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Principaux objectifs du cours

Vu avec Laurent Costa : partie amont de I'enquéte.
@ Méthodes d’inférence dans le cas d'une population finie d'individus.

@ Principales méthodes d’échantillonnage utilisées dans les enquétes.

Nous nous intéressons ici d la partie aval de I'enquéte :

o Méthodes de redressement qui permettent d’utiliser une information
auxiliaire au moment de I'estimation.

@ Estimation d'un paramétre complexe.
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Base de sondage d'aéroports

A titre d’illustration, nous considérerons (encore) une base de sondage de
N = 12 aéroports francais, ayant accueilli entre 500 000 et 2 000 000 de
passagers en 2019. Elle contient les variables :

o Nombre de passagers en 2019 (Pass19)

o Taille de I'Unité Urbaine en 2019 (Pop19)
= variables auxiliaires

o Nombre de passagers en 2020 (Pass20)

o Nombre de passagers en transit en 2020 (Trans20)
= variables d’intérét
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Base de données d’aéroports

‘ H Pass19 ‘ Pop19 H Pass20 | Trans20
MONTPELLIER || 1900 000 | 620 000 | 800 000 300
BASTIA 1 600 000 100 000 | 800 000 | 1 400
AJACCIO 1 500 000 100 000 | 900 000 | 1 300
STRASBOURG || 1 300000 | 800 000 | 500000 | 1 300
BREST 1200 000 | 320 000 | 500000 | 1 800
BIARRITZ 1 100 000 | 300 000 | 400 000 200
RENNES 900 000 730 000 || 300 000 200
FIGARI 700 000 20 000 500 000 | 2 900
PAU 600 000 240 000 || 200 000 0
TOULON 500 000 630 000 || 200 000 0
PERPIGNAN 500 000 320 000 || 200 000 0
TARBES 500 000 120 000 || 100 000 0
(B 12 300 000 | 4 300 000
e 1 025 000 | 358 333
S2 2.33 101! | 7.28 10%°
cvx = \/S2/x 47% 76%




N
Plan

@ Approche assistée par un modéle
@ Rappels sur le modéle linéaire
o Modéle de travail

© Estimateur par calage
@ Principe du calage
@ Propriétés de |'estimateur calé
@ Mise en oeuvre pratique

© Exemples de méthodes de redressement

@ Estimation d’une fonction de totaux
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Approche assistée par un modéle
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Rappels sur le modéle linéaire

Supposons les valeurs de y dans la pop. U générées selon le modéle linéaire

En(ex) =0,

Vinl(ex) = o2 (1.1)

Yk = xZﬁ—l—ek avec{
k>

avec x, un vecteur de q variables auxiliaires, et o un paramétre inconnu qui
peut varier d'un individu a I'autre.

2

Dans le cas O'i = o<, nous retrouvons le modele linéaire homoscédastique.



Rappels sur le modéle linéaire

Estimateurs des moindres carrés ordinaires

Nous notons

T

X11 Xq1 X3

X = : = :

(N,q) XIN " XgN XN
Nous avons successivement

T

X1

XTX:(Xl XN)

T

XN

Y1

XTY:(Xl XN) .

YN




Rappels sur le modéle linéaire
Estimateurs des moindres carrés généralisés
Pour un modéle hétéroscédastique, nous utiliserons plutdt I'estimateur des

moindres carrés généralisés

Buice = (xT}:—lx)*1 (XT="1y)

o2 0 0
0 2 . .
o . ) .
avec X = matrice de var-covar. du modéle.
0
2
0 0 oy
Nous obtenons successivement
Te-1 kaz Te-1 Xk)’k
XTETIX =3 =5 et XTETY =3 =5F
o
keU k keU

-1
:
: XX Xk Yk
i Bs = (2 (z )
k

keUu ~k keU



Approche assistée par un modéle Rappels sur le modéle linéaire

Rappels sur le modéle linéaire

Exemple 0 : le modéle constant

Le modéle constant est le cas le plus simple. Il consiste a utiliser uniquement
la constante ("intercept") dans le modéle avec une variance constante :

Em(ék) =0,

Yk = o+ e avec { Vin(er) = o2. (1.2)

C'est un cas particulier du modéle linéaire (1.1) obtenu avec une seule vari-
able auxiliaire x, = 1, et 02 = 02 (homoscédasticité).

Nous avons
-1
-
. XkX e Xk Yk
Buce = Z 2 Z 2
g g
keu k keu ~k
. > keu Yk _
T el
keU
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Approche assistée par un modéle Rappels sur le modéle linéaire

Rappels sur le modéle linéaire

Résidus du modéle

La qualité de prédiction du modéle linéaire peut &tre résumée par les résidus

de régression
Ex = yk — x4 Buce- (1.3)

Plus les résidus sont faibles, plus la part de la variable d’intérét expliquée par
les variables auxiliaires x, est importante. Nous utiliserons le critére

ZkEU EE —1_ ZkEU Elg (14)

ZkeU(yk - /lly)2 ZkeU Egk

pour mesurer la qualité d’adéquation du modéle par rapport au modéle con-
stant.

