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Problématique

Utiliser un échantillon d’unités pour tirer des conclusions sur un ensemble de
données plus grand :

@ quand nous contrdlons la facon dont |'échantillon est sélectionné (tirage
probabiliste) :
e Sondage aléatoire simple,
e Sondage stratifié,
e Sondage a plusieurs degrés.
@ quand nous ne contrdlons pas la facon dont 'échant. est sélectionné :
e Méthodes de tirage empiriques (échantillonnage par quotas) pour con-
naftre une opinion politique, les habitudes en termes de médias.
o Echantillons de volontaires (enquéte de satisfaction).
e Non-réponse : diminue la taille de I'échantillon effectivement observé,
et tend a sur-représenter des profils particuliers (risque de biais).
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Principaux objectifs du cours

@ Présenter les méthodes d’inférence pour une population finie d'individus.
@ Donner les principales méthodes d’échantillonnage dans les enquétes.

@ Décrire les méthodes de redressement qui permettent d’utiliser une in-
formation auxiliaire au moment de |'estimation.

@ Décrire les méthodes de correction de la non-réponse dans les enquétes.

Nous utiliserons :
@ le package R sampling pour |'échantillonnage,

o le package R gustave pour |'estimation de variance (créé et maintenu
par Martin Chevalier et Khaled Larbi, Insee).

#Appel des packages

> library(sampling)

> help(package="sampling")
> library(gustave)

> help(package="gustave")




-
Package sampling

Le package sampling contient des fonctions permettant :

@ de sélectionner des échantillons, a probabilités égales ou inégales, en
stratifiant la population,

de réaliser des estimations de totaux,
de calculer des estimateurs par calage,

de réaliser des estimations de variance,

e 6 o6 o

de corriger de la non-réponse totale.
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Base de sondage d'aéroports

A titre d'illustration, nous considérerons en fil rouge une base de sondage®
de N = 12 aéroports francais, ayant accueilli entre 500 000 et 2 000 000 de
passagers en 2019. Elle contient les variables :

o Nombre de passagers en 2019 (Pass19) et taille de I'Unité Urbaine? en
2019 (Pop19) : ce seront nos variables auxiliaires, supposées connues
sur la population entiére.

o Nombre de passagers en 2020 (Pass20) et Nombre de passagers en
transit en 2020 (Trans20) : ce seront nos variables d’intérét, supposées
observées sur un échantillon seulement.

Liste des individus dont nous disposons et dans laquelle nous échantillonnons pour
réaliser une estimation dans la population d'intérét.

2Commune ou ensemble de communes présentant une zone de bati continu (pas de
coupure de plus de 200 métres entre deux constructions) et qui compte au moins 2 000
habitants.
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Base de données d’aéroports

‘ H Pass19 ‘ Pop19 H Pass20 | Trans20
MONTPELLIER || 1900 000 | 620 000 | 800 000 300
BASTIA 1 600 000 | 100 000 | 800000 | 1 400
AJACCIO 1500 000 | 100 000 | 900000 | 1 300
STRASBOURG || 1 300000 | 800 000 | 500000 | 1 300
BREST 1200 000 | 320 000 | 500000 | 1 800
BIARRITZ 1 100 000 | 300 000 | 400 000 200
RENNES 900 000 730 000 || 300 000 200
FIGARI 700 000 20 000 500 000 | 2 900
PAU 600 000 240 000 || 200 000 0
TOULON 500 000 630 000 || 200 000 0
PERPIGNAN 500 000 320 000 || 200 000 0
TARBES 500 000 120 000 || 100 000 0
Total ty 12 300 000 | 4 300 000
Moyenne pix 1 025 000 | 358 333
Dispersion S2 2.33 101! | 7.28 10%°
cvx = \/S2/x 47% 76%




Base de sondage de municipalités

Nous utiliserons également la base de sondage belgianmunicipalities
disponibles avec sampling.

Elle fournit des informations sur les 589 communes de Belgique au 01/07 /2004,
ainsi que des informations financiéres datées de 2001.

#Récupération de deux bases de données du package
> data("belgianmunicipalities")
> attach(belgianmunicipalities)
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Variables de "belgianmunicipalities"

Commune Municipality name

INS INS Code INS

Province Province number

Arrondiss Administrative division number

Men04 Number of men on July 1, 2004

Women04 Number of women on July 1, 2004

Tot04 Total population on July 1, 2004

Men03 Number of men on July 1, 2003

Women03 Number of women on July 1, 2003

Tot03 Total population on July 1, 2003

Diffmen Men04 minus Men03

Diffwom Women04 minus Women03

DiffTOT Tot04 minus Tot03

Taxablelncome | Total taxable income in euros in 2001
Totaltaxation Total taxation in euros in 2001

Averageincome | Average of the income-tax return in euros in 2001
Medianincome | median of the income-tax return in euros in 2001.
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Plan de la premiére partie

@ Echantillonnage en population finie
@ Notations
@ Plan de sondage
@ Estimation de Horvitz-Thompson
@ Calcul de précision

© Meéthodes d’échantillonnage
@ Sondage aléatoire simple
@ Sondage aléatoire simple stratifié
@ Tirage a probabilités inégales
@ Echantillonnage a plusieurs degrés
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Echantillonnage
en population finie
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Echantillonnage en population finie Notations

Notations
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Notations

Nous nous placons dans le cadre d'une population finie U d'individus ou
unités statistiques, supposés identifiables par un label. Nous noterons

U = {1,....k,...,N}.
ot N désigne la taille de la population U.

Nous nous intéressons & une variable d’intérét y (souvent vectorielle), qui
prend la valeur yy sur I'individu k de U.

La variable y est vue ici comme non aléatoire : la population U étant fixée,
la valeur prise par y sur chaque individu est parfaitement définie et
déterministe.

Nous souhaitons estimer des paramétres de la population U. Le champ de
I'enquéte désigne les caractéristiques des unités de la population d’intérét.
Il est trés important de les définir aussi précisément que possible, et en
particulier les catégories qui en sont exclues.



Echantillonnage en population finie Notations
1 (s
Types d'unités

Nous appellerons unité d’échantillonnage une unité élémentaire susceptible
d'&tre tirée lorsque nous procédons a |'échantillonnage, et par I'intermédiaire
de laquelle I'information est collectée.

L’ unité d’observation est I'unité de base sur laquelle I'information est collec-
tée. L'ensemble de ces unités constitue la population d'intérét.

Par exemple :

@ une enquéte auprés des ménages peut procéder en échantillonnant des
logements (unité d’échantillonnage), et en enquétant tout ou partie des
ménages (unité d’observation) situés dans ces logements;

@ l'inventaire forestier national procéde en échantillonnant des points sur
le territoire (unité d'échantillonnage), puis en mesurant des arbres (unité
d’observation) situés a proximité de ces points.
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Echantillonnage en population finie Notations

Paramétres d'intérét

Nous nous intéresserons principalement a |'estimation d’un total
o= > W
keU

d’une variable quantitative sur la population, ou encore a celle de sa moyenne

by = %ZYI(-

keU
Exemple :

Chiffre d’affaires total des entreprises d'un secteur d’activité, pourcentage
d’étudiants fumeurs, ...

Nous étudierons plus loin des paramétres plus complexes comme un ratio

R — keuYk _ by

dokeuXk b
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Echantillonnage en population finie Notations

Paramétres d'intérét (2)

Un cas particulier important est celui de I'estimation sur une sous-population
Uy (appelée domaine) de :

tyg = Z Vi : sous-total sur le domaine,
ke Uy
1 i
Hyd = Z Vi : moyenne sur le domaine,
Nq kEUy

avec Ny la taille du domaine Uj.
[l peut s’agir d'un domaine au sens géographique (habitants d'une région),

socio-démographique (individus de moins de 20 ans), ou encore temporel
(individus présents a une date donnée).
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Echantillonnage en population finie Notations

Paramétres d'intérét (3)

Dans certains cas, il sera utile de voir une moyenne comme un cas particulier
de ratio.

La moyenne sur la population peut se réécrire

t
My = 2 avec xx=1.
[2%

La moyenne sur un domaine peut se réécrire

t zrk =
Nydzti avec { k %

X
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Une population et un domaine d'intérét
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Plan de sondage
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Echantillonnage en population finie EGE:EEITTYES
Plan de sondage

La sélection de I'échantillon aléatoire S se fait a I'aide d'un plan de sondage
p sur U, c’'est a dire a I'aide d'une loi de probabilité sur les parties de U :

Vs C U p(s)>0et Z p(s) = 1. (1.1)
sCcU
Nous notons S I'échantillon aléatoire, et nous distinguerons :
o le paramétre d'intérét 0(yx , k € U) = 0 : quantité déterministe,
o I'estimateur O(yy , k € S) = 0(S) = 0 : variable aléatoire,

A

o I'estimation A(yy , k € s) = A(s) : reéalisation de I'estimateur, pour
une partie donnée s C U.

