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Principaux objectifs du cours

Vu avec Laurent Costa : partie amont de l'enquête.

Méthodes d'inférence dans le cas d'une population �nie d'individus.

Principales méthodes d'échantillonnage utilisées dans les enquêtes.

Nous nous intéressons ici à la partie aval de l'enquête :

Méthodes de redressement qui permettent d'utiliser une information
auxiliaire au moment de l'estimation.

Estimation d'un paramètre complexe.
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Base de sondage d'aéroports

A titre d'illustration, nous considérerons (encore) une base de sondage de
N = 12 aéroports français, ayant accueilli entre 500 000 et 2 000 000 de
passagers en 2019. Elle contient les variables :

Nombre de passagers en 2019 (Pass19)

Taille de l'Unité Urbaine en 2019 (Pop19)
⇒ variables auxiliaires

Nombre de passagers en 2020 (Pass20)

Nombre de passagers en transit en 2020 (Trans20)
⇒ variables d'intérêt
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Base de données d'aéroports

Pass19 Pop19 Pass20 Trans20

MONTPELLIER 1 900 000 620 000 800 000 300

BASTIA 1 600 000 100 000 800 000 1 400

AJACCIO 1 500 000 100 000 900 000 1 300

STRASBOURG 1 300 000 800 000 500 000 1 300

BREST 1 200 000 320 000 500 000 1 800

BIARRITZ 1 100 000 300 000 400 000 200

RENNES 900 000 730 000 300 000 200

FIGARI 700 000 20 000 500 000 2 900

PAU 600 000 240 000 200 000 0

TOULON 500 000 630 000 200 000 0

PERPIGNAN 500 000 320 000 200 000 0

TARBES 500 000 120 000 100 000 0

tx 12 300 000 4 300 000
µx 1 025 000 358 333
S2
x 2.33 1011 7.28 1010

cvx =
√
S2
x /µx 47% 76%



Plan

1 Approche assistée par un modèle
Rappels sur le modèle linéaire
Modèle de travail

2 Estimateur par calage
Principe du calage
Propriétés de l'estimateur calé
Mise en oeuvre pratique

3 Exemples de méthodes de redressement

4 Estimation d'une fonction de totaux
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Approche assistée par un modèle

Approche assistée par un modèle
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Rappels sur le modèle linéaire

Supposons les valeurs de y dans la pop. U générées selon le modèle linéaire

yk = x⊤k β + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2k ,

(1.1)

avec xk un vecteur de q variables auxiliaires, et σ2k un paramètre inconnu qui
peut varier d'un individu à l'autre.

Dans le cas σ2k = σ2, nous retrouvons le modèle linéaire homoscédastique.



Rappels sur le modèle linéaire
Estimateurs des moindres carrés ordinaires

Nous notons

X︸︷︷︸
(N,q)

=

 x11 · · · xq1
...

...
x1N · · · xqN

 =

 x⊤1
...
x⊤N

 et Y︸︷︷︸
(N,1)

=

 y1
...
yN


Nous avons successivement

X⊤X =
(
x1 · · · xN

) x⊤1
...
x⊤N

 =
∑
k∈U

xkx
⊤
k ,

X⊤Y =
(
x1 · · · xN

) y1
...
yN

 =
∑
k∈U

xkyk ,

BMCO =
(
X⊤X

)−1
(X⊤Y) =

(∑
k∈U

xkx
⊤
k

)−1∑
k∈U

xkyk .



Rappels sur le modèle linéaire
Estimateurs des moindres carrés généralisés

Pour un modèle hétéroscédastique, nous utiliserons plutôt l'estimateur des

moindres carrés généralisés

BMCG =
(
X⊤Σ−1X

)−1
(X⊤Σ−1Y)

avec Σ =


σ21 0 · · · 0

0 σ22
. . .

...
...

. . .
. . . 0

0 · · · 0 σ2N

 matrice de var-covar. du modèle.

Nous obtenons successivement

X⊤Σ−1X =
∑
k∈U

xkx
⊤
k

σ2k
et X⊤Σ−1Y =

∑
k∈U

xkyk
σ2k

,

puis BMCG =

(∑
k∈U

xkx
⊤
k

σ2k

)−1(∑
k∈U

xkyk
σ2k

)
.



Approche assistée par un modèle Rappels sur le modèle linéaire

Rappels sur le modèle linéaire
Exemple 0 : le modèle constant

Le modèle constant est le cas le plus simple. Il consiste à utiliser uniquement
la constante ("intercept") dans le modèle avec une variance constante :

yk = β0 + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2.

(1.2)

C'est un cas particulier du modèle linéaire (1.1) obtenu avec une seule vari-
able auxiliaire xk = 1, et σ2k = σ2 (homoscédasticité).

Nous avons

BMCG =

(∑
k∈U

xkx
⊤
k

σ2k

)−1(∑
k∈U

xkyk
σ2k

)

=

∑
k∈U yk∑
k∈U 1

= µy .
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Approche assistée par un modèle Rappels sur le modèle linéaire

Rappels sur le modèle linéaire
Résidus du modèle

La qualité de prédiction du modèle linéaire peut être résumée par les résidus
de régression

Ek = yk − x⊤k BMCG . (1.3)

Plus les résidus sont faibles, plus la part de la variable d'intérêt expliquée par
les variables auxiliaires xk est importante. Nous utiliserons le critère

R2 = 1−
∑

k∈U E 2
k∑

k∈U(yk − µy )2
= 1−

∑
k∈U E 2

k∑
k∈U E 2

0k

(1.4)

pour mesurer la qualité d'adéquation du modèle par rapport au modèle con-
stant.

Guillaume Chauvet (ENSAI) Estimation 20/10/2025 11 / 76



Rappels sur le modèle linéaire
Base de données d'aéroports

Strate Pass19 Pop19 Pass20 Trans20

MONTPELLIER 1 1 900 000 620 000 800 000 300

BASTIA 1 1 600 000 100 000 800 000 1 400

AJACCIO 1 1 500 000 100 000 900 000 1 300

STRASBOURG 1 1 300 000 800 000 500 000 1 300

BREST 1 1 200 000 320 000 500 000 1 800

BIARRITZ 1 1 100 000 300 000 400 000 200

RENNES 2 900 000 730 000 300 000 200

FIGARI 2 700 000 20 000 500 000 2 900

PAU 2 600 000 240 000 200 000 0

TOULON 2 500 000 630 000 200 000 0

PERPIGNAN 2 500 000 320 000 200 000 0

TARBES 2 500 000 120 000 100 000 0

tx N1 = 6 12 300 000 4 300 000
N2 = 6



Approche assistée par un modèle Rappels sur le modèle linéaire

Rappels sur le modèle linéaire
Application à la base d'aéroports : modèle constant

Nous considérons les variables d'intérêt Pass20 (nombre de passagers en
2020) et Trans20 (nombre de passagers en transit en 2020).