R = 1
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Rappels sur le modéle linéaire

Base de données d’'aéroports

’ H Strate ‘ Pass19 Pop19 H Pass20 | Trans20

MONTPELLIER 1 1 900 000 | 620 000 | 800 000 300
BASTIA 1 1 600 000 100 000 || 800 000 | 1 400
AJACCIO 1 1 500 000 100 000 || 900 000 | 1 300
STRASBOURG 1 1 300 000 | 800 000 | 500000 | 1 300
BREST 1 1200 000 | 320000 | 500000 | 1 800
BIARRITZ 1 1100 000 | 300 000 | 400 000 200
RENNES 2 900 000 730 000 || 300 000 200
FIGARI 2 700 000 20 000 500 000 | 2900

PAU 2 600 000 240 000 || 200 000 0

TOULON 2 500 000 630 000 || 200 000 0

PERPIGNAN 2 500 000 320 000 || 200 000 0

TARBES 2 500 000 120 000 || 100 000 0

ty N; =6 | 12 300 000 | 4 300 000
N, =6




Approche assistée par un modéle Rappels sur le modéle linéaire

Rappels sur le modéle linéaire

Application a la base d’aéroports : modéle constant

Nous considérons les variables d'intérét Pass20 (nombre de passagers en
2020) et Trans20 (nombre de passagers en transit en 2020).

Le modéle constant

_ Em(ek) =0,
Yk = Po+ ek avec { Vin(ex) = o2,

conduit & prédire la variable y, par sa valeur moyenne

450 000 pour Pass20,
Hy =

783 pour Trans20.
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Approche assistée par un modéle Rappels sur le modéle linéaire

Rappels sur le modéle linéaire

Exemple 1 : modéle linéaire simple

Nous nous placons dans le cas oil ¢ = 2 et x4 = (1,x14) ', et avec homoscé-
dasticité. Le modele s'écrit :

o

_ Em(ek) ==
Yk = Bo+ Pixik + €k avec { Vin(ex) = o2. (1.5)

Dans ce cas, I'estimateur des MCG coincide avec |'estimateur des MCO.
Nous obtenons aprés calcul

ZkEU(Xlk - :u’Xl)(yk - My) _ SXy

Bimce = ==,
ZkeU(Xlk - ,uxl)2 5x2
Bomce = py — Bi,mce X pix,
S
Ex = (ve—py)— %(Xlk — px1).
X
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Rappels sur le modéle linéaire

Application a la base d’aéroports : modéle linéaire simple x = (1, Pass19)

#Régression de Pass20 sur Passl9

> regl <- 1m(Pass20 ~ Pass19)

> summary (regl)

> plot(Pass19,Pass20,x1lim=c(0,2000000) ,ylim=c(-100000,800000) )
> abline(1lm(Pass20~Pass19))

Pass20, = —68 000 3 %- :
+0.51 Pass19y + ex, = - 6
R* = 0.83 %
0 500000 1500000

Pass19



Rappels sur le modéle linéaire

Application a la base d’aéroports : modéle linéaire simple x = (1, Pass19)

#Régression de Trans20 sur Passl9

> reg2 <- 1m(Trans20 ~ Pass19)

> summary (reg2)

> plot(Pass19,Trans20,x1im=c(0,2000000) ,ylim=c(0,3000))
> abline(1lm(Trans20~Pass19))

2500
|

Trans20, = 221 % g ©
+5.5 107* Pass19 + ex,
R* = 0.08 “ oo
0 500000 1500000

Pass19



Approche assistée par un modéle Rappels sur le modéle linéaire

Rappels sur le modéle linéaire

Exemple 2 : modéle ratio

Nous nous placons dans le cas oll g = 1 et xx = x1x > 0, et avec hétéroscé-
dasticité. Le modéle ratio s'écrit :
Em(Ek) - 07

Vinlex) = oxuk. (1.6)

Yk = Pixik + €x avec {

L’estimateur des MCG se simplifie sous la forme :
=il

Bucc = () Y

keu %k keu Tk
) -1
. X1k XikYk by
- § : 2 E : 2 - :
X J°X t
kU 1k kU 1k x1

Les résidus de régression sous ce modéle sont
t
Ex = yi—R xix avec R =X,

x1
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Rappels sur le modéle linéaire

Application a la base d’aéroports : modéle ratio x; = Pass19

#Régression de Pass20 sur Passl9 sans constante

#Poids Pass19-{-1}

> reg3 <- 1m(Pass20"Pass19+0,weights=Pass19~{-1},)

> summary (reg3)

> plot(Pass19,Pass20,x1lim=c(0,2000000) ,ylim=c(0,800000))
> abline(1m(Pass20~Pass19+0))

Be+05
1
k=]

Passz20
4e+05
1
=]

Pass20, = 0.44 Passl19y + €,
R? = 0.82 ] °

Oe+00
1

0 500000 1500000

Pass19



Rappels sur le modéle linéaire

Application a la base d’aéroports : modéle ratio x; = Pass19

#Régression de Trans20 sur Passl9 sans constante
#Poids Pass19-{-1}

> reg4 <- 1m(Trans20~Pass19+0,weights=Pass19~{-1},)

> summary (reg4)

> plot(Pass19,Trans20,x1im=c(0,2000000) ,ylim=c(0,3000))
> abline(1m(Trans20~Pass19+0))

2500

Trans20
1500
1

Trans20, = 0.00076 Pass19y + €,
R? = 0.07

0 500

0 500000 1500000

Pass19



Rappels sur le modéle linéaire

Exemple 3 : modéle constant par strates

Population partitionnée en H strates Uy, ..., Uy.
Nous utilisons x, = {1(k € Uy),...,1(k € Uy)}" avec homoscédasticité
dans les strates. Le modéle constant par strates s’écrit :
En(ex) =0
k = pPn+ ek avec ! our k € Up. 1.7
Y ﬁ { Vm(ek) :0_’27 p ( )

L'estimateur des MCG se simplifie sous la forme :

T —1
XpXje Xk Yk
Buce = Z 2 Z 2
Ok Ok

keU keU
1 o
oo o\
1 1
. . T
= 0 -0 : :{Nyl-/---,/lyH} .
Nu tyH
0 0 G 2

Les résidus sous ce modéle sont Ex = yx — pyp pour k € Us,.