Nous appellerons algorithme d’échantillonnage une méthode pratique per-
mettant de sélectionner un échantillon selon le plan de sondage choisi.
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Exemple

Soit la population U = {1,2,3,4}, et p(-) le plan de sondage défini par :

p({1,2}) = 0.2 p({1,4}) = 0.1 p({3,4}) = 03
p({1,2,3}) = 0.3 p({2,3,4}) = 0.1

La variable aléatoire S prend ses valeurs dans

{{1,2},{1,4},{3,4},{1,2,3},{2,3,4}}.

Nous avons par exemple

P(S={1,2}) = p({1,2})=02

A la différence des lois de probabilités classiques (normale, exponentielle,
binomiale, ...) ['aléatoire ne porte pas sur la variable mais sur le sous-
ensemble d'individus observés.



Echantillonnage en population finie EGE:EEITTYES

Comparaison avec une variable aléatoire réelle

Soit X une variable aléatoire distribuée selon une loi de Poisson P()\). La
variable aléatoire X prend ses valeurs dans

N={0,1,2,...}.
Nous avons pour k € N :
)\k
P(X =k) = exp * X

L’espérance de X correspond a la valeur moyenne de ses valeurs possibles,
pondérées par leurs probabilités :

EX] = ) kxP(X=k)
keN
= A
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Mesures de précision

L’espérance d'un estimateur 0(S) se définit de facon analogue :

E, [9“(5)} = S 0(s)xP(S=5)=Y p(s)d(s).  (1.2)

scU scU

Le biais d’un estimateur A(S) correspond a son erreur moyenne :
B, [é(sﬂ = E [é(S) - e} =" p(s) [é(s) - 9} . (13)
sC

Nous nous intéresserons aussi a la Variance et a I'Erreur Quadratique Moyenne

(EQM) :

v, [09)] = 3 pts) {(s) - EL(S)} (1.4)

sCU

EQM, [5(5)} - E {{é(S) - 9}2] =B, [5(5)}2 +V, [9“(5)] .



Quelques simulations (cas 1)

Pour illustrer la notion de biais et de variance, nous considérons I'exemple
d'une population de N =1 000 individus dgés de 15 & 20 ans.

Dans cette population, un échantillon de taille n = 50 est sélectionné et
enquété. Pour chaque individu enquété, nous obtenons son poids (en kg) et
sa taille (en cm).

Nous nous intéressons a |'estimation du poids moyen et de la taille moyenne
(carré noir). Chaque échantillon permet d’obtenir une estimation (points
bleus) de ces paramétres. La moyenne des estimations est représentée par le
point rouge.




Quelques simulations (cas 2)

Pour illustrer la notion de biais et de variance, nous considérons I'exemple
d'une population de N =1 000 individus dgés de 15 & 20 ans.

Dans cette population, un échantillon de taille n = 50 est sélectionné et
enquété. Pour chaque individu enquété, nous obtenons son poids (en kg) et
sa taille (en cm).

Nous nous intéressons a |'estimation du poids moyen et de la taille moyenne
(carré noir). Chaque échantillon permet d’obtenir une estimation (points
bleus) de ces paramétres. La moyenne des estimations est représentée par le
point rouge.




Quelques simulations (cas 3)

Pour illustrer la notion de biais et de variance, nous considérons I'exemple
d'une population de N =1 000 individus dgés de 15 & 20 ans.

Dans cette population, un échantillon de taille n = 50 est sélectionné et
enquété. Pour chaque individu enquété, nous obtenons son poids (en kg) et
sa taille (en cm).

Nous nous intéressons a |'estimation du poids moyen et de la taille moyenne
(carré noir). Chaque échantillon permet d’obtenir une estimation (points
bleus) de ces paramétres. La moyenne des estimations est représentée par le
point rouge.




Probabilités d’inclusion

Nous notons 7, la probabilité d’inclusion de |'unité k, c'est a dire la proba-
bilité que I'unité k soit retenue dans |'échantillon :

™ = PkeS)= ) p(s). (1.5)

s/kes

En pratique, les probabilités d'inclusion 7 sont fixées avant le tirage a I'aide
d’une information auxiliaire. Nous utilisons ensuite un plan de sondage qui
respecte ces probabilités d’inclusion.

Nous notons 7y la probabilité que deux unités distinctes k et / soient sélec-
tionnées conjointement dans |'échantillon :

= P(k,/€S)= Y p(s). (1.6)

s/k,les

Ces probabilités doubles interviennent notamment dans la variance des esti-
mateurs. |l est souvent difficile de les calculer exactement.



Echantillonnage en population finie EGE:EEITTYES

Variables indicatrices

L'utilisation de la variable Iy

= 1(k € S), indiquant l'appartenance &

I'échantillon de I'unité k, permet souvent de simplifier les calculs.

Pour deux unités k et [ distinctes, nous avons les propriétés suivantes :

Ep(lk)
V(i)
COVp(Ik,I/)
Epln(S)]

Nous notons A = [Ay], ey la

sondage p(-).

Guillaume Chauvet (ENSAI)

= Tk, (1.7)
= m(1—mk), (1.8)
= Ty — T = Dy, (1.9)
= > T (1.10)

keU

matrice de variance-covariance du plan de
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Echantillonnage en population finie EGE:EEITTYES

En résumé

Un plan de sondage est une loi de probabilité sur les parties de U. L’alea
porte sur le sous-ensemble S d’individus observeés.

Les notions d’espérance et de variance d'un estimateur 6(S) s'adaptent de
facon naturelle :

B, [05)] = 3 p(s) [As) 0],

scU

Vo [09)] = 3 ets) {0s) — ElA(sN}

sCcU
Nous appelons probabilités d'inclusion d’ordre 1 et 2 :

T = P(kES),
Tk = ]P)(k,/GS).
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Echantillonnage en population finie EGE:EEITTYES

Exercice

Soit la population U = {1,2,3,4}, et p(-) le plan de sondage défini par :

02 p({1,4}) = 01 p({3,4})) = 03
0.1

p({1,2})
P({17273}) = 03 p({2,3,4}) =

Calculer les probabilités d'inclusion d’ordre 1. [m; = 0.6]

Montrer que la taille moyenne d’échantillon obtenue est égale a 2.4.

Donner les probabilités d’inclusion d'ordre 2 :
@ des unités 1 et 2, [m2 = 0.5]
@ des unités 1 et 4,

@ des unités 2 et 4.
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Echantillonnage en population finie Estimation de Horvitz-Thompson

Estimation de Horvitz-Thompson
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Echantillonnage en population finie Estimation de Horvitz-Thompson

Estimateur de Horvitz-Thompson

Nous nous intéressons a |'estimation du total

t, = Zyk.

keU
L’estimateur de Horvitz-Thompson est défini par
2 Yk Yk
t = — = — . 1.11
ZED Bl Dl (L.11)
keS keU; m>0

C’est un estimateur pondéré, utilisable pour n'importe quelle variable d’intérét.

Principe : un individu k de I'échantillon représente dy = 1/my individus de
la population.
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Estimateur de Horvitz-Thompson (2)

Proposition 1

Eolfn] = t,— > ¥ (1.12)

keU
=0

L’estimateur de Horvitz-Thompson est donc non biaisé pour le total t, si
tous les m, sont > 0, ce que nous supposerons dans la suite du cours.

Certaines probabilités d'inclusion peuvent étre nulles, notamment :

@ en cas de défaut de couverture de la base de sondage (liste des individus
pas a jour, ou individus impossibles a joindre),

@ quand nous choisissons délibérément de laisser de c6té une partie de la
population (cut-off sampling, parfois utilisé dans les enquétes-entreprise).

Dans ce cas, il faut parfois redéfinir le champ de I'enquéte.



Echantillonnage en population finie Estimation de Horvitz-Thompson

Variance

La variance de |'estimateur de Horvitz-Thompson est donnée par

2 Yk yi
Vo(tyr) = Z gy

k,leU

Ak/ ou Ak/ = Tkl — TKTTY. (1.13)

Cette variance peut étre estimée sans biais par

Yi Y1 By
VHT tyﬂ— Z 77‘7,(777/7'[‘7[(/ (114)
k,l€S

si tous les m, sont strictement positifs. Il s'agit de I'estimateur de variance
de Horvitz-Thompson.

Principe : un couple (k, /) d'individus de I'échantillon représente 1/7y cou-
ples de la population.
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Variance pour un plan de taille fixe
Formule de Sen-Yates-Grundy

Un plan de sondage est dite de taille fixe égale a n si seuls les échantillons
de taille n ont une probabilité non nulle d’étre tirés.

Pour un plan de taille fixe, la variance de f, peut se réécrire

. 1 v
ACBEE=Y {—] Ay (1.15)

™ ™
k#leu L7k J

D’aprés cette formule, la variance est nulle si 7, o< y,. Ce choix n'est pas
possible en pratique (les variables d'intérét sont inconnues avant I'enquéte).

Il est possible de s'en rapprocher en choisissant les probabilités d'inclusion
proportionnellement 3 une mesure de taille des unités. On parle de tirage a
probabilités proportionnelles a la taille.