Le modèle constant

yk = β0 + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2.

conduit à prédire la variable yk par sa valeur moyenne

µy =

{
450 000 pour Pass20,
783 pour Trans20.
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Approche assistée par un modèle Rappels sur le modèle linéaire

Rappels sur le modèle linéaire
Exemple 1 : modèle linéaire simple

Nous nous plaçons dans le cas où q = 2 et xk = (1, x1k)
⊤, et avec homoscé-

dasticité. Le modèle s'écrit :

yk = β0 + β1x1k + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2.

(1.5)

Dans ce cas, l'estimateur des MCG coincide avec l'estimateur des MCO.
Nous obtenons après calcul

B1,MCG =

∑
k∈U(x1k − µx1)(yk − µy )∑

k∈U(x1k − µx1)2
=

Sxy
S2
x

,

B0,MCG = µy − B1,MCG × µx ,

Ek = (yk − µy )−
Sxy
S2
x

(x1k − µx1).
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Rappels sur le modèle linéaire
Application à la base d'aéroports : modèle linéaire simple x = (1,Pass19)

#Régression de Pass20 sur Pass19

> reg1 <- lm(Pass20 ~ Pass19)

> summary(reg1)

> plot(Pass19,Pass20,xlim=c(0,2000000),ylim=c(-100000,800000))

> abline(lm(Pass20~Pass19))

Pass20k = −68 000

+0.51 Pass19k + ϵk ,

R2 = 0.83



Rappels sur le modèle linéaire
Application à la base d'aéroports : modèle linéaire simple x = (1,Pass19)

#Régression de Trans20 sur Pass19

> reg2 <- lm(Trans20 ~ Pass19)

> summary(reg2)

> plot(Pass19,Trans20,xlim=c(0,2000000),ylim=c(0,3000))

> abline(lm(Trans20~Pass19))

Trans20k = 221

+5.5 10−4 Pass19k + ϵk ,

R2 = 0.08



Approche assistée par un modèle Rappels sur le modèle linéaire

Rappels sur le modèle linéaire
Exemple 2 : modèle ratio

Nous nous plaçons dans le cas où q = 1 et xk = x1k > 0, et avec hétéroscé-
dasticité. Le modèle ratio s'écrit :

yk = β1x1k + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2x1k .

(1.6)

L'estimateur des MCG se simpli�e sous la forme :

BMCG =

(∑
k∈U

xkx
⊤
k

σ2k

)−1∑
k∈U

xkyk
σ2k

=

(∑
k∈U

x21k
σ2x1k

)−1∑
k∈U

x1kyk
σ2x1k

=
ty
tx1

.

Les résidus de régression sous ce modèle sont

Ek = yk − R x1k avec R =
ty
tx1

.
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Rappels sur le modèle linéaire
Application à la base d'aéroports : modèle ratio x1 = Pass19

#Régression de Pass20 sur Pass19 sans constante

#Poids Pass19^{-1}

> reg3 <- lm(Pass20~Pass19+0,weights=Pass19^{-1},)

> summary(reg3)

> plot(Pass19,Pass20,xlim=c(0,2000000),ylim=c(0,800000))

> abline(lm(Pass20~Pass19+0))

Pass20k = 0.44 Pass19k + ϵk ,

R2 = 0.82



Rappels sur le modèle linéaire
Application à la base d'aéroports : modèle ratio x1 = Pass19

#Régression de Trans20 sur Pass19 sans constante

#Poids Pass19^{-1}

> reg4 <- lm(Trans20~Pass19+0,weights=Pass19^{-1},)

> summary(reg4)

> plot(Pass19,Trans20,xlim=c(0,2000000),ylim=c(0,3000))

> abline(lm(Trans20~Pass19+0))

Trans20k = 0.00076 Pass19k + ϵk ,

R2 = 0.07



Rappels sur le modèle linéaire
Exemple 3 : modèle constant par strates

Population partitionnée en H strates U1, . . . ,UH .
Nous utilisons xk = {1(k ∈ U1), . . . , 1(k ∈ UH)}⊤ avec homoscédasticité
dans les strates. Le modèle constant par strates s'écrit :

yk = βh + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2h

pour k ∈ Uh. (1.7)

L'estimateur des MCG se simpli�e sous la forme :

BMCG =

(∑
k∈U

xkx
⊤
k

σ2k

)−1∑
k∈U

xkyk
σ2k

=


N1

σ21
0 0

0
. . . 0

0 0 NH

σ2H


−1

ty1
σ21
...

tyH
σ2H

 = {µy1, . . . , µyH}⊤ .

Les résidus sous ce modèle sont Ek = yk − µyh pour k ∈ Uh.



Rappels sur le modèle linéaire
Modèle const. par strates x = {1(Pass19 ≥ 1 000 000), 1(Pass19 < 1 000 000)}

#Modèle homogène par strates pour Pass20

> st1 <- c(1,1,1,1,1,1,0,0,0,0,0,0)

> st2 <- c(0,0,0,0,0,0,1,1,1,1,1,1)

> reg5 <- lm(Pass20~st1+st2+0)

> summary(reg5)

> plot(Pass19,Pass20,xlim=c(0,2000000),ylim=c(0,800000))

Pass20k = 650 000× 1(k ∈ U1)

+ 250 000× 1(k ∈ U2) + ϵk ,

R2 = 0.61



Rappels sur le modèle linéaire
Modèle const. par strates x = {1(Pass19 ≥ 1 000 000), 1(Pass19 < 1 000 000)}

#Modèle homogène par strates pour Trans20

> reg6 <- lm(Trans20~st1+st2+0)

> summary(reg6)

> plot(Pass19,Trans20,xlim=c(0,2000000),ylim=c(0,3000))

Trans20k = 1 050× 1(k ∈ U1)

+ 517× 1(k ∈ U2) + ϵk ,

R2 = 0.09



Modèle de travail
Principe

Lors du choix d'un plan de sondage, nous utilisons implicitement un modèle

de travail de la forme (1.1) :

yk = x⊤k β + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2k ,

avec un jeu de variables auxiliaires xk spéci�que. C'est une modélisation
implicite de la variable d'intérêt yk .