Rappels sur le modéle linéaire
Modéle const. par strates x = {1(Pass19 > 1 000 000),1(Pass19 < 1 000 000)}

#Modéle homogéne par strates pour Pass20

> stl <- ¢(1,1,1,1,1,1,0,0,0,0,0,0)

st2 <- ¢(0,0,0,0,0,0,1,1,1,1,1,1)

regh <- 1lm(Pass20”stl+st2+0)

summary (regb)

plot(Pass19,Pass20,x1lim=c(0,2000000) ,ylim=c(0,800000))

vV V V V

Pass20, = 650 000 x 1(k € U;) 8 cr
+ 250000 x 1(k € Up) + ek, = = |——2
R*> = 0.61 g |
. T T T
0 500000 1500000

Pass19



Rappels sur le modéle linéaire
Modéle const. par strates x = {1(Pass19 > 1 000 000),1(Pass19 < 1 000 000)}

#Modéle homogéne par strates pour Trans20

> reg6 <- 1m(Trans20~stl+st2+0)

> summary (regé)

> plot(Pass19,Trans20,x1im=c(0,2000000) ,ylim=c(0,3000))

Trans20, = 1050 x 1(k € Uj) 3 g ©
+ 517 x1(kelUy)+e, ~ -
R* = 0.09 i 5o E
é 500500 | 1505000

Pass19



Modéle de travail

Principe

Lors du choix d'un plan de sondage, nous utilisons implicitement un modéle
de travail de la forme (1.1) :

Em(fk) =0,

-
= X + € avec
Yk kB k { Vim(€ex) :O‘i,

avec un jeu de variables auxiliaires x, spécifique. C'est une modélisation
implicite de la variable d’intérét yy.

Le qualificatif "de travail" signifie que le modéle n'a pas besoin de
bien prédire la variable d’'intérét pour que I'estimateur de Horvitz-
Thompson soit sans biais. C'est de toute facon impossible dans une
enquéte oll un méme modéle ne peut pas étre parfaitement adapté a toutes
les variables collectées.

En revanche, la variance de I'estimateur de Horvitz-Thompson est réduite si
le modeéle est bien prédictif pour yi (résidus de régression Ej faibles).



Approche assistée par un modéle Modéle de travail

Modéle de travail

Exemple du sondage aléatoire simple

Sous un sondage aléatoire simple

1-fo o 1 2
. Sy ot Sy:/v_lz;j()’k—ﬂy)-

Vo(tyr) = N?

La variance est donnée par la variable de résidus Ex = yx — p1,. Elle est
faible si les y, sont peu dispersées autour de leur moyenne.

Le modéle de travail est donc le modéle constant (1.2) :

_ Em(Ek) =0,
Yk = o+ €k avec { Vin(ex) = o2,
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Approche assistée par un modéle Modéle de travail

Modéle de travail

Exemple du sondage aléatoire simple stratifié

Sous un sondage aléatoire simple stratifié

H
1-— fh . 1
Vio( = > (N )2 Sy ou S = N1 > (i — )
h=1 keUp

La variance est donnée par la variable de résidus Ex = yi — puyn, k € Up.
Elle est faible si les yx sont peu dispersées autour de leur moyenne au sein
de chaque strate.

Le modéle de travail est le modéle constant par strates (1.7) :

/5 =0
= + ek avec ¢ our k € Up.
Yk Bh + €k av { Vinl(ex) =02 P h
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Approche assistée par un modéle Modéle de travail

Modéle de travail

Information auxiliaire

Quand des variables auxiliaires x, sont utilisées pour définir un plan de
sondage, elles doivent &tre connues pour toutes les unités de la population.
Par exemple, pour stratifier la population d’aéroports selon Passi19, cette
variable doit &tre connue pour chaque aéroport.

Nous allons voir a I'aide de la méthode du calage comment utiliser au moment
de I'estimation un g-vecteur x; de variables auxiliaires dont seul le total sur
la population tx = ), Xk est connu.

Objectif : passer des poids de sondage di & des poids calés wy tels que

> e = Y

keS keU

Autrement dit, les totaux des variables auxiliaires sont estimés sans erreur.
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Approche assistée par un modéle Modéle de travail

Approche assistée par un modéle

En résumé

Nous avons revu quelques exemples du modéle linéaire général :

e modéle constant : yx = Bo + €k avec Viu(ex) = 02,

e modéle linéaire simple : y, = Bo + Bixik + €k avec Vin(ex) = o2,
e modéle ratio : yx = Bixik + €k avec Vim(ex) = o2x1x,
°

modéle const. par strates : yx = [h + €x avec Viu(ex) = 0,27 si k € Up.

Nous avons vu que les propriétés d'un plan de sondage dépendent d'un mod-
éle de travail, cas particulier du modéle linéaire général.

Le plan de sondage donne toujours des estimateurs de Horvitz-Thompson

sans biais. La variance est faible si le modéle de travail est bien prédictif
pour la variable d'intérét y,.
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Estimateur par calage

Estimateur par calage
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|25 EYIT ETE B2 Principe du calage

Principe du calage

Nous supposons que I'échantillon S a été collecté. Nous supposons disponible

un g-vecteur x, de variables auxiliaires dont le total sur la population t, =
> keu Xk est connu.