Exemple d'échantillonnage et d’estimation en R

#Calcul de probabilités d’inclusion prop. a la taille
> n=50

> pi_bO=inclusionprobabilities(averageincome,n)

> summary (pi_50)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.
[110.05693 0.07675 0.08375 0.08489 0.09113 0.14076

#Tirage selon un plan de taille fixe a entropie maximale
> ech=UPmaxentropy (pi_50)

#Estimation de HT du total de TaxableIncome
> y=TaxableIncome
> est_ht=HTestimator (y[ech==1],pi_50[ech==1])




Exemple d'échantillonnage et d’estimation en R

#Calcul des probabilités d’inclusion d’ordre 2 pour
#le tirage a entropie maximale
> pikl_rej_50=UPmaxentropypi2(pi_50)

#Estimation de variance de HT

> vest_ht=varHT (y[ech==1],pikl_rej_50[ech==1,ech==1],1)
#Estimation de variance de SYG

> vest_yg=varHT (y[ech==1],pikl_rej_50[ech==1,ech==1],2)
> options("scipen"=-100,digits="4")

> est_ht

[1,] 1.033e+11

> vest_ht

[1] 9.941e+19

> vest_yg

[1] 9.927e+19




Echantillonnage en population finie Estimation de Horvitz-Thompson

Exercice

1) Montrer que

Vo [n(S)] = D Aw.

k,leU

2) Montrer que pour un plan de sondage de taille fixe, nous avons :

ZA“ = 0 pour tout k € U.
leyu

3) En déduire que pour un plan de sondage de taille fixe, V,[n(S)] = 0.
Obtenez directement ce résultat a partir de I'équation (1.15).
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Echantillonnage en population finie Calcul de précision

Calcul de précision
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Echantillonnage en population finie Calcul de précision

Intervalle de confiance

Nous supposons que £, estime sans biais t,. Alors un intervalle de confiance
y y
pour t, de niveau approximatif 1 — o est donné par :

ICi—alty) = [fyﬂizlg vp(fyﬁ)], (1.16)

avec z;_q le quantile d'ordre 1—5 d’une loi normale centrée réduite N(0, 1).

Rappel :
e a=0.05= zy975 = 1.96
@ o =0.10 = zy95 = 1.64

Interprétation (pour av = 0.05) : le vrai total t, est contenu dans l'intervalle
de confiance pour (approximativement) 95% des échantillons.
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Echantillonnage en population finie Calcul de précision

Intervalle de confiance

Comme la vraie variance V,(f,.) est généralement inconnue, nous la rem-
placons par un estimateur noté V/(f,).

Nous obtenons l'intervalle de confiance estimé :

IC1_o(ty) = [fyﬂizl_gx/V(fy,r)} (1.17)

L'intervalle de confiance est (approximativement) valide :

. . . b —t
@ si 'estimateur centré réduit ————2

suit asymptotiquement une loi
Vo(tyr)

normale A/(0, 1),

o sil'estimateur de variance V/(£,) est faiblement consistant pour V,(£,x).
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Coefficient de variation

La précision de l'estimation du total peut également étre donnée sous la
forme du coefficient de variation

V f ™ LN V(f TF)
CVp(tyr) = pt(y) estimé par CV/(t,r) = fiy (1.18)
Y ym

Il s’agit d'une grandeur sans dimension, plus facile a comparer et a interpréter
que la variance. Avec un niveau de confiance de 0.95, |'intervalle de confiance
du total est donné par

ICoos(ty) = [fyﬁ +1.96 V(fyﬂ)]
= B [1 +1.96 CAV(ny)} .

Interprétation : un CV de x% correspond a un total connu a plus ou moins
2 x% , avec un niveau de confiance de 0.95.



En résumé

La connaissance des probabilités d'inclusion d'ordre 1 permet de calculer
I'estimateur de Horvitz-Thompson du total

2 Yk
tyﬂ— = Z 71_7
kes "k

Pour un plan de sondage quelconque, sa variance est estimée sans biais par

Y YiI D

T T T
ke Tk Tl Tk

\A/HT(fyﬂ)

si tous les 7y sont strictement positifs.

En utilisant une approximation normale pour f,., nous obtenons I'intervalle
de confiance :

Tgl_a(ty) = |:i'\y7ri21_<; VHT(fyﬂ):|.



Echantillonnage en population finie Calcul de précision

Exercice

Nous reprenons I'exercice de la diapositive 29. Nous supposons que I'échantillon
{1,2} est sélectionné, et que les valeurs observées sont y; = 6 et y» = 3.6.

1) L'estimateur de Horvitz-Thompson est-il sans biais pour le pds considéré?
2) Donner la valeur de cet estimateur pour I'échant. sélectionné. [f,. = 16]

Nous souhaitons maintenant calculer une mesure de précision associée a .
3) L'estimateur de variance de Horvitz-Thompson est-il sans biais pour le
pds considéré?

4) Donner la valeur de cet estimateur pour I'échantillon sélectionné.
5) Donner I'estimation du coefficient de variation. [CV/(t,,) = 59%)]
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Méthodes d’échantillonnage

Méthodes d'échantillonnage
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Sondage aléatoire simple
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Sondage aléatoire simple sans remise

Le sondage aléatoire simple sans remise (SRS) de taille n est le plan de
sondage qui donne la méme probabilité 3 tous les échantillons de taille n
d'étre sélectionnés. Nous obtenons :

p(s) = { 1/Cy  sin(s)=n, (2.1)

0 sinon.

Un algorithme de tirage pour le SRS procede de la fagon suivante : nous
tirons une unité parmi N & probabilités égales, puis une unité a probabilités
égales parmi les N — 1 unités restantes, et ainsi de suite jusqu’'a obtenir les
n unités (méthode draw by draw).

En pratique, il existe d’autres algorithmes de tirage plus efficaces ne néces-
sitant qu’une seule lecture de fichier (Tillé, 2011, Section 4.4).
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Echantillonnage aléatoire simple en R

Le package sampling permet de faire un sondage aléatoire simple en utilisant
un algorithme de sélection unité par unité (fonction srswor), ou I'algorithme
de sélection-rejet, plus rapide (fonction srsworl).

n=100

Npop=589

ech_srs=srswor (n,Npop)
ech2_srs=srsworl(n,Npop)

vV V V V
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Estimateur de Horvitz-Thompson

Proposition 2

Soient k et | deux unités distinctes quelconques. Alors :

T = %, Ty = ICE,;V__ll)) (2.2)

L'estimateur de Horvitz-Thompson du total peut donc se réécrire sous la
forme

A N _
ty7r = ; Z}/k =N Y, (23)
keS

avec y la moyenne simple sur I'échantillon S sélectionné.
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Variance de |'estimateur de Horvitz-Thompson

La variance de |'estimateur de Horvitz-Thompson s’obtient & partir de la
formule de Sen-Yates-Grundy :

1
S avee Sp=o = (e my)t (24)
keU

1-f

s 2
Vp(tyr) = N -

Elle est estimée sans biais par

1-f

1 _
s)% avec s)% =7 Z(yk - 72 (2.5)
keS

Vit () = N2

La quantité f = n/N est appelée le taux de sondage.
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Estimation pour un SRS

#Tirage d’un échantillon aléatoire simple

>n <- 100

>Npop <- 589

>ech=srsworl(n,Npop)

#Estimation

>pi <- rep(n/Npop,Npop)

>y=TaxableIncome

>est_ht=HTestimator (y[ech==1],pi_b0[ech==1])

>est_ht

[1,]1 2.517e+11

#Estimation de variance pour un SRS (PACKAGE SAMPLING)
>vest_srs=varest (y[ech==1], ,pil[ech==1],)

>vest_srs

[1] 1.16e+20

#Estimation de variance pour un SRS (PACKAGE GUSTAVE)
>vest_srs_gus=var_srs(y[ech==1],pi[ech==1])
>vest_srs_gus

[1] 1.16e+20
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Estimation de la moyenne p,

Par linéarité, la moyenne 1, peut étre estimée sans biais par
_ 1
y=1 ZYk-
keS

La variance de cet estimateur est donnée par

W) = ~ st (26)

Remarques :

@ Le facteur (1 — f) donne le gain de variance dii au tirage sans remise.
Il est appelé correction de population finie. Ce gain peut étre trés
important (cas des enquétes-entreprise).

@ Si le taux de sondage est faible, la variance ne dépend que de la taille
d’échantillon n.
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Cas d'une proportion

Dans le cas particulier ou le paramétre d'intérét est une proportion notée P,
la variable d'intérét y est une variable indicatrice dont on cherche a estimer
la moyenne.

Exemple : proportion d’étudiants portant des lunettes dans la promotion,
| 1 sil’étudiant k porte des lunettes,
Y«=1 0 sinon.

En particulier, le paramétre peut s'écrire sous la forme
1
W
N Yk
keU

et étre estimé par

P="3w

keS
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Proposition 3

Dans le cas d’une variable indicatrice (0/1) y, nous avons :

N

& = TP -P) (2.7)
2 = nilFA’(l—ﬁ). (2.8)

La variance de I'estimateur de la moyenne P peut alors se réécrire

A 1-f N
Vy(P) = — _P1-P 2.9
W(P) = — L =P P), (29)
et étre estimée sans biais par
& o 1—f 4 A
Vur(P) = 1P(l - P). (2.10)
n —
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Application : détermination de taille d'échantillon

Nous cherchons la taille d’échantillon minimale permettant de respecter avec

un niveau de confiance fixé (par exemple de 95 % ) une contrainte de préci-
sion en termes :

Q soit d'erreur absolue :
P connu a plus ou moins 0.02 < |P — P| < 0.02.