Le quali�catif "de travail" signi�e que le modèle n'a pas besoin de

bien prédire la variable d'intérêt pour que l'estimateur de Horvitz-

Thompson soit sans biais. C'est de toute façon impossible dans une
enquête où un même modèle ne peut pas être parfaitement adapté à toutes
les variables collectées.

En revanche, la variance de l'estimateur de Horvitz-Thompson est réduite si
le modèle est bien prédictif pour yk (résidus de régression Ek faibles).



Approche assistée par un modèle Modèle de travail

Modèle de travail
Exemple du sondage aléatoire simple

Sous un sondage aléatoire simple

Vp(t̂yπ) = N2 1− f

n
S2
y où S2

y =
1

N − 1

∑
k∈U

(yk − µy )
2.

La variance est donnée par la variable de résidus Ek = yk − µy . Elle est
faible si les yk sont peu dispersées autour de leur moyenne.

Le modèle de travail est donc le modèle constant (1.2) :

yk = β0 + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2.
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Approche assistée par un modèle Modèle de travail

Modèle de travail
Exemple du sondage aléatoire simple strati�é

Sous un sondage aléatoire simple strati�é

Vp(t̂yπ) =
H∑

h=1

(Nh)
2 1− fh

nh
S2
yh où S2

yh =
1

Nh − 1

∑
k∈Uh

(yk − µyh)
2.

La variance est donnée par la variable de résidus Ek = yk − µyh, k ∈ Uh.
Elle est faible si les yk sont peu dispersées autour de leur moyenne au sein
de chaque strate.

Le modèle de travail est le modèle constant par strates (1.7) :

yk = βh + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2h

pour k ∈ Uh.
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Approche assistée par un modèle Modèle de travail

Modèle de travail
Information auxiliaire

Quand des variables auxiliaires xk sont utilisées pour dé�nir un plan de
sondage, elles doivent être connues pour toutes les unités de la population.
Par exemple, pour strati�er la population d'aéroports selon Pass19, cette
variable doit être connue pour chaque aéroport.

Nous allons voir à l'aide de la méthode du calage comment utiliser au moment
de l'estimation un q-vecteur xk de variables auxiliaires dont seul le total sur
la population tx =

∑
k∈U xk est connu.

Objectif : passer des poids de sondage dk à des poids calés wk tels que∑
k∈S

wkxk =
∑
k∈U

xk .

Autrement dit, les totaux des variables auxiliaires sont estimés sans erreur.
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Approche assistée par un modèle Modèle de travail

Approche assistée par un modèle
En résumé

Nous avons revu quelques exemples du modèle linéaire général :

modèle constant : yk = β0 + ϵk avec Vm(ϵk) = σ2,

modèle linéaire simple : yk = β0 + β1x1k + ϵk avec Vm(ϵk) = σ2,

modèle ratio : yk = β1x1k + ϵk avec Vm(ϵk) = σ2x1k ,

modèle const. par strates : yk = βh + ϵk avec Vm(ϵk) = σ2h si k ∈ Uh.

Nous avons vu que les propriétés d'un plan de sondage dépendent d'un mod-
èle de travail, cas particulier du modèle linéaire général.

Le plan de sondage donne toujours des estimateurs de Horvitz-Thompson
sans biais. La variance est faible si le modèle de travail est bien prédictif
pour la variable d'intérêt yk .
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Estimateur par calage

Estimateur par calage
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Estimateur par calage Principe du calage

Principe du calage

Nous supposons que l'échantillon S a été collecté. Nous supposons disponible
un q-vecteur xk de variables auxiliaires dont le total sur la population tx =∑

k∈U xk est connu.

Nous cherchons de nouveaux poids wk qui

1 restent proches1 des poids de départ dk ,

2 véri�ent les équations de calage∑
k∈S

wkxk = tx. (2.1)

Notre modèle de travail est le modèle linéaire général (1.1) :

yk = x⊤k β + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2k .

1au sens d'une fonction de distance dont nous donnons les propriétés un peu plus loin
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Estimateur par calage Principe du calage

Estimateur par calage
Sources pour les marges de calage

Les totaux des variables de calage peuvent être donnés par des registres :

FIDELI2 (Insee) : données descriptives des logements (adresse, car-
actéristiques, données �scales) et des individus (informations socio-
démographiques, données �scales)

SIRENE3 : informations sur les entreprises et leurs établissements

Autres registres : RNIPP4, données d'état-civil, �chiers �scaux de la
DGFIP5, �chiers de la sécurité sociale, DADS6, ...

2Fichier démographique des logements et des individus
3Syst. nation. d'Identi�cation et du Répertoire des Entrep. et de leurs Étab.
4Répertoire National d'Identi�cation des Personnes Physiques
5Direction Générale des FInances Publiques
6Déclarations annuelles de Données Sociales
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Estimateur par calage Principe du calage

Estimateur par calage
Sources pour les marges de calage (2)

Les totaux des variables de calage peuvent être également estimés par des
enquêtes jugées très �ables :

estimation de population des annuelles de recensement (EAR), utilisées
pour fournir des marges de calage pour les enquêtes ménages de l'Insee,
les enquêtes Ined, la cohorte Constances7, l'enquête PISA8, ...

estimations issues de l'enquête emploi en continu : enquêtes de la
DARES9, enquête Générations du Céreq10, ...

7Cohorte des Consultants des centres d'examen de santé
8Programme international pour le suivi des acquis
9Service statistique du ministère du travail

10Centre d'études et de recherche sur les quali�cations
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Estimateur par calage Principe du calage

Estimateur par calage
Objectifs du calage

Le calage vise :

à garantir la cohérence entre les enquêtes

Caler les enquêtes auprès des ménages de l'Insee sur les mêmes variables
(âge, sexe, région, taille du ménage, ...) permet de garantir que ces
enquêtes fournissent des estimations cohérentes pour ces variables.
Contraintes imposées par Eurostat à certaines enquêtes européennes
(LFS11, SILC12) pour utiliser des variables de calage communes.

à améliorer la précision des enquêtes

Quand une enquête est tirée selon un plan de sondage, le calage vise à
réduire la variance des estimateurs.
Quand une enquête est obtenue en interrogeant des volontaires (access
panels), le calage vise d'abord à réduire le biais des estimateurs.