Nous cherchons de nouveaux poids wy qui
@ restent proches! des poids de départ dy,
@ vérifient les équations de calage

Z WiX, = Ik (2.1)
keS
Notre modéle de travail est le modéle linéaire général (1.1) :
Enm(ex) =0
T m\€k )
= X, 0+ €k avec
Yk kﬁ k { Vm(ek) _ Ui»

au sens d'une fonction de distance dont nous donnons les propriétés un peu plus loin
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|25 EYIT ETE B2 Principe du calage

Estimateur par calage

Sources pour les marges de calage

Les totaux des variables de calage peuvent &tre donnés par des registres :

o FIDELI? (Insee) : données descriptives des logements (adresse, car-
actéristiques, données fiscales) et des individus (informations socio-
démographiques, données fiscales)

@ SIRENE3 : informations sur les entreprises et leurs établissements

e Autres registres : RNIPP*, données d’'état-civil, fichiers fiscaux de la
DGFIP?®, fichiers de la sécurité sociale, DADS®, ...

2Fichier démographique des logements et des individus

3Syst. nation. d’ldentification et du Répertoire des Entrep. et de leurs Etab.
“Répertoire National d’ldentification des Personnes Physiques

5Direction Générale des Flnances Publiques

5Déclarations annuelles de Données Sociales
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|25 EYIT ETE B2 Principe du calage

Estimateur par calage

Sources pour les marges de calage (2)

Les totaux des variables de calage peuvent &tre également estimés par des
enquétes jugées trés fiables :
@ estimation de population des annuelles de recensement (EAR), utilisées

pour fournir des marges de calage pour les enquétes ménages de I'Insee,
les enquétes Ined, la cohorte Constances’, I'enquéte PISAS, ..

@ estimations issues de I'enquéte emploi en continu : enquétes de la
DARES?, enquéte Générations du Céreql?, ...

"Cohorte des Consultants des centres d’examen de santé
8Programme international pour le suivi des acquis
9Service statistique du ministére du travail

10Centre d’études et de recherche sur les qualifications
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|25 EYIT ETE B2 Principe du calage

Estimateur par calage
Objectifs du calage

Le calage vise :
@ a garantir la cohérence entre les enquétes

o Caler les enquétes auprés des ménages de I'Insee sur les mémes variables
(age, sexe, région, taille du ménage, ...) permet de garantir que ces
enquétes fournissent des estimations cohérentes pour ces variables.

o Contraintes imposées par Eurostat & certaines enquétes européennes
(LFS1t, SILC!2) pour utiliser des variables de calage communes.
@ a améliorer la précision des enquétes
e Quand une enquéte est tirée selon un plan de sondage, le calage vise a
réduire la variance des estimateurs.
e Quand une enquéte est obtenue en interrogeant des volontaires (access
panels), le calage vise d’abord a réduire le biais des estimateurs.

| abour Force Surveys
12Survey on Income and Life Conditions
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Estimateur par calage

Mise en oeuvre (1)

Nous utilisons une fonction G : R — R™ appelée fonction de distance, et
vérifiant les conditions suivantes :

@ G est convexe, a valeurs positives, dérivable sur son domaine de défini-
tion, avec G(1) = 0.

@ Soit F(-) la fonction inverse de G’(-). Nous avons F(0) = F’(0) = 1.

La quantité G(wy/dx) mesure la distance associée a l'unité k. La condition
1 assure que G(wy/dk) augmente quand le poids calé wy s'éloigne du poids
de sondage d.

Exemples :

Méthode linéaire : G(x) = %(X —1)% et F(x) =1+ x,
Méthode raking ratio : G(x) = xIn(x) —x+ 1 et F(x) = e~.



Estimateur par calage

Mise en oeuvre (2)

Nous résolvons le probléme d’optimisation sous contraintes :

w,
m|n kZ dko2G <:> t.q. Z WiXk = by, (2.2)
€S keS
Nous utilisons le Lagrangien :
Z dek < ) )\T (Z WX — i‘x> (23)
keS keS

avec A = (A1,...,\q)" un vecteur de multiplicateurs de Lagrange.



Estimateur par calage

Mise en oeuvre (3)

En calculant la dérivée partielle par rapport a wy, nous obtenons

OLA) _ 5 (Wi T AT
B JkG de A X 0 = Wi dy Uﬁ

Les quantités wy sont appelées poids calés ou poids redressés, et

fyw - Z Wk Yk (24)

keS

est appelé estimateur calé du total t,. Les quantités

Wi )\TXk
= _— = F
8k dk < Uﬁ )

sont appelées les g-poids. Dans le package sampling, elles peuvent étre
calculées avec la fonction calib.




Estimateur par calage

Mise en oeuvre (4)

Le vecteur A peut &tre déterminé en résolvant le systéme (non-linéaire) con-
stitué par les équations de calage
) Xk - tX7

AT
S dF ( 2
k
par exemple a I'aide de la méthode itérative de Newton-Raphson.

o
keS

Il existe plusieurs fonctions de distance, programmées dans la fonction calib:

@ méthode linéaire (1inear),
@ méthode raking ratio (raking),
@ méthode logit (logit),

@ méthode linéaire tronquée (truncated).



Estimateur par calage

Un exemple d'application

L’enquéte emploi est un échantillon de logements rotatif (les logements en-
trants un trimestre donné sont enquétés pendant six trimestres consécutifs).
Environ 92 000 logements par trimestre, enquéte en continu chaque semaine
de I'année.

En France métropolitaine :
@ tirage a deux degrés dans le répertoire FIDELI,

o calage sur des marges au niveau individuel (sexe, age, région) et au
niveau logement (nombre et type de logements, nombre de piéces, dé-
ciles de revenu du ménage, ...)

