

@ le plan de sondage est a entropie maximale, parmi les plans équilibrés
sur les mémes variables x;, avec les mémes probabilités d'inclusion 7.

La condition 1 (équilibrage exact) n'est généralement pas vérifiée en raison
de la phase d'atterrissage. L'approximation de variance de Deville et Tillé
(2005) prend essentiellement en compte la variance due a la phase de vol.

La condition 2 (entropie maximale) n’est pas nécessairement réalisée, notam-
ment si I'algorithme du Cube est appliqué sur un fichier trié préalablement
selon une variable auxiliaire.

Pour qu’elle soit approximativement vérifiée, il est possible de trier aléa-
toirement les unités de la population avant d’appliquer la méthode du Cube
(option order=1 de la fonction "samplecube").
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Approximation de variance de Deville et Tillé

Deville et Tillé (2005) montrent que la variance est approx. celle d’un tirage
de Poisson, pour les résidus de la régression de y sur x :

Vapp(tyr) = NN > (1 — ) (Ek>2,

~Pier i
avec B, = yk—ng
=5 =1l
Xk X Xk Yk
et B = {Zﬂ'k(l—ﬂ'k)k} Zﬂ'k(l—ﬂ'k)ff.
T Tk TE Tk
keU keU

Vor(lyr) = > (1—m) (m’j)z

avec e = Yp — ngTr

-1
-

3 — o) ke )Rk
¢t Br = (Z(l ﬂk)mm) Z(l ﬂk)m@ma'



[SLEV AU LEFCRSIHIIII La méthode du Cube

Mise en oeuvre sous R

# Matrice des variables d’équilibrage
X=cbind (MU284$P75,MU284$CS82,MU284$SS82,MU284$582)

\4

Estimateur de Horvitz-Thompson
s=samplecube(X,pik,1,TRUE)

y <- MU284$RMT85

HTestimator (y[s==1],pik[s==1])
[1,] 68783

vV V V #

# Estimation de variance DT : package GUSTAVE
> varDT(y[s==1],pik[s==1],X[s==1,])
[1] 487627
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[SLEV AU LEFCRSIHIIII La méthode du Cube
Application

La base de sondage est le fichier commune. Nous nous intéressons a I'estimation
des variables : nombre d'actifs (variable ACTIFS), nombre d'inactifs (variable
INACTIFS), nombre d'étrangers de I'Union européenne (variable NATUE).

1- Sélectionner un échantillon de taille 50, & probabilités égales, équilibré sur
la variable : probabilité d'inclusion. Commenter les sorties.

A quelle contrainte correspond I'équilibrage sur la probabilité d’inclusion ?

2- Procéder aux estimations demandées, et donner |'estimateur de variance
de Deville-Tillé associé.
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[SLEV AU LEFCRSIHIIII La méthode du Cube
Application

3- Sélectionner un échantillon de taille 50, a probabilités égales, équilibré sur
les variables :

o Probabilité d’inclusion,
@ Nombre de logements.
A quelles contraintes correspond I'équilibrage sur ces deux variables?

4) Procéder aux estimations demandées. Comparer avec les estimations de
variance obtenues 3 la question 2.
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[SLEV AU LEFCRSIHIIII La méthode du Cube
Application

5- Sélectionner un échantillon de taille 100, & probabilités proportionnelles
au nombre de logements, équilibré sur les variables :

@ Nombre de logements,
@ Variable constante égale a 1,
@ Variables croisées dge-sexe : FO019 , ..., H7599 (10 variables).

A quelle contrainte correspond I'équilibrage sur la variable constante égale 3
1?7 Pourquoi ne pas équilibrer sur la probabilité d’inclusion ?