11Labour Force Surveys
12Survey on Income and Life Conditions
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Estimateur par calage
Mise en oeuvre (1)

Nous utilisons une fonction G : R → R+ appelée fonction de distance, et
véri�ant les conditions suivantes :

1 G est convexe, à valeurs positives, dérivable sur son domaine de dé�ni-
tion, avec G (1) = 0.

2 Soit F (·) la fonction inverse de G ′(·). Nous avons F (0) = F ′(0) = 1.

La quantité G (wk/dk) mesure la distance associée à l'unité k . La condition
1 assure que G (wk/dk) augmente quand le poids calé wk s'éloigne du poids
de sondage dk .

Exemples :

Méthode linéaire : G (x) =
1

2
(x − 1)2 et F (x) = 1+ x ,

Méthode raking ratio : G (x) = x ln(x)− x + 1 et F (x) = ex .



Estimateur par calage
Mise en oeuvre (2)

Nous résolvons le problème d'optimisation sous contraintes :

min
wk

∑
k∈S

dkσ
2
kG

(
wk

dk

)
t.q.

∑
k∈S

wkxk = tx, (2.2)

Nous utilisons le Lagrangien :

L(λ) =
∑
k∈S

dkσ
2
kG

(
wk

dk

)
− λ⊤

(∑
k∈S

wkxk − tx

)
(2.3)

avec λ = (λ1, . . . , λq)
⊤ un vecteur de multiplicateurs de Lagrange.



Estimateur par calage
Mise en oeuvre (3)

En calculant la dérivée partielle par rapport à wk , nous obtenons

∂L(λ)

∂wk
= σ2kG

′
(
wk

dk

)
− λ⊤xk = 0 ⇒ wk = dkF

(
λ⊤xk
σ2k

)
.

Les quantités wk sont appelées poids calés ou poids redressés, et

t̂yw =
∑
k∈S

wkyk (2.4)

est appelé estimateur calé du total ty . Les quantités

gk =
wk

dk
= F

(
λ⊤xk
σ2k

)
sont appelées les g-poids. Dans le package sampling, elles peuvent être
calculées avec la fonction calib.



Estimateur par calage
Mise en oeuvre (4)

Le vecteur λ peut être déterminé en résolvant le système (non-linéaire) con-
stitué par les équations de calage

∑
k∈S

dkF

(
λ⊤xk
σ2k

)
xk = tx,

par exemple à l'aide de la méthode itérative de Newton-Raphson.

Il existe plusieurs fonctions de distance, programmées dans la fonction calib:

méthode linéaire (linear),

méthode raking ratio (raking),

méthode logit (logit),

méthode linéaire tronquée (truncated).



Estimateur par calage
Un exemple d'application

L'enquête emploi est un échantillon de logements rotatif (les logements en-
trants un trimestre donné sont enquêtés pendant six trimestres consécutifs).
Environ 92 000 logements par trimestre, enquête en continu chaque semaine
de l'année.

En France métropolitaine :

tirage à deux degrés dans le répertoire FIDELI,

calage sur des marges au niveau individuel (sexe, âge, région) et au
niveau logement (nombre et type de logements, nombre de pièces, dé-
ciles de revenu du ménage, ...)

Dans les DOM :

tirage strati�é (selon des zones géographiques), avec tirage systéma-
tique à probabilités égales dans les strates.

calage sur des marges au niveau individuel (nombre, diplôme, lieu de
naissance) et au niveau logement (zonage en aires urbaines, nombre et
type de logements)



Propriétés de l'estimateur calé

Sous des conditions générales, l'estimateur de Horvitz-Thompson véri�e

N−1 (t̂yπ − ty
)
= Op

(
n−

1
2

)
.

Soit t̂yw l'estimateur calé, obtenu avec une fonction de distance G (·) respec-
tant les conditions énoncées en diapositive 33. Il véri�e

N−1 (t̂yw − ty
)
= N−1 (t̂Eπ − tE

)
+ op

(
n−

1
2

)
,

avec Ek = yk − x⊤k BMCG (résidus de régression) et tE =
∑

k∈U Ek .

Le comportement de l'estimateur calé est asymptotiquement le même que
celui de l'estimateur de HT du total des résidus. Nous en déduisons :

Ep(t̂yw − ty ) ≃ 0, (estim. approx. sans biais),

Vp(t̂yw − ty ) ≃ Vp(t̂Eπ) (var. donnée par les résidus de régression).



Propriétés de l'estimateur calé
Variance et estimation de variance

La variance de l'estimateur calé t̂yw est donc (approx.) donnée par

Vp(t̂yw ) ≃
∑
k,l∈U

∆kl
Ek

πk

El

πl
. (2.5)

Nous notons ek = yk − x⊤k b̂π les résidus estimés de régression, avec

b̂π =

(∑
k∈S

xkx
⊤
k

πk σ2k

)−1(∑
k∈S

xkyk
πk σ2k

)

La variance peut être estimée par

V̂HT ,1(t̂yw ) =
∑
k,l∈S

∆kl

πkl

ek
πk

el
πl

ou V̂HT ,2(t̂yw ) =
∑
k,l∈S

∆kl

πkl

gkek
πk

glel
πl

. (2.6)

Dans la fonction calibev de sampling, l'option with=TRUE donne le pre-
mier estimateur de variance, et l'option with=FALSE le second estimateur.



Mise en oeuvre pratique
Illustration : SRS de n = 6 aéroports

Pass19 Pop19 Pass20 Trans20 dk

AJACCIO 1 500 000 100 000 900 000 1 300 2

RENNES 900 000 730 000 300 000 200 2
FIGARI 700 000 20 000 500 000 2 900 2

TOULON 500 000 630 000 200 000 0 2
PERPIGNAN 500 000 320 000 200 000 0 2
TARBES 500 000 120 000 100 000 0 2

tx 12 300 000 4 300 000
t̂π 9 200 000 3 840 000 4 400 000 8 800



Mise en oeuvre pratique
Illustration : SRS de n = 6 aéroports

#Echantillon SRS de 6 aéroports

#Donnees echantillonnees

> loc=c(0,0,1,0,0,0,1,1,0,1,1,1)

> ech=aeroports[loc==1,]

#Probabilites d'inclusion d'ordre 1 et 2

> nech=6

> Npop=12

> pi=rep(nech/Npop,Npop)

> pikl=UPmaxentropypi2(pi)

#Poids de sondage et pi_kl sur l'echantillon

> dech=rep(Npop/nech,nech)

> pikl_ech=pikl[ech==1,ech==1]



Mise en oeuvre pratique
Fonctions de distance : méthode linéaire

Elle correspond au choix G (x) = 1
2(x − 1)2 et F (x) = 1+ x . Dans ce cas,

les équations de calage admettent une solution explicite :

λlin =

(∑
k∈S

dkxkx
⊤
k

σ2k

)−1

(tx − t̂xπ).