Dans les DOM :

o tirage stratifié (selon des zones géographiques), avec tirage systéma-
tique a probabilités égales dans les strates.

o calage sur des marges au niveau individuel (nombre, dipléme, lieu de
naissance) et au niveau logement (zonage en aires urbaines, nombre et
type de logements)



Propriétés de |'estimateur calé

Sous des conditions générales, |'estimateur de Horvitz-Thompson vérifie
o _1
Nt (E,.—t,) =0, (n z) :

Soit ., I'estimateur calé, obtenu avec une fonction de distance G(-) respec-
tant les conditions énoncées en diapositive 33. Il vérifie

N7 (B = ty) = N7 (Ber — te) + 05 (n7F)
avec Ex = yi — x] Bucg (résidus de régression) et tg = >, ., Ex-

Le comportement de I'estimateur calé est asymptotiquement le méme que
celui de I'estimateur de HT du total des résidus. Nous en déduisons :
Ep(tyw — ty)

~

Vo(tyw — ty)

12

0, (estim. approx. sans biais),

12

V,(tex) (var. donnée par les résidus de régression).



Propriétés de |'estimateur calé

Variance et estimation de variance

La variance de I'estimateur calé £,,, est donc (approx.) donnée par
Ex E/
Vio( E Ay
e
k,IcU kT
Nous notons e, = yx — x;—b7T les résidus estimés de régression, avec

—1
T
2 XpX e Xk Yk
b =

- (nzk) (pzs)

keS keS

La variance peut étre estimée par

N R Ny e g N . Ay grek gie
VHT,l(tyw) = —— —— ou VHT,2(tyW) = Z 0 = =

™ ™ T
Kics Tk Tk T

(2.5)

(2.6)

Dans la fonction calibev de sampling, I'option with=TRUE donne le pre-
mier estimateur de variance, et I'option with=FALSE le secend estimateur.



Mise en oeuvre pratique

[llustration :

SRS de n = 6 aéroports

] H Pass19 \ Pop19 H Pass20 Trans20 \ dy ‘
AJACCIO 1 500 000 100 000 900 000 1300 2
RENNES 900 000 730 000 300 000 200 2

FIGARI 700 000 20 000 500 000 2 900 2
TOULON 500 000 630 000 200 000 0 2
PERPIGNAN 500 000 320 000 200 000 0 2
TARBES 500 000 120 000 100 000 0 2
ty 12 300 000 | 4 300 000
tr 9 200 000 | 3 840 000 || 4 400 000 | 8800




Mise en oeuvre pratique

Illustration : SRS de n = 6 aéroports

#Echantillon SRS de 6 aéroports

#Donnees echantillonnees
> loc=c(0,0,1,0,0,0,1,1,0,1,1,1)
> ech=aeroports[loc==1,]

#Probabilites d’inclusion d’ordre 1 et 2
> nech=6

> Npop=12

> pi=rep(nech/Npop,Npop)

> pikl=UPmaxentropypi2(pi)

#Poids de sondage et pi_kl sur 1l’echantillon
> dech=rep (Npop/nech,nech)
> pikl_ech=pikl[ech==1,ech==1]




Mise en oeuvre pratique

Fonctions de distance : méthode linéaire

Elle correspond au choix G(x) = $(x —1)? et F(x) = 1+ x. Dans ce cas,

les équations de calage admettent une solution explicite :

-1
diexpx ) .
>\Iin - <ZkXI;Xk> (tx_txw)'

o
kesS k

Nous obtenons

~ AT ~ _A
ZWkYk = ty7r+b7r [tx_tm] = lygreg
kes
O
o KXKX KXk Yk
avec b, = —= .
" (Z g ) >
kes k kes k

Il s"agit de |'estimateur par la régression généralisée (GREG). Cette méthode
de calage peut conduire 3 des poids finaux wy négatifs.



Mise en oeuvre pratique

Application : méthode linéaire avec x = (1, Pass19)

#Variables de calage sur l’echantillon
> Xech=cbind(rep(1l,nech),ech$Passl9)

#Totaux des variables de calage
> Xtot=c(12,12 300 000)

#g-poids

> gweight<-calib(Xech,dech,Xtot,
method="linear",description=FALSE)

> gweight

[1] 2.469828 1.267241 0.866379 0.465517 0.465517 0.465517

#Poids cales

> wech<-gweight*dech

> wech

[1] 4.939655 2.534483 1.732759 0.931035 0.931035 0.931035




Mise en oeuvre pratique

Fonctions de distance usuelles : méthode raking-ratio

La méthode raking ratio
G(r)=rlog(r) —r+1 et F(u) = exp(u).
Cette méthode permet d’assurer que les poids finaux wy sont > 0.

#Calage par la méthode raking ratio

#g-poids

> gweight<-calib(Xech,dech,Xtot,
method="raking",description=FALSE)

> gweight

[1] 2.592926 1.019327 0.746715 0.547011 0.547011 0.547011

#Poids cales

> wech<-gweight*dech

> wech

[1] 5.185852 2.038654 1.493429 1.094021 1.094021 1.094021




Mise en oeuvre pratique

Fonctions de distance usuelles : méthode linéaire bornée

C’est une version tronquée de la méthode linéaire. Des bornes LO et UP
sont spécifiées pour les rapports de poids pour assurer que pourtt k€ S :

LOS%SUP-
k

> gweight<-calib(Xech,dech,Xtot,method="truncated",
bounds=c(0.25,4) ,description=FALSE)