6- Commenter les sorties, et procéder aux estimations demandées.
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SO EAILTLEEIRLTHITE Le Recensement

Le Recensement
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SO EAILTLEEIRLTHITE Le Recensement

Principe

La méthode du Cube a été utilisée pour les Enquétes Annuelles de Recense-
ment. Le plan de sondage utilisé (Godinot, 2005) distingue :

@ les grandes communes (10 000 habitants ou plus au RP 1999)
= au sein de chacune, sélection et enquéte auprés d'un échantillon
d’adresses.

o les petites communes (moins de 10 000 habitants)
= au sein de chaque région, échantillonnage de petites communes dont
toutes les adresses sont enquétées.

Les échantillons du Nouveau Recensement ont été sélectionnés selon des
principes de coordination négative : les échantillons sont non chevauchants
d'une année sur l'autre.
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SO EAILTLEEIRLTHITE Le Recensement

Principe de constitution des groupes de rotation

Soit U dans laquelle on dispose d'un vecteur x;, de variables auxiliaires. On
tire S7 avec des probabilités d'inclusion 71 = 7, en équilibrant sur le vecteur
X
Alors I'échantillon U \ S est :

@ tiré avec des probabilités d'inclusion 1 — m,

@ équilibré sur les variables xy.

Nous tirons dans U \ S; un échantillon Sy avec des probabilités d'inclusion
conditionnelles Ty 1 = ﬁ en équilibrant sur le vecteur x.
Alors non conditionnellement, I'échantillon Sy est :

@ tiré avec des probabilités d'inclusion T,

@ équilibré sur les variables xy.
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Le cas des petites communes

Les résultats précédents sont utilisés pour partitionner aléatoirement, au
sein de chaque région, les petites communes en 5 groupes de rotation.
lIs sont tirés a probabilités égales, en équilibrant sur des variables socio-
démographiques et la population par département.

Les groupes de rotation sont sélectionnés successivement :

1
o le GR Sy est tiré dans U avec des probas 7 = —,

)
1
@ le GR Sy est tiré dans U \ S; avec des probas ] T = o
-
1
o le GR S3 est tiré dans U \ {S1 U Sy} avec des probas ] W2 = 3
—2m
1
@ le GR Sy est tiré dans U \ {S1 U S2 U S3} avec des probas ] 7r3 =5
— 3
o le GR S5 est donné par le reste de la population.

Une année donnée, toutes les adresses d'un groupe de rotation de petites
communes sont enquétées. Nous avons donc |'exhaustivité sur un cycle de
5 ans, mais un décalage temporel dans les données collectées.



SO EAILTLEEIRLTHITE Le Recensement

Application : découpage de "commune" en 4 groupes de
rotation

Partitionner aléatoirement la table commune en 4 échantillons de taille 250,
sélectionnés a probabilités égales et équilibrés sur les variables : probabilité
d'inclusion, nombre de Logements, nombre d’hommes, nombre de femmes.

#Tirage du ler groupe de rotation
> n=250

> Npop=1000

> pi=rep(n/Npop,Npop)

FEM=f0019+£2039+f4059+f6074+f7599
HOM=h0019+h2039+h4059+h6074+h7599
X=cbind(pi,FEM,HOM,NLOG)
echi=samplecube(X,pi,1,TRUE)
ident_echl=ident[echl==1]

vV V V Vv V
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Le Recensement
Application (suite)

#Tirage du second groupe de rotation
n=250

Npop=750

pi=rep(n/Npop,Npop)
ident_reste=ident [ech1==0]
Xreste=X[ech1==0,]

ech2=samplecube (Xreste,pi, 1, TRUE)
ident_ech2=ident_reste[ech2==1]

V V V V V V V

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 112 /162



Le Recensement
Application (fin)

#Tirage des groupes de rotation 3 et 4
> n=250

> Npop=500

> pi=rep(n/Npop,Npop)

> ident_reste=ident_reste[ech2==0]

> Xreste=Xreste[ech2==0,]

> ech3=samplecube (Xreste,pi,1,TRUE)

> ident_ech3=ident_reste[ech3==1]

> ident_ech4=ident_reste[ech3==0]
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SO EAILTLEEIRLTHITE Le Recensement

Le cas des grandes communes

Au sein de chaque grande commune, les adresses sont (schématiquement)
réparties en trois strates :

@ Les grandes adresses (plus de 60 logements),
@ Les adresses neuves,
@ Les autres adresses.