Nous obtenons∑
k∈s

wkyk = t̂yπ + b̂⊤π
[
tx − t̂xπ

]
≡ t̂y ,greg

avec b̂π =

(∑
k∈S

dkxkx
⊤
k

σ2k

)−1∑
k∈S

dkxkyk
σ2k

.

Il s'agit de l'estimateur par la régression généralisée (GREG). Cette méthode
de calage peut conduire à des poids �naux wk négatifs.



Mise en oeuvre pratique
Application : méthode linéaire avec x = (1,Pass19)

#Variables de calage sur l'echantillon

> Xech=cbind(rep(1,nech),ech$Pass19)

#Totaux des variables de calage

> Xtot=c(12,12 300 000)

#g-poids

> gweight<-calib(Xech,dech,Xtot,

method="linear",description=FALSE)

> gweight

[1] 2.469828 1.267241 0.866379 0.465517 0.465517 0.465517

#Poids cales

> wech<-gweight*dech

> wech

[1] 4.939655 2.534483 1.732759 0.931035 0.931035 0.931035



Mise en oeuvre pratique
Fonctions de distance usuelles : méthode raking-ratio

La méthode raking ratio

G (r) = r log(r)− r + 1 et F (u) = exp(u).
Cette méthode permet d'assurer que les poids �naux wk sont > 0.

#Calage par la méthode raking ratio

#g-poids

> gweight<-calib(Xech,dech,Xtot,

method="raking",description=FALSE)

> gweight

[1] 2.592926 1.019327 0.746715 0.547011 0.547011 0.547011

#Poids cales

> wech<-gweight*dech

> wech

[1] 5.185852 2.038654 1.493429 1.094021 1.094021 1.094021



Mise en oeuvre pratique
Fonctions de distance usuelles : méthode linéaire bornée

C'est une version tronquée de la méthode linéaire. Des bornes LO et UP
sont spéci�ées pour les rapports de poids pour assurer que pour tt k ∈ S :

LO ≤ wk

dk
≤ UP.

> gweight<-calib(Xech,dech,Xtot,method="truncated",

bounds=c(0.25,4),description=FALSE)

> gweight

[1] 2.469828 1.267241 0.866379 0.465517 0.465517 0.465517

> gweight<-calib(Xech,dech,Xtot,method="truncated",

bounds=c(0.50,2.42),description=FALSE)

> gweight

[1] 2.42 1.57 0.51 0.50 0.50 0.50

> gweight<-calib(Xech,dech,Xtot,method="truncated",

bounds=c(0.50,2),description=FALSE)

No convergence in 500 iterations with the given bounds.

The bounds for the g-weights are: -0.75 and 3.25



Mise en oeuvre pratique
Fonctions de distance usuelles : méthode logit

C'est une version tronquée de la méthode raking-ratio. Des bornes LO et
UP sont également spéci�ées pour les rapports de poids :

LO ≤ wk

dk
≤ UP.

> gweight<-calib(Xech,dech,Xtot,method="logit",

bounds=c(0.25,4),description=FALSE)

> gweight

[1] 2.577636 1.058856 0.744128 0.539795 0.539795 0.539795

> gweight<-calib(Xech,dech,Xtot,method="logit",

bounds=c(0.50,2.50),description=FALSE)

> gweight

[1] 2.496167 1.314498 0.640150 0.516394 0.516394 0.516394

> gweight<-calib(Xech,dech,Xtot,method="logit",

bounds=c(0.50,2.00),description=FALSE)

No convergence in 500 iterations with the given bounds.

The bounds for the g-weights are: 0.5 and 2



Mise en oeuvre pratique
Estimateur de variance d'un estimateur calé

En utilisant le premier estimateur de variance de l'équation (2.6), nous avons

V̂HT ,1(t̂yw ) =
∑
k,l∈S

∆kl

πkl

ek
πk

el
πl
, (2.7)

#Calage par la méthode linéaire

#Estimation du total de Pass19

>calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight,with=TRUE)

$calest

[1] 12 300 011

$evar

[1] 8.724997e-13

#Estimation du total de Pass20

>calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight,with=TRUE)

$calest

[1] 6 558 980

$evar

[1] 1.883e+11



Mise en oeuvre pratique
Estimateur de variance d'un estimateur calé (2)

En utilisant le second estimateur de variance de l'équation (2.6), nous avons

V̂HT ,2(t̂yw ) =
∑
k,l∈S

∆kl

πkl

gkek
πk

glel
πl

. (2.8)

#Calage par la méthode linéaire

#Estimation du total de Pass19

>calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight,with=FALSE)

$calest

[1] 12 300 011

$evar

[1] 1.189e-12

#Estimation du total de Pass20

>calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight,with=FALSE)

$calest

[1] 6 558 980

$evar

[1] 2.049e+11



Estimateur par calage Mise en oeuvre pratique

Estimateur par calage
En résumé

Le calage consiste à obtenir de nouveaux poids, proches des poids de sondage
dk et véri�ant les équations de calage sur des totaux auxiliaires tx.
Les marges de calage peuvent être fournies par des registres, ou estimées par
de très grosses enquêtes.

L'estimateur par calage t̂yw =
∑

k∈S wkyk est asymptotiquement sans biais,
et sa variance n'est donnée que par les résidus de la régression de yk sur les
variables de calage xk :

Vp(t̂yw ) ≃
∑
k,l∈U

∆kl
Ek

πk

El

πl
avec Ek = yk − x⊤k BMCG ,

V̂HT ,1(t̂yw ) =
∑
k,l∈S

∆kl

πkl

ek
πk

el
πl

avec ek = yk − x⊤k b̂π.
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Exemples de méthodes de redressement

Exemples de méthodes de

redressement
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Exemples de méthodes de redressement
Estimateur par la régression généralisée (GREG)

Les exemples de cette section correspondent à l'utilisation de la méthode
linéaire. Nous avons vu que dans ce cas, l'estimateur calé se réécrivait sous
la forme de l'estimateur GREG :

t̂y ,greg = t̂yπ + b̂⊤π
[
tx − t̂xπ

]
avec b̂π =

(∑
k∈S

dkxkx
⊤
k

σ2k

)−1∑
k∈S

dkxkyk
σ2k

.