> gweight

[1] 2.469828 1.267241 0.866379 0.465517 0.465517 0.465517

> gweight<-calib(Xech,dech,Xtot,method="truncated",
bounds=c(0.50,2.42) ,description=FALSE)

> gweight

[1] 2.42 1.57 0.51 0.50 0.50 0.50

> gweight<-calib(Xech,dech,Xtot,method="truncated",

bounds=c(0.50,2) ,description=FALSE)
No convergence in 500 iterations with the given bounds.
The bounds for the g-weights are: -0.75 and 3.25




Mise en oeuvre pratique

Fonctions de distance usuelles : méthode logit

C’est une version tronquée de la méthode raking-ratio. Des bornes LO et
UP sont également spécifiées pour les rapports de poids :

LOS%SUP-
k

> gweight<-calib(Xech,dech,Xtot,method="logit",
bounds=c(0.25,4) ,description=FALSE)

> gweight

[1] 2.577636 1.058856 0.744128 0.539795 0.539795 0.539795

> gweight<-calib(Xech,dech,Xtot,method="logit",
bounds=c(0.50,2.50) ,description=FALSE)

> gweight

[1] 2.496167 1.314498 0.640150 0.516394 0.516394 0.516394

> gweight<-calib(Xech,dech,Xtot,method="logit",

bounds=c(0.50,2.00) ,description=FALSE)
No convergence in 500 iterations with the given bounds.
The bounds for the g-weights are: 0.5 and 2




Mise en oeuvre pratique

Estimateur de variance d’un estimateur calé

En utilisant le premier estimateur de variance de I'équation (2.6), nous avons

~ A Ay ex g
Viura(tyw) = T (2.7)
ies T Tk T

#Calage par la méthode linéaire
#Estimation du total de Pass19

>calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight ,with=TRUE)
$calest

[1] 12 300 011

$evar

[1] 8.724997e-13

#Estimation du total de Pass20

>calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight ,with=TRUE)
$calest

[1] 6 558 980

$evar

[1] 1.883e+11




Mise en oeuvre pratique

Estimateur de variance d'un estimateur calé (2)

En utilisant le second estimateur de variance de I'équation (2.6), nous avons

~ A Ay grex giel
VHT’Z(tyW) = Z 7'&'7 - T (2.8)
ies T Tk

#Calage par la méthode linéaire
#Estimation du total de Passi9
>calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight ,with=FALSE
$calest

[1] 12 300 011

$evar

[1] 1.189e-12

#Estimation du total de Pass20
>calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight ,with=FALSE
$calest

[1] 6 558 980

$evar

[1] 2.049e+11




Estimateur par calage Mise en oeuvre pratique

Estimateur par calage

En résumé

Le calage consiste a obtenir de nouveaux poids, proches des poids de sondage
di et vérifiant les équations de calage sur des totaux auxiliaires .

Les marges de calage peuvent étre fournies par des registres, ou estimées par
de trés grosses enquétes.

L’estimateur par calage fyw = kes WkYk est asymptotiquement sans biais,
et sa variance n’est donnée que par les résidus de la régression de yj sur les

variables de calage xy :

-
E A /f; avec Ek:ykka BMCGv
kieu kT
- Ay e g -
2 T
VHT,l(tyw) = ———— avec e = Yk — Xg b.
k,leS Tkl Tk 71
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Exemples de méthodes de redressement

Exemples de méthodes de
redressement
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Exemples de méthodes de redressement

Estimateur par la régression généralisée (GREG)

Les exemples de cette section correspondent a |'utilisation de la méthode
linéaire. Nous avons vu que dans ce cas, I'estimateur calé se réécrivait sous
la forme de 'estimateur GREG :

~ ~ AT ~
ty,greg - ty7r + bﬂ- [tx - tx7r]
T\ -1
~ dieXpeX dieXk Yk
avec b, = 272 Z —
kes Tk kes Tk

Nous pouvons utiliser I'estimateur de variance

~ Ay e g ~
A T
VHT,l(ty,greg) = ———— avec e = Yk — X br.
s Tk Tk T

Un autre estimateur de variance est donné dans I'équation (2.6).



Exemples de méthodes de redressement
Estimateur GREG utilisant x, = (1, Pass19)

H Pass19 \ Popl9 H Pass20 Trans20 \ dy \ Wy ‘
AJACCIO 1500 000 | 100 000 900 000 1300 | 2 |4.94
RENNES 900 000 730 000 300 000 200 2 | 2.53
FIGARI 700 000 20 000 500 000 2900 | 2 |1.73
TOULON 500 000 630 000 200 000 0 2 1093
PERPIGNAN | 500 000 320 000 200 000 0 2 |0.93
TARBES 500 000 120 000 100 000 0 2 1093
ty 12 300 000 | 4 300 000
tor 9 200 000 | 3 840 000 || 4 400 000 | 8 800
Vit (for) 1.86 1012 | 1.06 102 | 1.04 10'2 | 1.66 107
tow 12 300 000 | 3 375 000 || 6 538 000 | 11 950
Vit (fow) 0 1.25 1012 || 1.90 10! | 1.47 107




Exemples de méthodes de redressement
Estimateur GREG utilisant x, = (1, Pass19,, Pop19,)