@ soit d'erreur relative :
P connu a 8 % preés < |E5E| < 0.08.
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Application : détermination de taille d'échantillon

Erreur absolue

Avec un niveau de confiance de 95 % la contrainte de précision peut se

réécrire :
P—Pl<B & 196\/V,(P)<p

1 17 N
N 1.96\/[,7—/\/} TPA-P)<p
1

2
1, N-1[8 1
TN [1.96} P{-P)

& n>

(2.11)

=

Il est toujours possible de se placer dans le pire des cas en prenant P = 0.5,
mais il est préférable de disposer d’un a priori (méme vague) sur le paramétre
P.
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Application : détermination de taille d'échantillon

Erreur relative

Avec un niveau de confiance de 95 % la contrainte de précision peut se
réécrire :

P—pP 5
1 1 N 1-P
1. o — <
< 96\/[n N]N—l o=
1
& n> (2.12)
=1 N—1 2 p
&+ 6l op

Calculer cette borne nécessite de disposer d'un a priori sur le paramétre P,
ou au moins d’'un majorant pour ce paramétre.
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Base de données d’aéroports
H Pass19 ‘ Pop19 H Pass20 | Trans20
MONTPELLIER | 1 900 000 | 620 000 || 800 000 300
BASTIA 1 600 000 | 100 000 || 800 000 | 1 400
AJACCIO 1 500 000 | 100 000 || 900 000 | 1 300
STRASBOURG || 1 300 000 | 800 000 || 500 000 | 1 300
BREST 1 200 000 | 320 000 || 500 000 | 1 800
BIARRITZ 1 100 000 | 300 000 || 400 000 200
RENNES 900 000 | 730 000 || 300 000 200
FIGARI 700 000 | 20 000 || 500 000 | 2 900
PAU 600 000 | 240 000 || 200 000 0
TOULON 500 000 | 630 000 || 200 000 0
PERPIGNAN 500 000 | 320 000 || 200 000 0
TARBES 500 000 | 120 000 || 100 000 0




Un échantillon aléatoire simple

H Pass19 \ Pop19 H Pass20 Trans20

BASTIA 1 600 000 | 100 000 800 000 1 400

AJACCIO 1 500 000 | 100 000 900 000 1 300

STRASBOURG | 1300 000 | 800 000 500 000 1 300

FIGARI 700 000 | 20 000 500 000 2 900
PAU 600 000 | 240 000 200 000 0
TARBES 500 000 | 120 000 100 000 0

Iz 500 000 1150

ICoos | [321 000,679 000] | [540,1 760]
cv 18% 27%
450 000 783

Hy




Un autre échantillon aléatoire simple

] H Pass19 \ Popl9 H Pass20 Trans20
AJACCIO 1 500 000 | 100 000 900 000 1300
RENNES 900 000 | 730 000 300 000 200

FIGARI 700 000 20 000 500 000 2 900
TOULON 500 000 | 630 000 200 000 0
PERPIGNAN | 500 000 | 320 000 200 000 0
TARBES 500 000 | 120 000 100 000 0

y 367 000 733

1Co.05 [200 000,533 000] | [70,1 400]
cv 23% 46%
Ly 450 000 783




En résumé

Formule générale Formule pour un plan SRS
Yk 2 _
By = Z tyr = Ny
k€5
« VI N 21 - f 2
( ) Zk /GU ﬁk m VSRS(tyW) =N Tsy
~ 1—f
A 2 2 2
VHT(tyW) >k Jes nkk,l 7)& 7}:/, Vit (tyz) = N n Sy

Estimation d’'une proportion avec un plan SRS

s 1
:*Zﬂ
fkeSN
Vers(P) = =L N P(1 - P)

R T
Vir(P) = ——P(1 - P)
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Exercice

Parmi les 350 étudiants de I'Ensai, nous voulons estimer la proportion P
d’étudiants qui portent des lunettes.

1) Quelle taille d’échantillon faut-il sélectionner pour que cette proportion
soit estimée a 10% prés, avec un niveau de confiance de 0.95 :

Q en utilisant I'information suivante : 50% des personnes de la population
francaise portent des lunettes ; [n = 184]

@ en utilisant maintenant |'information suivante : 20% des 15 — 25 ans
portent des lunettes. [n = 286]

Nous sélectionnons finalement un échantillon de n = 70 étudiants, parmi
lesquels 20 portent des lunettes.

2) Donner une estimation de P, et un intervalle de confiance a 95 %.
IC = [0.19,0.38]
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Sondage aléatoire simple stratifié
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Base de données d’aéroports

Nous considérons a nouveau la population de N = 12 aéroports, pour lesquels
nous voulons estimer le nombre moyen de passagers en 2020 et le nombre

moyen de passagers en transit en 2020. Nous sélectionnons pour cela un
échantillon de n = 6 aéroports.

Nous coupons la population en deux groupes :

@ 6 aéroports (sous-pop. Uj) ayant transporté plus de 1 000 000 de
passagers en 2019,

@ 6 aéroports (sous-pop. U,) ayant transporté moins de 1 000 000 de
passagers en 2019.
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Base de données d’aéroports

Stratégies d’échantillonnage envisagées :
e SRS(6) dans la population entiére,
e SRS(3) dans U; et SRS(3) dans Us,
e SRS(4) dans U; et SRS(2) dans Us.

’ ‘ H Pass20 ‘ Trans20 ‘
SRS(6) V, | 5.98 10° | 7.42 10*
CVp | 172% | 34.8%
SRS(3)+SRS(3) | V, || 2.58 10° | 7.45 10*
CV, || 11.3% | 34.9%
SRS(4)+SRS(2) | V, | 2.48 10° | 1.23 10°
CVp | 11.1% | 44.8%
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Information auxiliaire

Une information auxiliaire désigne une information connue sur I'ensemble de
la population :
@ soit sous forme détaillée (e.g., sexe et age, pour une pop. d'individus),
@ soit sous forme synthétique (e.g., nombre total d'individus par sexe et
par tranche d'age).
Pour utiliser une information auxiliaire a |'étape du plan de sondage, elle
doit étre connue de facon détaillée. Elle peut par exemple permettre de
partitionner la population en groupes, pour obtenir un plan de sondage plus
efficace que le SRS.

Le gain de précision obtenu dépend du lien entre la variable auxiliaire et la
variable d'intérét.
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Motivations pour la stratification (Cochran, 1977)

@ Précision maitrisée pour des sous-populations,
Ex : enquétes-entreprise stratifiées par tranche de taille x type d’activité

@ Simplicité administrative (enquétes conduites par différentes agences),
Ex : enquéte EU-SILC, conduite indépendamment dans chaque pays
européen. Tirage direct dans un registre (Danemark, Suéde, Luxem-
bourg, Pays-Bas, Malte), ou tirage a 2 degrés (Espagne, France, Italie,
Irlande, Pologne, République Tchéque, Slovénie, Lettonie).

@ Plans de sondage adaptés aux sous-populations,
Ex : Enquétes de Recensement réalisée séparément pour les individus
vivant en logement ordinaire (répertoire Fidéli), les individus vivant en
communauté, et les personnes sans-domicile.

@ Gain global de précision.

Principales questions :
©@ Comment construire les strates?

@ Quelle taille d’échantillon sélectionner dans chaque strate?
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Définition

La population U est dite stratifiée quand les unités sont partitionnées en H
sous-populations Uy, ..., Uy appelées strates.

Le plan de sondage est stratifié quand des échantillons indépendants sont
sélectionnés dans chaque strate. Nous considérerons le cas particulier du

sondage aléatoire simple stratifié (STSRS) ou un SRS est appliqué dans
chaque strate.

N,=20 Ny=17

n,=8 ny=6
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Exemple : enquétes entreprises

Les échantillons pour les enquétes auprés des entreprises sont souvent tirés
selon des plans de sondages aléatoires simples stratifiés. La stratification est
obtenue en croisant :

@ un critére d’activité (nomenclature d’activités francaise NAF),

@ un critére de taille (tranches d'effectifs salariés et/ou tranches de chiffres
d’affaires).
Par exemple (voir Demoly et al., 2014), I'enquéte sur les technologies de
I'information et de la communication (TIC) a été tirée en stratifiant selon :
@ le secteur d'activité,

@ la tranche d’effectif de I'entreprise (10-19, 20-49, 50-249, 250-499, 500
et +),

o le chiffre d’affaires,

avec un seuil d’exhaustivité pour les plus grandes tranches d’effectif et les
plus gros chiffres d’affaires.