Nous pouvons utiliser l'estimateur de variance

V̂HT ,1(t̂y ,greg ) =
∑
k,l∈S

∆kl

πkl

ek
πk

el
πl

avec ek = yk − x⊤k b̂π.

Un autre estimateur de variance est donné dans l'équation (2.6).



Exemples de méthodes de redressement
Estimateur GREG utilisant xk = (1,Pass19k)

Pass19 Pop19 Pass20 Trans20 dk wk

AJACCIO 1 500 000 100 000 900 000 1 300 2 4.94
RENNES 900 000 730 000 300 000 200 2 2.53
FIGARI 700 000 20 000 500 000 2 900 2 1.73
TOULON 500 000 630 000 200 000 0 2 0.93

PERPIGNAN 500 000 320 000 200 000 0 2 0.93
TARBES 500 000 120 000 100 000 0 2 0.93

tx 12 300 000 4 300 000

t̂•π 9 200 000 3 840 000 4 400 000 8 800

V̂HT (t̂•π) 1.86 1012 1.06 1012 1.04 1012 1.66 107

t̂•w 12 300 000 3 375 000 6 538 000 11 950

V̂HT (t̂•w ) 0 1.25 1012 1.90 1011 1.47 107



Exemples de méthodes de redressement
Estimateur GREG utilisant xk = (1,Pass19k ,Pop19k)

Pass19 Pop19 Pass20 Trans20 dk wk

AJACCIO 1 500 000 100 000 900 000 1 300 2 4.70
RENNES 900 000 730 000 300 000 200 2 3.47
FIGARI 700 000 20 000 500 000 2 900 2 1.06
TOULON 500 000 630 000 200 000 0 2 1.52

PERPIGNAN 500 000 320 000 200 000 0 2 0.84
TARBES 500 000 120 000 100 000 0 2 0.41

tx 12 300 000 4 300 000

t̂•π 9 200 000 3 840 000 4 400 000 8 800

V̂HT (t̂•π) 1.86 1012 1.06 1012 1.04 1012 1.66 107

t̂•w 12 300 000 4 300 000 6 314 000 9 900

V̂HT (t̂•w ) 0 0 1.03 1011 1.10 107



Exemples de méthodes de redressement

Exemples de méthodes de redressement
Estimateur par le ratio

Nous supposons connu le total tx1 d'une seule variable auxiliaire (positive)
x1k . L'estimateur par le ratio est dé�ni par

t̂yR = t̂yπ × tx1
t̂x1π

=
∑
k∈S

wkyk

avec wk = dk ×
tx1
t̂x1π

. Il est calé sur le total tx1 : t̂x1R = tx1 .

Cas particulier de l'estimateur GREG, obtenu sous le modèle ratio (1.6) :

yk = β1x1k + ϵk avec

{
Em(ϵk) = 0,
Vm(ϵk) = σ2x1k .
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Exemples de méthodes de redressement

Exemples de méthodes de redressement
Estimateur par le ratio (2)

Le modèle ratio est un cas particulier du modèle linéaire général, obtenu avec
xk = x1k et σ2k = σ2 x1k . Nous obtenons successivement :

b̂π =

(∑
k∈S

dkxkx
⊤
k

σ2k

)−1∑
k∈S

dkxkyk
σ2k

=

(∑
k∈S

dkx
2
1k

x1k

)−1∑
k∈S

dkx1kyk
x1k

=
t̂yπ
t̂x1π

= R̂π, (3.1)

t̂y ,greg = t̂yπ + b̂⊤π
(
tx − t̂xπ

)
= t̂yπ + R̂π(tx1 − t̂x1π) = t̂yR . (3.2)
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Exemples de méthodes de redressement

Exemples de méthodes de redressement
Estimateur par le ratio (3)

En utilisant les résultats obtenus pour l'estimateur GREG, l'estimateur par
le ratio est approximativement non biaisé pour le total ty . Sa variance est
approximativement donnée par

Vp(t̂yR) ≃ Vp(t̂Eπ)

avec Ek = yk −R x1k . La variance est donc réduite si les variables yk et x1k
sont approximativement proportionnelles.

Nous pouvons utiliser l'estimateur de variance de Horvitz-Thompson :

V̂HT ,1(t̂yR) =
∑
k,l∈S

πkl − πkπl
πkl

ek
πk

el
πl

avec ek = yk − R̂πx1k .
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Exemples de méthodes de redressement
Estimateur par le ratio (4)

Dans les fonctions calib et calibev, le paramètre q permet de spéci�er
que la structure du modèle de travail est hétéroscédastique.

Xech=ech$Pass19

Xtot=c(12 300 000)

#Variable Pass19

> gweight<-calib(Xech,dech,Xtot,q=Xech^{-1},method="linear")

> calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight,

q=Xech^{-1},with=TRUE)

$calest

[1] 12 300 000

$evar

[1] 0

#Variable Pass20

calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight,

q=Xech^{-1},with=TRUE)

$calest

[1] 5 882 609

$evar

[1] 2.402e+11



Exemples de méthodes de redressement
Estimateur par le ratio utilisant xk = (Pass19k)

Pass19 Pop19 Pass20 Trans20 dk wk

AJACCIO 1 500 000 100 000 900 000 1 300 2 2.67
RENNES 900 000 730 000 300 000 200 2 2.67
FIGARI 700 000 20 000 500 000 2 900 2 2.67
TOULON 500 000 630 000 200 000 0 2 2.67

PERPIGNAN 500 000 320 000 200 000 0 2 2.67
TARBES 500 000 120 000 100 000 0 2 2.67

tx 12 300 000 4 300 000

t̂•π 9 200 000 3 840 000 4 400 000 8 800

V̂HT (t̂•π) 1.86 1012 1.06 1012 1.04 1012 1.66 107

t̂•w 12 300 000 5 134 000 5 883 000 11 800

V̂HT (t̂•w ) 0 1.62 1012 2.40 1011 1.47 107



Exemples de méthodes de redressement

Exemples de méthodes de redressement
Post-strati�cation

Supposons qu'après le tirage de l'échantillon, la population soit partitionnée
en H groupes notés U1, . . . ,UH .
Les e�ectifs de ces post-strates, notés N1, . . . ,NH , sont supposés connus.
Soit Sh l'intersection de S et de Uh.