H Pass19 \ Popl9 H Pass20 \ Trans20 \ dy \ Wy ‘
AJACCIO 1500 000 | 100 000 900 000 1300 | 2 [4.70
RENNES 900 000 730 000 300 000 200 2 | 3.47
FIGARI 700 000 20 000 500 000 2900 | 2 | 1.06
TOULON 500 000 630 000 200 000 0 2 | 152
PERPIGNAN | 500 000 320 000 200 000 0 2 | 0.84
TARBES 500 000 120 000 100 000 0 2 | 041
ty 12 300 000 | 4 300 000
tor 9 200 000 | 3 840 000 || 4 400 000 | 8 800
Vit (for) 1.86 1012 | 1.06 102 | 1.04 10'2 | 1.66 107
tow 12 300 000 | 4 300 000 || 6 314 000 | 9 900
Vit (fow) 0 0 1.03 10! | 1.10 107




Exemples de méthodes de redressement

Exemples de méthodes de redressement

Estimateur par le ratio

Nous supposons connu le total t,; d'une seule variable auxiliaire (positive)
x1x. L'estimateur par le ratio est défini par

tyR = ty7r X~ = E Wik Yk
bar keS
t, L, ~
avec wy = di X fxl . Il est calé sur le total t, : tyR = tx.

X170

Cas particulier de I'estimateur GREG, obtenu sous le modéle ratio (1.6) :

Em(ek) =0,

= X1k + €, avec
Yk Bixik + €k { Vin(ex) = o2x1x.
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Exemples de méthodes de redressement

Exemples de méthodes de redressement

Estimateur par le ratio (2)

Le modeéle ratio est un cas particulier du modéle linéaire général, obtenu avec
Xk = X1k €t aﬁ = 02 x1x. Nous obtenons successivement :

-1
0 dhxiX g dieXk Yk
b = | X T2 > o2
keS k keS k
de2 - dix f N
— lek Z%kyk:fﬂ: L (3.1)
=G kes Lk xam
fy,greg = fyﬂ + bjr (tx - fxw)
= Eyﬂ' + Rﬂ'(tXl - EXlTr) == i'\yR. (32)
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Exemples de méthodes de redressement

Exemples de méthodes de redressement

Estimateur par le ratio (3)

En utilisant les résultats obtenus pour I'estimateur GREG, |'estimateur par
le ratio est approximativement non biaisé pour le total t,. Sa variance est
approximativement donnée par

avec Ex = yx — R x1x. La variance est donc réduite si les variables yj et xqx
sont approximativement proportionnelles.

Nous pouvons utiliser I'estimateur de variance de Horvitz-Thompson :
~ S Tkl — TKT| €k €]
Vura(br) = D B ——
ies Kl kT

A

avec ex = yx — Rrxuk.
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Exemples de méthodes de redressement

Estimateur par le ratio (4)

Dans les fonctions calib et calibev, le paramétre q permet de spécifier
que la structure du modéle de travail est hétéroscédastique.

Xech=ech$Pass19

Xtot=c (12 300 000)

#Variable Pass19

> gweight<-calib(Xech,dech,Xtot,q=Xech~{-1},method="1linear")

> calibev(ech$Pass19,Xech,Xtot,pikl_ech,dech,gweight,

q=Xech~{-1},with=TRUE)

$calest

[1] 12 300 000

$evar

[1] o

#Variable Pass20

calibev(ech$Pass20,Xech,Xtot,pikl_ech,dech,gweight,
g=Xech~{-1},with=TRUE)

$calest

[1] 5 882 609

$evar

M1 2 40%2e+11




Exemples de méthodes de redressement

Estimateur par le ratio utilisant x, = (Pass19x)

H Pass19 \ Popl9 H Pass20 Trans20 \ dy \ Wy ‘
AJACCIO 1500 000 | 100 000 900 000 1300 | 2 |267
RENNES 900 000 730 000 300 000 200 2 | 2.67
FIGARI 700 000 20 000 500 000 2900 | 2 | 267
TOULON 500 000 630 000 200 000 0 2 | 2.67
PERPIGNAN | 500 000 320 000 200 000 0 2 | 2.67
TARBES 500 000 120 000 100 000 0 2 | 2.67
ty 12 300 000 | 4 300 000
tor 9 200 000 | 3 840 000 || 4 400 000 | 8 800
Vit (for) 1.86 1012 | 1.06 102 | 1.04 10'2 | 1.66 107
tow 12 300 000 | 5 134 000 || 5 883 000 | 11 800
Vit (fow) 0 1.62 1012 || 2.40 10! | 1.47 107




Exemples de méthodes de redressement

Exemples de méthodes de redressement
Post-stratification

Supposons qu’aprés le tirage de I'échantillon, la population soit partitionnée
en H groupes notés Uy, ..., Uy.

Les effectifs de ces post-strates, notés Ni,..., Ny, sont supposés connus.
Soit Sy, l'intersection de S et de U,,.

Ces effectifs peuvent étre comparés avec leur estimateur de HT :

o (key,
Ny, Zkesh = Zkes b,

Tk
Ex(Nn) = > keu 1(k € Un) = Np.
L’estimateur post-stratifié est défini par
H

A Np » Y
ty,post = Z ﬁtyh avec tyh = Z
h=1 ""h kesy
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Exemples de méthodes de redressement
Post-stratification (2)

S ~ SRS(n =100; U) et dx = 10,
Ny = Ny = 500,
N
Ry = =™ — 450,
S1 S2 n
N
(n=45) | (n,=55) Rp = 2™ _ ggq,
n
fyﬂ' =10 Zyka
U1 U2 A keS
(N,=500) (N,=500) Bpost ¥ 111 Yy +9.1 ) vk

keS; keSs



Exemples de méthodes de redressement
Post-stratification (3)