Guillaume Chauvet (ENSAI) Echantillonnage 30/09/2025 68 /124



(WIS IL LRI BRI BGLEY-ZM  Sondage aléatoire simple stratifié

Notations et estimation

Nous notons Ny, la taille de la strate U,. Le total t, et la moyenne p, se
décomposent sous la forme

H
iy = z ty, avec ty, = Z yk le sous-total sur Up, (2.13)
h=1 keUp
H
Ny tyh
My = Z ——lyh avec fu,p = —— la moyenne sur Up. (2.14)
p N Ny,
Sous un STSRS, les estimateurs de Horvitz-Thompson s’obtiennent en util-
isant les estimateurs sans biais dans les strates :

u Ny _

H
Be=> NuZn et flyz= T (2.15)
h=1 h=1

_ 1 .
avec y, = — g yk la moyenne dans le sous-échant. Sy, tiré dans Uj,.
n
keSy
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Probabilités d’inclusion

Proposition 4

Dans le cas d’un STSRS :
@ Pour tout h=1,..., H et pour tout k € Uy, :
np
= —. 2.16
o= (2.16)
@ Pourtout h=1,...,H et pour tous k 1€ Uy :
nh(nh = 1)
M| = ————. 2.17
Np(Np — 1) (2.17)
@ Pourtoush#h =1,...,H, pour tout k € U, et € Uy :
NpNp
- ) 2.18
= Ny Ny ( ))
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Estimation d'un total

Par indépendance des tirages, la variance de i, s'obtient par sommation:

H
E h avec 5

h=1 kEUh

yn)- (2.19)

Elle est estimée par

h avec 52h

VHT(tyW) = Y

en notant f, = np/ N}y, le taux de sondage dans la strate Up.
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Estimation d'une moyenne

La variance de fi,, s'obtient de facon analogue :

H 2
. Np\“1—f4
Volfiyn) = Z<N> S

h=1

Elle est estimée sans biais par

H
Ny 1—+#
Vit (fiyx) Z < > th

h=1 Mh
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Allocation d’'échantillon

Avant de réaliser le tirage d'échantillon et I'estimation, nous devons déter-
miner I'allocation d’échantillon, i.e. la facon dont la taille globale d'échantillon
n est répartie entre les strates.

L’allocation proportionnelle consiste a allouer I'échantillon dans les strates,
proportionnellement a leur importance.

L'allocation optimale (ou allocation de Neyman) consiste a allouer I'échan-

tillon de facon & minimiser la variance de fyﬁ, pour une variable d'intérét
particuliere y;.
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Allocation proportionnelle

L’allocation proportionnelle consiste a allouer I'échantillon dans les strates,
proportionnellement a leur importance :

Np
= —. 2.23
np n N ( )

Autrement dit, plus la strate est grande, plus |I'échantillon sélectionné dedans
est grand.
Cette allocation conduit a une fraction de sondage constante par strate

np n
= —:f7

f = —h
LA N

ce qui n’est pas le cas avec les autres allocations.
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Allocation proportionnelle

Dans le cas d’une allocation proportionnelle, la variance de f,, se réécrit

H

Vo [e] = N21;f2%5 ~n2l=! 52,nt,a. (2.24)
h=1

Rappelons que selon I'équation de décomposition de la variance :

PN, —1 SR,
2 h — 2 h 2
Sy = msyh + Z m(ﬂyh — py)” (2.25)
h=1 h=1
Syzv’"ffa Syz,mter

La stratification avec allocation proportionnelle permet de gommer la vari-
abilité entre les strates Sy inter-
La stratification devrait &tre choisie de facon a ce que la dispersion a
I'intérieur des strates soit minimisée.
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Base de données d’aéroports

‘ H Pass19 ‘ Pop19 H Pass20 | Trans20
MONTPELLIER || 1 900 000 | 620 000 || 800 000 300
BASTIA 1 600 000 | 100 000 || 800 000 | 1 400
AJACCIO 1 500 000 | 100 000 || 900 000 | 1 300
STRASBOURG | 1 300 000 | 800 000 || 500 000 | 1 300
BREST 1 200 000 | 320 000 || 500 000 | 1 800
BIARRITZ 1 100 000 | 300 000 || 400 000 200
RENNES 900 000 | 730 000 || 300 000 200
FIGARI 700 000 | 20 000 || 500 000 | 2 900
PAU 600 000 | 240 000 || 200 000 0
TOULON 500 000 | 630 000 || 200 000 0
PERPIGNAN 500 000 | 320 000 | 200 000 0
TARBES 500 000 | 120 000 || 100 000 0
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Base de données d’aéroports

Stratégies d'échantillonnage envisagées :
@ SRS(6) dans la population entiére,

@ SRS(3) dans U; et SRS(3) dans U, (allocation proportionnelle).

|

H Pass20 \TransQO‘

Guillaume Chauvet (ENSAI)

SRS(6) Vv, 5.98 10° | 7.42 10*
cv, 17.2% 34.8%
SRS(3)+SRS(3) | V, 2.58 10° | 7.45 10*
v, 11.3% 34.9%
2,m 2.82 1012 8.13 102
\ inter 4.36 10'° | 7.76 10
S-.
ygygfe' 61% 9%
Echantillonnage 30/09/2025 77 /124



Echantillonnage stratifié dans R

> aeroports$U <- 1+(aeroports$Pass19<=1000000)
> ech=strata(data=aeroports,stratanames="U",

size=c(3,3) ,method = "srswor")
> ech
U ID_unit Prob Stratum

2 1 2 0.5 1
3 1 3 0.5 1
5 1 5 0.5 1
7 2 7 0.5 2
8 2 8 0.5 2
11 2 11 0.5 2
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Allocation optimale

L'allocation optimale (ou allocation de Neyman) consiste a allouer I'échan-
tillon de facon & minimiser la variance de fyﬂ, pour une variable d'intérét
particuliére yj :

H

H
1 1
'§ = — | N2S2 tq § =n. 2.26
rr;:,n e [nh Nh] hvh a h=1 ne ( )

En utilisant une technique de Lagrangien, nous obtenons :

Npy/S?
s (2.27)

np = N =
) 2

Le calcul de cette allocation optimale nécessite la connaissance des disper-
sions th dans les strates.
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Allocation optimale

L’allocation de Neyman indique qu'il faut sélectionner un échantillon plus
grand dans les grandes strates et/ou dans les strates présentant une forte
dispersion.

L’allocation n’est optimale que pour la variable d'intérét considérée.
La formule de I'allocation de Neyman peut conduire & n, > Np. Dans ce

cas, la strate est recensée (n, = Np, : strate dite exhaustive), et |'allocation
est recalculée dans les autres strates :

N;

pourjyéh_l
/;éh lN\/
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Base de données d’aéroports

Stratégies d'échantillonnage envisagées :

e SRS(6) dans la population entiére,
@ SRS(3) dans U; et SRS(3) dans U, (allocation proportionnelle),
@ SRS(4) dans U; et SRS(2) dans U, (allocation Pass19-optimale).

Var. d’optimisation

Pass19 \ Pop19 \ Pass20 \ Trans20

Avant arrondi

Up | 3.89 3.01 3.60 2.14

U, | 211 2.99 2.40 3.86
Aprés arrondi

Ur 4 3 4 2

Us 2 3 2 4
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(WIS IL LRI BRI BGLEY-ZM  Sondage aléatoire simple stratifié

Base de données d’aéroports

Stratégies d’échantillonnage envisagées :

e SRS(6) dans la population entiére,

e SRS(3) dans U; et SRS(3) dans U, (allocation proportionnelle),
e SRS(4) dans U; et SRS(2) dans Us (allocation Pass19-optimale).

|

|

H Pass20 ‘ Trans20 ‘

Guillaume Chauvet (ENSAI)

SRS(6) V, | 5.98 10° | 7.42 10*
CVp | 172% | 34.8%
SRS(3)+SRS(3) | V, || 2.58 10° | 7.45 10*
CV, || 11.3% | 34.9%
SRS(4)+SRS(2) | V, | 2.48 10° | 1.23 10°
CVp | 11.1% | 44.8%
Echantillonnage 30/09/2025
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En résumé

Formule générale

Formule pour un plan STSRS
H
2 K &
tyﬂ' L ty7r = Z Nh)/h
kes 'k h=1

H
A 1—f1,
Vp(tyrr) = Zk,/eu Ak/%%, Vp(tyﬂ) = Z N/27 ) s;

H
R N 1-—1
A A ~ 2 h 2
Vit (tyr) = 2ok ies o d 2 | Vir(tyx) = Z Np

Sop.
'vh
h—1 Nk
Allocations d’échantillon
. Nj,
Proportionnelle fp = n—r
[c2
_ Ny Syh
Optimale np=n—-+——

H
Ej:l N; 531




(WIS IL LRI BRI BGLEY-ZM  Sondage aléatoire simple stratifié

Exercice

Dans la base d’aéroports, nous considérons la stratification suivante :
e Vo = {MONTPELLIER, FIGARI},
e Vi = U; \ {MONTPELLIER} et V; = U, \ {FIGARI}.
1) Donner I'allocation d'échantillon pour un tirage de taille n = 6, avec

strate exhaustive, et allocation proportionnelle dans V4 et V5.
[no:2,n1 :2,n2:2]

2) Donner les probabilités d'inclusion de chaque aéroport.
3) En supposant que BASTIA et BREST sont tirées dans V4, et que RENNES
et PAU sont tirées dans V5, donner une estimation du total de Pass20 et

Trans20.
[5 800 000 et 11 700]
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Tirage a probabilités inégales
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WU R NI ETRA BN EV-YI  Tirage a probabilités inégales

Introduction

Nous avons vu précedemment que la stratification permettait de réduire
la variance des estimateurs. Si les strates sont homogénes relativement a la
variable d'intérét (dispersion intra faible), le sondage aléatoire simple stratifié
est une stratégie efficace d'échantillonnage.