Ces e�ectifs peuvent être comparés avec leur estimateur de HT :

N̂h =
∑

k∈Sh
1
πk

=
∑

k∈S
1(k∈Uh)

πk
,

Ep(N̂h) =
∑

k∈U 1(k ∈ Uh) = Nh.

L'estimateur post-strati�é est dé�ni par

t̂y ,post =
H∑

h=1

Nh

N̂h

t̂yh avec t̂yh =
∑
k∈Sh

yk
πk

.
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Exemples de méthodes de redressement
Post-strati�cation (2)

S ∼ SRS(n = 100;U) et dk = 10,

N1 = N2 = 500,

N̂1 =
N × n1

n
= 450,

N̂2 =
N × n2

n
= 550,

t̂yπ = 10
∑
k∈S

yk ,

t̂y ,post ≃ 11.1
∑
k∈S1

yk + 9.1
∑
k∈S2

yk .



Exemples de méthodes de redressement
Post-strati�cation (3)

L'estimateur post-strati�é est motivé par le modèle homogène par strates

yk = βh + ϵk et Vm(ϵk) = σ2h dans chaque strate Uh.

C'est un cas particulier de l'estimateur par la régression généralisée, obtenu
avec xk = {1(k ∈ U1), . . . , 1(k ∈ UH)}T et σ2k = σ2h pour k ∈ Uh.
Nous avons :

b̂π =

{∑
k∈S

xkx
⊤
k

σ2k πk

}−1∑
k∈S

xkyk
σ2k πk

≡
{
t̂y1

N̂1
, . . . ,

t̂yH

N̂H

}T

,

et

t̂y ,greg = t̂yπ + b̂⊤π
(
tx − t̂xπ

)
= t̂yπ +

H∑
h=1

t̂yh

N̂h

(Nh − N̂h) = t̂y ,post .



Exemples de méthodes de redressement

Exemples de méthodes de redressement
Post-strati�cation (4)

En utilisant les résultats obtenus pour l'estimateur GREG, l'estimateur post-
strati�é est approximativement non biaisé pour le total ty . Sa variance est
approximativement donnée par

Vp(t̂y ,post) ≃ Vp(t̂Eπ)

avec Ek = yk − µyh pour k ∈ Uh. La variance est donc réduite si la variable
y est homogène à l'intérieur des post-strates.

En utilisant l'estimateur de variance de Horvitz-Thompson:

V̂HT ,1(t̂yR) =
∑
k,l∈S

πkl − πkπl
πkl

ek
πk

el
πl

avec ek = yk −
t̂yh
N̂h

pour k ∈ Sh.
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Exemples de méthodes de redressement
Post-strati�cation (5)

Application sur la population d'aéroports :

> Xech=cbind(c(1,0,0,0,0,0),c(0,1,1,1,1,1))

> Xtot=c(6,6)

> gweight<-calib(Xech,dech,Xtot,method="linear")

> gweight

[1] 3.0 0.6 0.6 0.6 0.6 0.6

#Variable Trans20

> calibev(ech$Trans20,Xech,Xtot,pikl_ech,dech,gweight,

with=TRUE)

$calest

[1] 11 520

$evar

[1] 15 667 200



Exemples de méthodes de redressement
Post-strati�cation (6)

Pass19 Strate Pass20 Trans20 dk wk

AJACCIO 1 500 000 1 900 000 1 300 2 6
RENNES 900 000 2 300 000 200 2 1.2
FIGARI 700 000 2 500 000 2 900 2 1.2
TOULON 500 000 2 200 000 0 2 1.2

PERPIGNAN 500 000 2 200 000 0 2 1.2
TARBES 500 000 2 100 000 0 2 1.2

tx 12 300 000 N1 = 6

t̂•π 9 200 000 N̂1 = 2 4 400 000 8 800

V̂HT (t̂•π) 1.86 1012 1.04 1012 1.66 107

t̂•w 12 720 000 N̂1,post = 6 6 960 000 11 500

V̂HT (t̂•w ) 3.07 1011 2.21 1011 1.57 107



Exemples de méthodes de redressement

Exemples de méthodes de redressement
En résumé

L'estimateur par la régression généralisée s'écrit

t̂y ,greg = t̂yπ + b̂⊤π
{
tx − t̂xπ

}
.

Il conduit à une variance plus faible que l'estimateur de HT si les variables
auxiliaires xk sont fortement explicatives de yk .

Deux cas particuliers sont :

l'estimateur par le ratio t̂yR = t̂yπ × tx1
t̂x1π

, qui conduit à une variance

faible si yk est approximativement proportionnelle à x1k ,

l'estimateur post-strati�é t̂y ,post =
H∑

h=1

Nh

N̂h

t̂yh, qui conduit à une vari-

ance faible si les post-strates sont homogènes par rapport à yk .
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Estimation d'une fonction de totaux

Estimation d'une fonction de totaux
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Estimation d'une fonction de totaux

Estimateur par substitution

Nous nous intéressons à un paramètre de la forme θ = f (ty) avec yk =
(y1k , . . . , yqk)

T un q-vecteur de variables d'intérêt, et f : Rq → R.

Il est naturel d'estimer θ en remplaçant le total ty inconnu par son estimateur
de Horvitz-Thompson. Nous obtenons l'estimateur par substitution :

θ̂π = f (t̂yπ).

Si la fonction f (·) est di�érentiable au voisinage de ty, nous avons :

�
��HHHN−1
(
θ̂π − θ

)
= N−1 (t̂uπ − tu

)
+ op(n

−1/2), (4.1)

en notant uk = {f ′(ty)}T {yk} la variable linéarisée du paramètre θ
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Exemple : variable linéarisée d'une ratio

Nous nous intéressons à R =
ty1
ty2

= f (ty), avec yk = (y1k , y2k)
⊤ et

f : R2 −→ R
(u, v) 7→ u

v
.

Nous l'estimons par substitution par

R̂π = f (t̂yπ) =
t̂y1π
t̂y2π

.

Nous avons

f ′(u, v) =

(
1

v
,− u

v2

)⊤
,

ce qui donne la variable linéarisée

uk(R) =
1

ty2
y1k −

ty1
(ty2)

2 y2k =
1

ty2
(y1k − Ry2k).
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Estimation de variance

L'approximation (4.1) nous donne

Ep(θ̂π − θ) ≃ 0, (estimation approx. sans biais)

Vp(θ̂π − θ) ≃ Vp

{
t̂uπ
}
. (variance donnée par la linéarisée).