Chacune de ces strates fait I'objet d’un plan de sondage spécifique.
Les grandes adresses sont réparties (aléatoirement ou non) en 5 groupes de

rotation, et un groupe est enquété exhaustivement chaque année (idem pour
les adresses neuves).
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SO EAILTLEEIRLTHITE Le Recensement

Le cas des grandes communes (suite)

Les autres adresses sont partitionnées aléatoirement en 5 groupes de ro-
tation, sélectionnés a probabilités égales, en équilibrant sur des variables
socio-démographiques et le nombre de logements par IRIS.

La technique est la méme que pour les petites communes. Une année donnée,
40% (environ) des adresses d'un groupe de rotation sont sélectionnées et
enquétées.

En résumé, le plan de sondage est ici stratifié par grande commune et type
d’adresse. Selon la strate, I'échantillon annuel est sélectionné en une ou deux
phases de tirage, aléatoirement ou non.
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Echantillonnage spatial

Echantillonnage spatial
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Echantillonnage spatial Echantillonnage spatial en population finie

Echantillonnage spatial en
population finie
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Echantillonnage spatial Echantillonnage spatial en population finie

Application a I'échantillonnage spatial

Dans un contexte spatial, premiére loi de géographie de Tobler :
"Everything is related to everything else, but near things are more related
than distant things".

Modele de travail de type (voir Grafstrom and Tillé, 2013) :

ye = Pt e,
— — d(k,l)
En(ex) =0 et Covpl(er, €) = opop )

= il vaut mieux éviter de tirer des unités contigues, qui portent une infor-
mation similaire.
= il est préférable de bien répartir |'échantillon dans I'espace.

[l est possible d'incorporer plus d’information auxiliaire dans le plan de sondage,
ce qui permet d’avoir des stratégies plus efficaces (Grafstrom and Tillg, 2013,;
Le Gleut, 2017).
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
o réguliére, avec des "adresses".
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

[ ]
o
* Tesselation de la zone selon une grille
o L] P BN
o réguliére, avec des "adresses".
[J
Les adresses sont triées sur une ligne.
L] °
°
O °
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Tesselation de la zone selon une grille
réguliére, avec des "adresses".

Les adresses sont triées sur une ligne.
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

A\ /\
\‘ Tesselation de la zone selon une grille
réguliére, avec des "adresses".
B i i
\ Les adresses sont triées sur une ligne.
£~
DN
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Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Les adresses sont triées sur une ligne.

/\\ Tesselation de la zone selon une grille
T% /\ réguliére, avec des "adresses".

\ L’échantillon est sélectionné par tirage
\ systématique.

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 124 /162



Echantillonnage spatial Echantillonnage spatial en population finie

Generalized Random Tesselation Sampling (GRTS)
Stevens and Olsen (2004)

Les adresses sont triées sur une ligne.

/\‘ Tesselation de la zone selon une grille
T% /\ réguliére, avec des "adresses".

\ L’échantillon est sélectionné par tirage
\0 systématique.

T

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 125 /162



Echantillonnage spatial en population finie
Pivotal Tesselation Sampling (PTS)

La méthode GRTS donne des échantillons bien équilibrés dans I'espace (Ste-
vens and Olsen, 2004), mais avec un tirage systématique les propriétés statis-
tiques des estimateurs sont difficiles & établir, méme si les unités sont par-
tiellement randomisées le long de la ligne.

Une possibilité consiste a utiliser la méthode de tesselation, mais en rem-
placant le tirage systématique par la méthode du pivot (Chauvet et Le Gleut,
2019). L'échantillon est toujours bien réparti dans I'espace, et avec de bonnes
propriétés statistiques.