En pratique, il peut subsister une forte hétérogénéité dans les strates. Dans
ce cas, nous pouvons rechercher une stratégie d'échantillonnage plus efficace
en individualisant les probabilités de sélection 7, de chacun des individus.

Nous devons ensuite choisir un algorithme de tirage, i.e. une méthode pra-
tique de sélection respectant les probabilités d’inclusion choisies.

Nous étudierons deux de ces algorithmes : le tirage de Poisson et le tirage
systématique.
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Fonction de base sample

> sample(x, [n],size,replace = FALSE, prob = NULL)

@ x : vecteur dans lequel sélectionner, ou entier positif.

@ size : taille d’échantillon (entier positif).

e replace: échantillonnage sans remise (FALSE) ou avec remise (TRUE).
L’option FALSE donne une méthode biaisée d’échantillonnage a
probabilités inégales.

@ prob : vecteur de probabilités, les probabilités d’inclusion sont propor-
tionnelles & prob (NULL pour un tirage a probabilités égales).
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Fonction de base sample

> sample(1:10,6,replace = FALSE)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers selon un

SRS : Ok.

> prob <- ¢(1,1,1,1,1,2,2,2,2,2)
> sample(1:10,6,replace = TRUE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
avec remise a probabilités inégales : Ok.

> prob <- ¢(1,1,1,1,1,2,2,2,2,2)
> sample(1:10,6,replace = FALSE,prob)

Sélection d'un échantillon de 6 unités parmi les 10 premiers entiers. Tirage
sans remise a probabilités inégales : méthode de tirage fausse.




WU R NI ETRA BN EV-YI  Tirage a probabilités inégales

Probabilités proportionnelles a la taille

La taille moyenne d'échantillon sélectionné est donnée par

E[n Zﬂ'k

keU

En notant n la taille d’échantillon souhaitée, les probabilités d’inclusion pro-
portionnelles a une mesure de taille (pps) xx > 0 sont données par :
X,
T = he——0. (2.29)
2ieuX

Si certaines unités sont particuliérement grosses (au sens de la variable
xk), cette formule peut donner des probabilités d'inclusion > 1. Dans ce
cas, les unités correspondantes sont sélectionnées d’office, et les probabilités
d'inclusion des autres unités sont recalculées.
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Recalcul des probabilités d'inclusion

#Calcul de probas d’inclusion proportionnelles a la taille
> n=50

> pi_bO=inclusionprobabilities(averageincome,n)

> summary (pi_50)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.

[110.05693 0.07675 0.08375 0.08489 0.09113 0.14076

> n=400

> pi_400=inclusionprobabilities(averageincome,n)
> summary (pi_400)

[1] Min. 1st Qu. Median Mean 3rd Qu. Max.
[1]0.4556 0.6142 0.6702 0.6791 0.7293 1.0000




Base de données d’aéroports

Probabilités proportionnelles a Pass19

] H Pass19 Popl9 H Ty ‘

MONTPELLIER || 1 900 000 | 620 000 || 0.93
BASTIA 1 600 000 | 100 000 || 0.78
AJACCIO 1500 000 | 100 000 || 0.73

STRASBOURG || 1 300 000 | 800 000 || 0.63

BREST 1200 000 | 320 000 || 0.59
BIARRITZ 1100 000 | 300 000 || 0.54
RENNES 900 000 | 730 000 || 0.44

FIGARI 700 000 | 20 000 || 0.34

PAU 600 000 | 240 000 || 0.29
TOULON 500 000 | 630 000 || 0.24

PERPIGNAN 500 000 | 320 000 || 0.24
TARBES 500 000 | 120 000 || 0.24




Base de données d’aéroports
Probabilités proportionnelles 3 Pop19

Pass19 Pop19 Tk

Essai 1 | Essai 2
MONTPELLIER || 1 900 000 | 620 000 0.87 0.90
BASTIA 1 600 000 | 100 000 0.14 0.14
AJACCIO 1 500 000 | 100 000 0.14 0.14
STRASBOURG | 1 300 000 | 800 000 1.12 1.00
BREST 1 200 000 | 320 000 0.45 0.46
BIARRITZ 1 100 000 | 300 000 0.42 0.43
RENNES 900 000 | 730 000 1.02 1.00
FIGARI 700 000 | 20 000 0.03 0.03
PAU 600 000 | 240 000 0.33 0.35
TOULON 500 000 | 630 000 0.88 0.91
PERPIGNAN 500 000 | 320 000 0.45 0.46
TARBES 500 000 | 120 000 0.17 0.17
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Le tirage de Poisson
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Tirage de Poisson

C’est un principe de piles ou faces indépendants, avec une piéce et un lancer
différents pour chaque unité.

e Etape 1 : génération de u; ~ U[0,1]. Si vy < mq, l'unité 1 est retenue
dans I'échantillon.

o Etape 2 : génération de uy ~ U[0,1] indépendamment de u;. Si
ur < mp, 'unité 2 est retenue dans I'échantillon.

o Etape N : génération de uy ~ U[0, 1] indépendamment de v, ..., uy_1.
Si uy < 7y, l'unité N est retenue dans I'échantillon.

En utilisant les propriétés d'une loi U[0, 1] et I'indépendance des tirages :

Pk e S) = P(ux < i) = Fu(mi) = m,
Tkl = 7Tk7T/Sik§é/.



WU R NI ETRA BN EV-YI  Tirage a probabilités inégales

Estimateur de Horvitz-Thompson

La variance s'obtient & partir de I'expression générale de HT :

2
Vpois(fyw) = Z <7);k> 7Tk(1—7Tk). (2.30)
keu Nk
Elle est estimée sans biais par
Y Yk 2
Vir(Br) = > <W> (1 — ). (2.31)
kes Nk

En particulier, cela implique que la taille d’échantillon est aléatoire :

Vpois[n(S)] = Zﬂk(l—ﬂk)-

keU
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Base de données d’aéroports

Tirage de Poisson a probabilités proportionnelles a Pass19

’ H Pass19 ‘ Popl19 H Tk ‘ Uk ‘ Iy ‘
MONTPELLIER | 1 900 000 | 620 000 || 0.93 | 0.46
BASTIA 1 600 000 | 100 000 || 0.78 | 0.75
AJACCIO 1 500 000 | 100 000 || 0.73 | 0.58
STRASBOURG || 1 300 000 | 800 000 || 0.64 | 0.71

BREST 1 200 000 | 320 000 || 0.59 | 0.79
BIARRITZ 1 100 000 | 300 000 || 0.54 | 0.14
RENNES 900 000 | 730 000 || 0.44 | 0.93

FIGARI 700 000 | 20 000 | 0.34 | 0.36

PAU 600 000 | 240 000 || 0.29 | 0.40
TOULON 500 000 | 630 000 || 0.24 | 0.51

PERPIGNAN 500 000 | 320 000 || 0.24 | 0.41
TARBES 500 000 | 120 000 || 0.24 | 0.40




WU R NI ETRA BN EV-YI  Tirage a probabilités inégales
Utilisation

Le tirage de Poisson présente une grande variance d'échantillonnage. Il est
utilisé pour certaines enquétes auprés des entreprises, car il permet de sim-
plifier la coordination du tirage de plusieurs échantillons.

On parle de coordination :

@ négative quand on tire plusieurs échantillons afin qu’ils soient aussi dis-
joints que possible,

@ positive quand on tire plusieurs échantillons afin qu'ils se recouvrent
autant que possible.

Le tirage de Poisson est également utilisé dans un contexte de non-réponse,
pour modéliser le mécanisme de réponse dans I'échantillon S complet (voir
la Section 4).
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Mise en oeuvre sous R

#Probabilités d’inclusion proportionnelles a la taille
> n=50
> pi_bO=inclusionprobabilities(averageincome,n)

#Tirage de Poisson et estimation du total de TaxableIncome
> ech_poi=UPpoisson(pi_50)

> y=TaxableIncome

> HTestimator(y[ech_poi==1],pi_50[ech_poi==1])

[1,] 1.220165e+11

#Estimation de variance de HT

> pikl_poi_50=pi_50 %*% t(pi_50) +diag(pi_50-pi_50%pi_50)
> varHT (y[ech_poi==1],pikl_poi_50[ech_poi==1,ech_poi==1],1)
[1] 6.1382e+20

#Estimation de variance (package GUSTAVE)

> y_mat <- matrix(y, ncol = 1)

> var_pois(y_mat[ech_poi==1, , drop =
FALSE],pi_50[ech_poi==1])

[1] 6.1382e+20




En résumé

Formule générale

Formule pour un plan de Poisson

ny:Z%

k,leS

keS
2 Yk Yi
VP(tYTF) - 77A
kiey kT
T Yk Y1 D
Vit (ty) = —=—
Tk T Tkt

Vollye) = > (“)2@(1 — )

keu \Tk ,
o 2 Yk
VHT(tyw) = Z <7‘r) (1 = 7Tk).
kes Nk
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Le tirage systématique
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Principe
C’est une méthode simple et trés rapide permettant de sélectionner un échan-
tillon & probabilités inégales et de taille fixe.