La seconde ligne nous donne l'approximation de variance par linéarisation.
Nous obtenons

Vp(θ̂π) ≃
∑
k,l∈U

∆kl
uk
πk

ul
πl
,

V̂HT ,1(θ̂π) =
∑
k,l∈S

∆kl

πkl

ûk
πk

ûl
πl
,

où la variable linéarisée estimée ûk =
{
f ′(t̂yπ)

}
{yk} s'obtient en remplaçant

dans uk les totaux inconnus par leurs estimateurs de HT.
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Exemple : variable linéarisée d'une ratio

Nous nous intéressons à R =
ty1
ty2

. Nous avons vu que

uk(R) =
1

ty2
(y1k − Ry2k).

En remplaçant dans uk(R) le total ty1 par l'estimateur t̂y1π et le total ty2
par l'estimateur t̂y2π, nous obtenons

ûk(R) =
1

t̂y2π
(y1k − R̂πy2k).

Estimation de variance :

Vp(R̂π) ≃
∑
k,l∈U

uk(R)

πk

ul(R)

πl
∆kl ,

V̂HT ,1(R̂π) =
∑
k,l∈S

ûk(R)

πk

ûl(R)

πl

∆kl

πkl
.
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Base de données d'aéroports
Estimation du taux de passagers en transit

Nous souhaitons estimer le taux de passagers en transit :

R =
Nb passagers en transit en 2020

Nb passagers en 2020
≡ ty1

ty2
.

Nous considérons le cas :

d'un sondage aléatoire simple :

R̂π =
t̂y1π
t̂y2π

=

∑
k∈S y1k∑
k∈S y2k

,

d'un sondage aléatoire simple strati�é :

R̂π =
t̂y1π
t̂y2π

=

∑H
h=1Nhȳ1h∑H
h=1Nhȳ2h

.
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Base de données d'aéroports
Estimation du taux de passagers en transit : SRS

Pass19 Pop19 Pass20 (y2k ) Trans20 (y1k ) ûk

AJACCIO 1 500 000 100 000 900 000 1 300 −1.14 10−4

RENNES 900 000 730 000 300 000 200 −9.09 10−5

FIGARI 700 000 20 000 500 000 2 900 4.32 10−4

TOULON 500 000 630 000 200 000 0 −9.09 10−5

PERPIGNAN 500 000 320 000 200 000 0 −9.09 10−5

TARBES 500 000 120 000 100 000 0 −4.55 10−5

ȳ2 = 367 000 ȳ1 = 733 ¯̂u = 0
s2y2 = 8.67 1010 s2y1 = 1.38 106 s2û = 4.52 10−8

t̂y2π = Nȳ2 = 4 400 000 V̂HT

(
t̂y2π

)
= N2 1−f

n s2y2 = 1.04 1012

t̂y1π = Nȳ1 = 8 800 V̂HT

(
t̂y1π

)
= N2 1−f

n s2y1 = 1.66 107

R̂ = ȳ1
ȳ2

= 0.2% V̂HT

(
R̂
)
= N2 1−f

n s2û = 5.43 10−7.
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Base de données d'aéroports
Estimation du taux de passagers en transit : SRS

#Recuperation du jeu de donnees

> aeroports <- read.csv(".../aeroports.csv", header=TRUE)

#Echantillon selectionne par SRS

> ech=c(0,0,1,0,0,0,1,1,0,1,1,1)

> y2ech=aeroports[ech==1,4]

> y1ech=aeroports[ech==1,5]

# Probabilites d'inclusion

> n=6

> Npop=12

> pi=rep(n/Npop,Npop)

> pikl=UPmaxentropypi2(pi)

> pikl_ech=pikl[ech==1,ech==1]

> varest=vartaylor_ratio(y1ech,y2ech,pikl_ech)

> varest

$ratio

[1] 0.002

$estvar

[1] 5.429752e-07
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Base de données d'aéroports
Estimation du taux de passagers en transit : STSRS

Pass19 Pop19 Pass20 (y2k ) Trans20 (y1k ) ûk

BASTIA 1 600 000 100 000 800 000 1 400 −1.14 10−4

AJACCIO 1 500 000 100 000 900 000 1 300 −9.09 10−5

STRASBOURG 1 300 000 800 000 500 000 1 300 4.32 10−4

ȳ2,1 = 733 333 ȳ1,1 = 1 333 ¯̂u1 = 0
s2y2,1 = 4.33 1010 s2y1,1 = 3.33 103 s2û,1 = 2.50 10−7

RENNES 900 000 730 000 300 000 200 −9.09 10−5

TOULON 500 000 630 000 200 000 0 −9.09 10−5

PERPIGNAN 500 000 320 000 200 000 0 −4.55 10−5

ȳ2,2 = 233 333 ȳ1,2 = 67 ¯̂u2 = 0
s2y2,2 = 3.33 109 s2y1,2 = 1.33 104 s2û,2 = 5.00 10−9

t̂y2π =
∑2

h=1 Nh ȳ2h = 5 800 000 V̂HT

(
t̂y2π

)
=

∑2
h=1 N

2
h
1−fh
nh

s2y2h = 2.8 1011

t̂y1π =
∑2

h=1 Nh ȳ1h = 8 400 V̂HT

(
t̂y1π

)
=

∑2
h=1 N

2
h
1−fh
nh

s2y1h = 105

R̂ =
∑

2

h=1 Nh ȳ1h∑
2

h=1
Nh ȳ2h

= 0.14% V̂HT

(
R̂
)
=

∑2
h=1 N

2
h
1−fh
nh

s2ûh = 1.53 10−6.
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En résumé

Un paramètre complexe qui s'écrit comme une fonction de totaux peut être
estimé approximativement sans biais par substitution :

θ = f (ty) estimé par θ̂π = f (t̂yπ).

Nous obtenons un estimateur de variance en insérant la variable linéarisée
estimée ûk =

{
f ′(t̂yπ)

}T {yk} dans l'estimateur de variance associé au plan
de sondage :

V̂HT ,1

(
θ̂π

)
=

∑
k,l∈S

ûk
πk

ûl
πl

∆kl

πkl
.

En utilisant une approximation normale pour θ̂π, nous obtenons l'intervalle
de con�ance [

θ̂π ± z1−α
2

√
V̂HT ,1

(
θ̂π

)]
.
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