Il est également possible d'utiliser la méthode du pivot avec d’autre plans de

sondage spatiaux qui utilisent une forme de tri des unités (voir par exemple
Dickson and Tillg, 2015).
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Echantillonnage spatial en population finie
Méthode du pivot local

Les méthodes précédentes (GRTS, PTS) consistent & projeter un espace de
dimension d > 2 dans un espace de dimension 1, dans lequel un algorithme
d’échantillonnage usuel peut étre appliqué (tirage systématique ou méthode
du pivot).

Grafstrom et al. (2012) ont proposé une autre méthode appelée le pivot
local, qui ne nécessite pas de se projeter dans une dimension plus petite.

L'idée consiste a utiliser la méthode du pivot, en choisissant a chaque étape

des unités trés proches pour leur appliquer I'étape de base. La méthode
permet donc d’éviter la sélection d'unités contigues.

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 127 / 162



Echantillonnage spatial Echantillonnage spatial en population finie

Méthode du pivot local : version 1

1 Une unité i est choisie aléatoirement.

2 L'unité j qui est le plus proche voisin de 7 est choisie (tirage aléatoire
en cas d'égalité).

3 L'étape de base de la méthode du pivot est appliquée a 7 et j si i est
également un plus proche voisin de j. Sinon, retour a |'étape 1.

4 Si toutes les probabilités des unités sont arrondies aléatoirement a 0 ou
1, I'algorithme s’arréte. Sinon, retour a I'étape 1.

Le nombre d’'opérations pour sélectionner un échantillon selon cette méthode
est de I'ordre de N3.
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Echantillonnage spatial Echantillonnage spatial en population finie

Méthode du pivot local : version 2

1 Une unité i est choisie aléatoirement.

2 L'unité j qui est le plus proche voisin de 7 est choisie (tirage aléatoire
en cas d'égalité).

3 L’étape de base de la méthode du pivot est appliquée a i et j si-est

égalementun—plusproche-veisin-de—. Sinon, retour a |'étape 1.

4 Si toutes les probabilités des unités sont arrondies aléatoirement a 0 ou
1, I'algorithme s’arréte. Sinon, retour a I'étape 1.

Le nombre d’'opérations pour sélectionner un échantillon selon cette méthode
est de I'ordre de N2.
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Echantillonnage spatial Echantillonnage spatial en population finie

Echantillonnage spatial doublement équilibré

Grafstrom et Tillé (2013) ont proposé une méthode d'échantillonnage spatial
doublement équilibrée :

@ |'échantillon est tiré de facon a &tre bien réparti dans |'espace (premier
équilibrage),

o |'échantillon est tiré selon la méthode du Cube pour &tre équilibré sur p
variables de contrdle (second équilibrage).

Cette méthode est notamment utilisée par I'Insee pour le tirage du nouvel
échantillon maitre NAUTILE (Costa et al., 2018).
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Echantillonnage spatial Echantillonnage spatial en population finie

Echantillonnage spatial doublement équilibré

Le principe est similaire a celui du pivot local :
1 Une unité i est choisie aléatoirement. Le sous-ensemble des p unités les
plus proches de i est utilisé.

2 Calcul du barycentre du nuage de points, et recherche des p + 1 points
les plus proches. L'opération est réitérée tant que la somme des carrés
des distances au barycentre diminue.

3 L'étape de base de la méthode du cube est appliquée aux p + 1 points
retenus, en équilibrant sur x;,.

4 Si toutes les probabilités des unités sont arrondies aléatoirement a 0 ou
1, I'algorithme s'arréte. Sinon, retour a I'étape 1.
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Echantillonnage spatial Sampling in a continuous population

Sampling in a continuous
population

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 132 /162



Echantillonnage spatial Sampling in a continuous population
Notations

Suppose that we are no more interested in a finite population U, but in a
continuous territory 44 C R2. The area of the territory is denoted as A.

We are interested in a variable of interest p(-), taking the value p(x) for
point € UA. The variable p(-) is also seen as deterministic.