C’est la méthode la plus utilisée en pratique, méme pour un tirage a proba-
bilités égales.

Principe :
@ Les unités de la population sont représentées sur un segment de longueur
n. Chaque unité k est représentée par un segment de longueur .
@ Nous générons un nombre aléatoire u ~ U[0, 1], puis les nombres u; =
u+(i—1),i=1,...,n—1.
@ Une unité est sélectionnée si un de ces nombres aléatoire tombe dans
son segment.

#Probabilités d’inclusion proportionnelles a la taille
> n=50

> pi_bO=inclusionprobabilities(averageincome,n)
#Tirage systématique

> ech_sys=UPsystematic(pi_50)




WU R NI ETRA BN EV-YI  Tirage a probabilités inégales

Exemple

Population U de taille N = 14 avec n =4 :
@ M :7T2:7T5:7T5:7T7:7T3:ﬂ'12:1/7,

@ M3 =Ty =g =T = T11 = M3 = T4 = 3/7.

0 l 1
l Il Il Il l Il
[ N

l 2
I | l |
{ T

R
Il ‘l Il {

LI T T

Vo Vi V2 V3 Va Vs Ve V7 Vg

u=082 ¢ [V, Vi]
1+u=182¢ [Vg, Vg]

24+ u=282¢€]
3+u=382¢]
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Vio, Vi1]

=
=
=
Vis, Vis] =

Vo

T 1 T
Vio Vi1Va2 Vais Via

I'unité 4 est sélectionnée,
I'unité 9 est sélectionnée,
I'unité 11 est sélectionnée,

l'unité 14 est sélectionnée.
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Probabilités d’inclusion

Les probabilités d'inclusion 7, sont exactement respectées. Les probabilités
d’inclusion d’ordre deux sont calculables (Tille, 2011, p. 126), mais beaucoup
d'entre elles sont nulles. Par conséquent, il n'existe pas d’estimateur sans

biais de variance pour |'estimateur HT.

#Probabilités d’inclusion d’ordre 2

> pikl_sys=UPsystematicpi2(pi_50)

> pikl_sys[1:6,1:6]

[,1] [,2] [,3] [,4] [,61 [,6]

[1,] 0.1144 0.00000 0.00000 0.00000 0.00000 0.0000

[2,] 0.0000 0.07468 0.00000 0.00000 0.00000 0.0000

[3,] 0.0000 0.00000 0.09965 0.00000 0.00000 0.0000

[4,] 0.0000 0.00000 0.00000 0.07412 0.00000 0.0000

[5,1 0.0000 0.00000 0.00000 0.00000 0.09011 0.0000

[6,1 0.0000 0.00000 0.00000 0.00000 0.00000 0.1034
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Base de données d’aéroports

Tirage systématique a probabilités proportionnelles a Pass19

I

Passi9 | m | Vi1 | Vi |u—=0.11]u—1088
MONTPELLIER || 1 900 000 || 0.93 0 0.93
BASTIA 1600000 || 0.78 | 0.93 | 1.71
AJACCIO 1500000 | 0.73 | 1.71 | 2.44
STRASBOURG | 1300000 || 0.64 | 2.44 | 3.08
BREST 1200 000 || 0.59 | 3.08 | 3.67
BIARRITZ 1100000 || 0.54 | 3.67 | 4.21
RENNES 900 000 0.44 | 421 | 4.65
FIGARI 700 000 0.34 | 465 | 4.99
PAU 600 000 0.29 | 499 | 5.28
TOULON 500 000 0.24 | 5.28 | 5.52
PERPIGNAN 500 000 0.24 | 5,52 | 5.76
TARBES 500 000 0.24 | 5.76 | 6.00
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Utilisation

Le tirage systématique permet de bénéficier d'un effet de stratification. Si la
population est préalablement triée selon une variable auxiliaire xx, les unités
de I'échantillon vont &tre tirées dans toute la distribution de x.

Si la variable d'intérét y, est liée avec la variable de tri, cet effet de strati-
fication peut conduire 3 une réduction de la variance par rapport a d'autres

algorithmes de tirage utilisant les mémes probabilités d’inclusion.

Le tirage systématique est également souvent utilisé avec des probabilités
égales de tirage, en remplacement du SRS.
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Cas de probabilités d'inclusion égales

Dans le cas de probabilités d'inclusion égales, la méthode est généralement
plus efficace que le SRS si la population est triée avant le tirage selon une
variable auxiliaire xx corrélée avec la variable d'intérét.

#Corrélation entre Tot04 et TaxableIncome
> y=TaxablelIncome

> cor(Tot04,y)

[1] 0.988

#Tri de la population selon la variable Tot04
> permutation <- order(Tot04)

> Tot04_rank <- TotO4[permutation]

> y_rank <- y[permutation]

#Paramétres de 1’échantillonnage (probabilités égales)
> n <- 50

> Npop <- 589

> pi0_50 <- rep(n/Npop,Npop)




Cas de probabilités d'inclusion égales

Comparaison entre SRS et tirage systématique

#Probabilités d’inclusion d’ordre 2 pour un SRS
> pikl_srs <- UPsampfordpi2(pi0_50)
#Variance exacte sous un SRS
> var_srs <-  t(y_rank/pi0_50)
%*% (pikl_srs-pi0_50%*J%t (pi0_50))
%*% (y_rank/pi0_50)
#Probabilités d’inclusion d’ordre 2 pour le SYS
> pikl_sys <- UPsystematicpi2(pi0_50)
#Variance exacte sous un SYS
> var_sys <-  t(y_rank/pi0_50)
%*% (pikl_sys-pi0_50%*%t (pi0_50))
%*% (y_rank/pi0_50)

> options("scipen"=-100,digits="3")
> var_srs

[1,] 6.56e+20

> var_sys

[1,]1 3.08e+20
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Exercice

1) Pour I'échantillon sélectionné selon un plan de Poisson (cf diapositive 96),
donner :

@ une estimation du total de Pass20 et Trans20, [3.86 10° et 4 269]

@ une estimation du CV associé. [25% et 30%]

2) Pour chacun des deux échantillons sélectionnés selon un tirage systéma-

tique (cf diapositive 104), donner une estimation du total de Pass20 et de
Trans20.

[5.40 10° et 7 319]
[5.50 10° et 13 034]
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Méthodes d’échantillonnage Echantillonnage a plusieurs degrés

Echantillonnage a plusieurs degrés
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Méthodes d’échantillonnage Echantillonnage a plusieurs degrés
Motivation

Les differentes méthodes vues précedemment supposent que I'on peut con-
stituer une base de sondage, i.e. une liste des unités de la population U.
Souvent, une telle base de sondage n'est pas disponible et il n'est donc pas
possible de tirer directement les individus.

Nous utilisons alors des méthodes de tirage indirect comme |'échantillonnage
a plusieurs degrés, ol |I'échantillon est sélectionné en plusieurs temps.

Ce type d’échantillonnage a également I'avantage d’étre moins cher pour des

enquétes en face a face, car il permet de concentrer géographiquement les
unités enquétées.
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Ex. 1 : enquétes auprés des ménages de |'Insee

Base de sondage constituée a partir de sources fiscales. Le répertoire statis-
tique des individus et des logements (RESIL) devrait remplacer prochaine-
ment I'ancienne base FIDELI. Tirage a 2 ou 3 degrés :

© Tirage de zones (obtenues par agrégation ou découpage de communes)
pour obtenir I'échantillon-maitre de I'lnsee = Unités Primaires (UP)

@ Dans ces UP, tirage d'un échantillon de ménages = Unités Secondaires
(US)

© Dans ces ménages, I'enquéte est réalisée auprés de tous les individus du
ménage ou d'un représentant tiré aléatoirement (individu Kish).

Le tirage a plusieurs degrés pourrait &tre remis en cause par la disponibilité
d’un répertoire, et par le fait que beaucoup d’enquétes de I'Insee sont main-
tenant réalisées en bimode séquentiel (internet, puis téléphone).

Faivre, S. (2017). Echantillonnage des enquétes auprés des ménages dans
la source fiscale.

Ardilly, P. (2024). Etude efficacité-coiit de ['échantillon-maitre Insee. 13éme
colloque francophone sur les sondages, Luxembourg, 5-8 novembre 2024.



https://www.insee.fr/fr/information/2838097

Ex. 2 : enquétes épidémiologiques (Santé Publique France)

L’Etude de Santé sur I'Environnement, la Biosurveillance, I' Activité physique
et la Nutrition (ESTEBAN) réalisée entre 2014 et 2016 visait a mesurer le
niveau d'imprégnation de la population métropolitaine a différents polluants,
et 3 établir des mesures de référence.