We wish to estimate parameters over the population /4, like the integral of

the variable p(-):
Tp = / p(x)dz.
UuAa
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Echantillonnage spatial Sampling in a continuous population

A toy example on a square of length a

a pi(z) = 1
/ pr(z)dr = A=d®
uA

x=(x1,x2)

® p2(x) = mx
3

a

/ p2(x)de = —

Z/{A 2
P3(33) = X122

4

0 a a
/ p3(@)de = —-.
uA
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Sampling design

A random sample S = {si,

., Sn} of n locations is selected by means of a
continuous sampling design. \We assume the existence of the joint probability

density function (PDF) of the sample locations:
flxy, ... xn).

We also suppose the existence of the marginal PDF f;(-):

fl(l‘) = /f(xl, ey Lj—1, Ly L4145+ - - ,$n)d$1 coo d$i,1dxi+1 500 dxn

The inclusion density function is defined as

m(z) = Y fi().
=1

For any UP c U4, / m(x)dz is the average number of points which is
ub
selected in UP.



Unit square of length a

Uniform sampling of size n




Echantillonnage spatial Sampling in a continuous population

Horvitz-Thompson estimation

For the estimation of the population integral 7, = [, 4 p(x)dx, we consider
the Horvitz-Thompson estimator

fr = 325 S (),
i=1 m(si) i=1

with d(s;) the sampling weights.

This is a weighted estimator, which is unbiased for 7, provided that m(x) > 0
almost everywhere on U/* (no coverage bias).

Under this condition, it is unbiased for any variable of interest collected
during the survey.
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Uniform sampling

Under uniform sampling of size n, the joint PDF is the same for all the points
inside the territory. We obtain

1
filx) = 1 and w(z) = % for any = € U4

The Horvitz-Thompson estimator is

a - Si _
Tor = Z p( ) — A D,
=1

m(s;)

1 n
withp = — Z p(s;) the sample mean.
n

=1

An unbiased variance estimator is

. 553
A P
V(Tpﬂ) = A ;
1 n
with si . Z {p(s;) — p}* the sample dispersion.

1=1



Echantillonnage spatial Sampling in a continuous population
Grid sampling

In practice, uniform sampling is
hardly ever used. Some areas may
be covered by several points, while
others may not be surveyed.

= poor spatial balance.

Grid sampling is very common in
forest inventories.

A sample of cells is selected (possi-
bly all), and a sample of points is se-
lected inside each selected cell (usu-
ally one).
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Echantillonnage spatial Sampling in a continuous population

Some possible grid sampling designs

Spatially systematic aligned sample Spatially systematic unaligned sample
. . .
o | o | o | e e 0| e e . . . .l®
o | o | o o |eo|e|e]e ol 1 o ool ° .
. .
e | o | e | o | 0| o0 e . . . .
.
e | o | o | o o] e e e o| o ® ol o |® i o
o | o | o | e | o | oo @ ¢ o .
. . . . .
e e | e | o |0 e e e s ol ol *|®* |e]| | *
e | o | o | o | e | o | e o . g
d ol ® . or
e | o L] o | o | o . . * . . b e ® . .
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Sampling in a continuous population
Some possible grid sampling designs (2)

Like with uniform sampling, the two previous sampling designs lead to a
constant inclusion density function:

w(x) = " for any = € U”.
A
The Horvitz-Thompson estimator is
n
. p(si) _
T — =A
= Loy A

with p = Z (s;) the sample mean.

Unbiased variance estimation is not possible.

It is common practice to treat this design as uniform sampling for variance
estimation, which usually results in an overestimation of the variance (con-
servative approach).
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Echantillonnage spatial Sampling in a continuous population

Forest inventories

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 142 / 162



Echantillonnage spatial Sampling in a continuous population

The French National Forest Inventory

The French National Forest Inventory (NFI) follows a design-based sampling
protocol, in order to produce useful and relevant information for the data
production on the French forest.

The French NFI was created in 1958 to assess French forest resources. The
methodology was changed in November 2004, and currently makes use of
sample points on a grid defined for a 10-year period, from which one tenth
is dealt with each year (Hervé, 2017).

The French NFI collects dendrometric, ecological and floristic information.
The sampled data are used to create forest maps by administrative county
through interpreting aerial photographs. The survey can also take additional
data on request (dead wood, forest health, ...)
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Objectives

We are interested in a finite population U of trees. Let yi denote the
attribute of interest for k € U. We wish to estimate the total

ty = > Uk (12)

keU

which may be the total volume of wood, for example.

Some form of indirect sampling is used. Let 2/* denote a continuous territory
containing all the units in U. A typical inventory design consists in:

© sclecting a large 1st-phase sample of points in 2/ (continuous sampling
design),

@ classifying the points according to the land cover (photo-interpretation),

© selecting a smaller, 2nd-phase sample using the 1st-phase auxiliary in-
formation (finite sampling design),

@ using fixed-shape supports from these points to survey the units in U.



Echantillonnage spatial Sampling in a continuous population

Step 1: 1lst-phase sampling

French annual sample: a two-stage design

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage

A sample of cells is first selected,
by using some form of systematic
sampling with equal probabilities.
One point is randomly selected
inside each cell.

= First-phase sample of points Sﬁ).

The cells are randomly partitioned
into 10 rotation groups (negative
coordination).

All the cells are surveyed in ten years.
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Sampling in 2 continuous population
Steps 2-3: photo-interpretation and 2nd phase sampling

The 1st phase points are classified

+ according to the land cover (for-
L] o
. 51 est, shrub land, non forest), using
. photo-interpretation.
L ]
. orest T ] The 1st phase sample is stratified,
L L+ L4 with # sub-sampling intensities
: ____,/ - inside strata.
. =
L1 N foret
—+1 T \\an 4= For France,
B \[*® fag = 1/2 for forest,
: o fag = 1/4 for shrub land,
Sh”fb ard |® d f2g = 1 for non-forest,
ol N

(no visit on the field in this last case).
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Sampling in 2 continuous population
Steps 2-3: photo-interpretation and 2nd phase sampling

orest

|
ZI\P

fol

re

L

w

hrub

N

The 1st phase points are classified
according to the land cover (for-
est, shrub land, non forest), using
photo-interpretation.

The 1st phase sample is stratified,
with # sub-sampling intensities
inside strata.

For France,

fag = 1/2 for forest,

fag = 1/4 for shrub land,

f2g = 1 for non-forest,

(no visit on the field in this last case).
= Second-phase sample SQ})
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Echantillonnage spatial Sampling in a continuous population

Step 4: use of fixed shape supports

A plot with fixed radius r is centered

at the sampled point, and the trees
within are surveyed.

For the French NFI, 3 plot radiuses:

Tree’s circonference
at 1.3m

23.5-70.5cm (ST)
70.5-117.5cm (MT)
> 117.5cm (LT)

Plot radius
6m
) 9m
Sample point 15m
Techniques avancées d'échantillonnage
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Sampling in 2 continuous population
Step 4: use of fixed shape supports

Remark: there can be a third phase
of sampling (not covered here).

Cheap attributes (e.g., basal diame-
ter) are collected on the whole 2nd
phase sample, while expensive at-
tributes (e.g., volume) are collected
on a sub-sample only, and imputed
on the complementary.

Sample point

This is the case in the French NFI.
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Sampling in 2 continuous population
Step 4: use of fixed shape supports

Sample point

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage

The trees within the plot(s) are
surveyed, if they belong to the
corresponding circonference class.

In summary:

@ a sample of points S4 is se-
lected in a continuous territory
uA

o asample of trees S is surveyed
on the field.

How to obtain estimators for the
population of trees?
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Sampling in 2 continuous population
Weight share method

@ The weight share method (Deville
k= @ and Lavallée, 2006; Chauvet et al.,
k=2 2023) enables to use the weights

of the sampled points to give esti-
mation weights to the sampled trees.

@ o We illustrate the principle on a toy

example. Suppose that the popula-

k=4 k=5
tion of interest if a square of length
50 m (A = 2,500 m?) containing
only 5 trees.
50m
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Sampling in a continuous population
Weight share method (2)

A sample S4 = {21, 23} of 2 points
is selected in 244 with a constant
inclusion density.