Le plan de sondage est similaire & celui des enquétes ménage de I'Insee :
L'enquéte était réalisée selon un plan de sondage a 3 degrés :

© Tirage d'un échantillon de zones au premier degré.

@ Tirage de deux échantillons de ménages au second degré (un parmi les
ménages contenant un enfant dge de 6 3 17 ans, un contenant un
adulte 4gé de 18 a 74 ans).

© Tirage d'un individu Kish par ménage.

La principale différence est que chaque échantillon de ménages est sélectionné
par génération aléatoire de numéros de téléphone.



Ex. 3 : enquétes PISA

Le Programme International pour le Suivi des Acquis des éléves (PISA)
mesure la capacité des jeunes de 15 ans 3 utiliser leurs compétences en
compréhension de I'écrit, en mathématiques et en sciences.

L’enquéte est réalisée selon un plan & 2 ou 3 degrés :

o Etablissement d'une base de sondage des écoles contenant des étudiants
de 15 ans (équivalent classes de 5¢me ou supérieures). Tirage stratifié>
d’écoles, a probabilités proportionnelles au nombre d’éléves, par tirage
systématique dans les strates (stratification implicite).

e Tirage d'un échantillon d’étudiants éligibles au second degré, a proba-
bilités égales.

OCDE (2022). PISA 2022: Technical Report.

3En France, selon la région, le type d'école et leur taille


https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/03/pisa-2022-technical-report_599753f0/01820d6d-en.pdf

Méthodes d’échantillonnage Echantillonnage a plusieurs degrés

Principe de I'échantillonnage a deux degrés

La population U d’individus est partitionnée en N, grosses unités appelées
Unités Primaires (UP). Les unités de U sont appelées les Unités Sec-
ondaires (US).

Un échantillon d’"UP est tiré au premier degré, puis un échantillon d'US dans
chaque UP.
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Méthodes d’échantillonnage Echantillonnage a plusieurs degrés

Motivation

L’échantillonnage multi-degrés est avant tout utilisé pour des considérations
pratiques :

@ Réduction des coiits d’enquéte. Si les unités de la population sont
trés dispersées géographiquement, un tirage direct (e.g., selon un SRS)
conduirait a un échantillon également fortement dispersé. L'utilisation
de plusieurs degrés de tirage permet de concentrer les unités échantil-
lonnées.

e Constitution de la base de sondage. On ne doit disposer d'une liste
des unités de la population (US) que pour les UP sélectionnées.

Le probléme des coiits de déplacement se pose pour une enquéte en face a
face, mais pas pour une enquéte par téléphone ou par internet. La méthode
d’échantillonnage dépend donc du mode de collecte utilisé.
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Principe

Nous sélectionnons |'échantillon S en deux temps. Au premier degré, un
échantillon S; d'UP est tiré. Nous notons :

T = IP’(u,- S 5/)
la probabilité de sélectionner I'UP u; dans S;.

Au second degré, nous tirons un échantillon S; d'US dans chaque UP u;
sélectionnée. Nous notons

Tk|j = ]P(k S 5,-|u,- S 5/)
la probabilité de sélectionner une US k si son UP a été tirée au ler degré.

L’échantillon global est S = Si, et les probabilités d’inclusion valent

U/ESI

Tk = T X T);  pour tout  k € u;.



Exemple : SRS au premier degré

‘ul N = 6‘ ‘“3 N375‘

@O L T )
goo o ?oo

Nous sélectionnons :
@ un échantillon S; de n; =3 UP selon un SRS,
@ un échantillon S; de n; = ng = 2 US selon un SRS dans chaque UP.

Nous avons par exemple :

pour tout k € u; w, =

pour tout k € u3 T, =



Exemple : PPS au premier degré

[y : N, = 6] fus : N9*5‘

@C L T )
8.. o 200

Nous sélectionnons :

@ un échantillon S; de n; =3 UP a probabilités prop. a la taille,

@ un échantillon S; de n; = ng = 2 US selon un SRS dans chaque UP.
Nous avons par exemple :

pour tout k € 1y T =

pour tout k € u3 W =



Estimation

Pour une variable d'intérét y, nous pouvons estimer son total t, par

I\

ZYk_Z Yi avec )/k

kes ues, i kes;

Sa variance peut s'obtenir en conditionnant sur |'échantillon S; :

Vp(fyﬂ) = Vp Ep(fyﬂsl) + Ep Vp(fyﬂ‘sl)
V4 ~
= v Y +E, Vio(£,2]5)). (2.32)
uwh e e
u,'ESI VUS
Vup

Le premier terme de variance est généralement prépondérant :
o Il dépend de la variabilité inter UP, d’autant plus grande que les UP
sont grandes (effet taille) et/ou homogénes en intra (effet de grappe).
@ Sous des hypothéses raisonnables, il est possible de montrer que

N2 N2
VUPZO< > et VUS:O< )
ny N no




Sondage aléatoire simple a chaque degré
L’estimateur de Horvitz-Thompson se réécrit
- N, _ _ 1
tyrn = — Z N,-y,- avec y; = — Z Yk- (2.33)
i u; €S ni
Sa variance est donnée par :

A~ ny 52 /V/ n; 52,'
Vo(B,r) = N? (1 - IV/) T7+ - >N (1 - IV,-) Ty, (2.34)

u;eU,

Vup
Vus

avec

1 2%
S2, = Z Y — NI> — Variance des Y; sur les UP

1 Yi 2
§2 — = Z (yk — N> —  Variance de y dans 'UP u;



Méthodes d’échantillonnage Echantillonnage a plusieurs degrés

Plan a deux degrés auto-pondéré

Un plan a deux degrés couramment utilisé en pratique consiste :

@ a sélectionner un échantillon d’UP avec des probabilités proportionnelles
au nombre d'US,

@ a tirer un échantillon de ng US dans chaque UP sélectionnée.
Cela conduit aux probabilités d’inclusion

N,' no nyng n
T = Nj— X — = =

N N N N’

d'ou le nom de plan auto-pondéré.

Dans une enquéte auprés des ménages, ce plan de sondage permet :
@ de donner de grosses probabilités de tirage aux plus grandes communes,
ce qui réduit la variance,
@ de tirer un méme nombre de ménages dans chaque commune, ce qui
équilibre la charge de travail des enquéteurs.
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Echantillonnage 3 plusieurs degrés
Exemple : enquétes MICS

L'Enquéte par grappes a indicateurs multiples (MICS) est un programme
international d'enquéte sur les ménages élaboré et appuyé par I"'UNICEF.
MICS est concu pour recueillir des estimations sur les indicateurs clés qui
sont utilisés pour évaluer la situation des enfants et des femmes.

C’est une source importante de données sur la protection de |'enfance,
I'éducation de la petite enfance, et sur la santé et la nutrition des enfants.

Depuis le lancement des MICS dans les années 1990, plus de 300 enquétes
ont été réalisées dans plus de 100 pays. La derniére vague d'enquétes a eu

lieu en 2021, et la prochaine est prévue en 2025.

Lien : https://mics.unicef.org/
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Echantillonnage 3 plusieurs degrés
Exemple : enquétes MICS

Extrait du rapport d'enquéte de I'enquéte MICS 2021 au Nigéria.

The sample for the MICS 2021 was designed to provide estimates for a large
number of indicators on the situation of children and women at the national,
rural/urban levels, for 36 states and the Federal Capital Territory (FCT),
Abuja, as well as the six geo-political zones of Nigeria.

States were identified as the main sampling strata and the sample of house-
holds was selected in two stages. Within each stratum, at the first sampling
stage a specified number of census enumeration areas (EAs) were selected
systematically with probability proportional to size.

After a household listing was carried out within the selected EAs, a sys-
tematic sample of 20 households was drawn in each sample EA. The total
target sample size for the main Nigeria MICS was 1,850 clusters and 37,000
households.
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Méthodes d’échantillonnage Echantillonnage a plusieurs degrés

Estimation de variance

Il est possible de reprendre la décomposition de variance (2.32) pour calculer
un estimateur de variance, comprenant un terme pour chaque degré. C'est
I'approche utilisée dans le package Gustave.

Beaucoup d’'enquétes utilisent plutét |'estimateur de variance simplifié

~ 2

2 nj Yl fyTr
Vir(tyz) = — == . 2.35
r(tyr) n— 1 u;s, o n ( )

Sous I'hypothése d'un tirage avec remise au premier degré, il est sans biais
pour I'ensemble de la variance, quel que soit le nombre de degrés de tirage. Il
est également trés simple a calculer car (en dehors des identifiants des UP),
il ne nécessite de connaftre que les poids de sondage.

Il est généralement conservatif dans les enquétes réelles.

Guillaume Chauvet (ENSAI) Echantillonnage 30/09/2025 124 /124



	Echantillonnage en population finie
	Méthodes d'échantillonnage