We have
A
d(Zl) = d(ZQ) = E = 1,250.
All the trees in U inside the plots of

radius r centered on z1, 2o are sur-
veyed (namely, kK = 1,4 or 5).
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Weight share method (3)

\\ y;
""'--_.-d,
-
' ~
7/ \”-‘h
/ ’\
1 !.%2
- |
\\ \,
-~ - -\
\"""-_.-,

The inclusion area of a tree k is
the sub-territory which leads to the
selection of k is a point is sampled
inside.

The weight of the trees are given by:

dy,

S d(zi)1{z €ia. of k }
Surface of the i.a. of k

1,250 __ _
ng =5.92 fOI' k= 1,
= 130 508 for k=4,



Echantillonnage spatial Sampling in a continuous population

Application to the French NFI
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Echantillonnage spatial Sampling in a continuous population

French annual sample: a first-phase two-stage design

Sample of ny cells first selected

0 = among the N; cells, with equal
. ®| probabilities.
o One point randomly selected inside
L]
5 each cell of area A..
L]
[ ) . o o o
= The first-phase inclusion density/HT
. . estimator are
: 1
ny Nip
) = —X-—=—=
: T ) = N XA T A
& jo | for any = € U4,
: A
A A
[ Tylp = ni Z Yy (gj)
p IESfp
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Echantillonnage spatial Sampling in a continuous population

French annual sample: second-phase sampling design

L ]
[ ]
L] L]
N The 1st phase points are classified
. 1 according to the land cover (e.g.,
. orest forest, shrub land, non forest).
- L4 Sub-sampling fraction fy, in the
L ]
. ‘/___,,/ - category g.
* = N
N | Nion| forest : : :
—+1 5] | Second-phase inclusion density:
| \ e
. B map(a) = mip(@) fog for z € Sph .
L ]
Shrlfb ard .
ol N
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Echantillonnage spatial Sampling in a continuous population

French annual sample: second-phase sampling design

The 1st phase points are classified

. [a according to the land cover (e.g.,
- *| forest, shrub land, non forest).
o Sub-sampling fraction fa, in the
[ ]
2 SrEsT 5 category g.
. GE 4 Second-phase inclusion density:
4
] 1] -] "
° T ool foedt Top(T) = m1p(w) fog for v € S,
—+ S
o B
B \ [ 9 Expansion estimator:
: B
Shrub [land |© A A & 1 A
| | o N Ty2p = Hzfj Z v (z).
Prg=17%9 S
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Sampling in 2 continuous population
French annual sample: second-phase sampling design

The estimator

: la
~ A
. . Ty2p = n Z f2 Z ()
Py g
ol xGSZQ’p g
[ ]
o orest ° is post-stratified using 1st phase in-
. L | 4 formation:
lo ;/
2 r'{f—-‘ s Nip,g
d ™\ | Nion| folrest Ty,post — Z Z )
1 1o} nlp N2p,g b
5 €Sy,
| o \
[ ]
@1 For example:
Shruib lland | @ P
-
-
| | BN Nip,Shrub = 5,
N2p,Shrub = 15
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Echantillonnage spatial Sampling in a continuous population

French annual sample: variance estimation

L ]
_ la
|
-
o orgst] o
8|
ol ||
L |e
° s
— .\\ Nion| folre
| | \|9
L ]
hrub Jland |©
| [ ] of N

Unbiased variance estimation is
not possible (one point per cell
selected).

We compute a variance estimator
with two components.

One accounts for the two-stage
first-phase design. Expected to
improve on the classical uniform
random sampling approximation.

One accounts for the second-
phase design and poststratification
(Duong, Bouriaud and Chauvet,
202X).

G. Chauvet (ENSAI) Techniques avancées d'échantillonnage Master Stat Publique 159 / 162



Sampling in a continuous population
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Sampling in a continuous population
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