L'estimateur post-stratifié est motivé par le modéle homogéne par strates
Yk =Pn+tex et Vplek) = af, dans chaque strate Uj.
C'est un cas particulier de |'estimateur par la régression généralisée, obtenu

avec x = {1(k € U1),...,1(k € Uy)} " et 02 = o2 pour k € Up,.
Nous avons :

xkxT - Xk £ fH T
Q. E : k E : kYk yl y
brn { ai } 2 { ' } ’

S—gc00g S
kes Tk Tk kes Tk Tk Ny Nw

et

~

fy,greg = tnot bI (tx - fm)

H -~
A tyn ~ o
= Byt Y L (Np— Nb) =& post.
h=1 "Vh



Exemples de méthodes de redressement

Exemples de méthodes de redressement
Post-stratification (4)

En utilisant les résultats obtenus pour |'estimateur GREG, I'estimateur post-
stratifié est approximativement non biaisé pour le total t,. Sa variance est
approximativement donnée par

Vo(typost) = Vp(ter)

avec Eyx = yi — puyp pour k € Up. La variance est donc réduite si la variable
y est homogéne a l'intérieur des post-strates.

En utilisant I'estimateur de variance de Horvitz-Thompson:

5 A Tkl — TKT| €k €
Vira(br) = ). - =
it ki kT
£
2% pour k € Sp,.
Np
Extimation T

avec €, = Yk —



Exemples de méthodes de redressement
Post-stratification (5)

Application sur la population d'aéroports :

> Xech=cbind(c(1,0,0,0,0,0),c(0,1,1,1,1,1))

> Xtot=c(6,6)

> gweight<-calib(Xech,dech,Xtot,method="linear")
> gweight

[1] 3.0 0.6 0.6 0.6 0.6 0.6

#Variable Trans20

> calibev(ech$Trans20,Xech,Xtot,pikl_ech,dech,gweight,
with=TRUE)

$calest

[1] 11 520

$evar

[1] 15 667 200




Exemples de méthodes de redressement
Post-stratification (6)

| Pass19 | Strate || Pass20 | Trans20 | di | w |
AJACCIO 1 500 000 1 900000 | 1300 | 2 [ 6
RENNES 900 000 2 300 000 200 2 |12
FIGARI 700 000 2 500 000 | 2900 | 2 |12
TOULON 500 000 2 200 000 0 2 |12
PERPIGNAN | 500 000 2 200 000 0 2 |12
TARBES 500 000 2 100 000 0 2 |12
t 12300 000 | N; =6
For 9200000 | Ay =2 | 4400000 8800
Vit (for) 1.86 10'2 1.04 102 | 1.66 107
Fow 12 720 000 | A post = 6 || 6 960 000 | 11 500
Vit (Fow) 3.07 101 2.21 10! | 1.57 107




Exemples de méthodes de redressement

Exemples de méthodes de redressement

En résumé

L’estimateur par la régression généralisée s'écrit
~ ~ AT ~
tygreg = tyn+br {tx =t}

Il conduit a une variance plus faible que I'estimateur de HT si les variables
auxiliaires x; sont fortement explicatives de y,.

Deux cas particuliers sont :

A A tx
— : _ 1 : o .
o |'estimateur par le ratio t,g = t,» X =, qui conduit a une variance
X170

faible si y, est approximativement proportionnelle & xy,
H
0 . FPTPN h ~ . N .
o |'estimateur post-stratifié t, post = Z —typ, qui conduit a une vari-
h=1 ""h

ance faible si les post-strates sont homogénes par rapport a yy.
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Estimation d'une fonction de totaux
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Estimation d'une fonction de totaux

Estimateur par substitution

Nous nous intéressons a un paramétre de la forme § = f(t,) avec y, =
(Viks - -- ,qu)T un g-vecteur de variables d'intérét, et f : R9 — R.

Il est naturel d’estimer @ en remplagant le total t, inconnu par son estimateur
de Horvitz-Thompson. Nous obtenons |'estimateur par substitution :

Si la fonction f(-) est différentiable au voisinage de t,, nous avons :
R (= 0) = N7 (fur — 1) + 0p(n71?), (41)

en notant uy = {f’(ty)}T {y«x} la variable linéarisée du paramétre 6
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Exemple : variable linéarisée d'une ratio

.y . t T
Nous nous intéressons & R = f% = f(ty), avec yx = (yik,)yok) ' et

f: R2— R

(u,v) —~
14
Nous |'estimons par substitution par
> 2 f}/ﬂr
Rﬂ- = f(ty’ﬂ') = =
t}/27T

Nous avons

vy = (L _2)
u’ - V7 V2 b

ce qui donne la variable linéarisée

1 ty1 1
u(R) = —yik — —L5y2k = — vk — Ryak)-
t)’z (t}’2)2 ty2
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Estimation d'une fonction de totaux

Estimation de variance

L’approximation (4.1) nous donne

E)(0r —6) ~ 0, (estimation approx. sans biais)

Vo(fr —0) ~ V, {tur}. (variance donnée par la linéarisée).
La seconde ligne nous donne |'approximation de variance par linéarisation.
Nous obtenons

A Uy U/
Vo) ~ > A W
k,leU kT

~ A Ay Oy
Vuri1(0:) = ———

)
Tl Tk T
k€S kI Tk 7]

ou la variable linéarisée estimée 0y = {f'(f,z)} {y«} s'obtient en remplacant

dans uy les totaux inconnus par leurs estimateurs de HT.
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Exemple : variable linéarisée d'une ratio

o R t,
Nous nous intéressons a R = . Nous avons vu que
Y2

1
uk(R) = —(v1ik — Ryax).
tyo
En remplacant dAans uk(R) le total t,, par I'estimateur i, et le total t,,
par |'estimateur t,,~, nous obtenons

A

R 1
(R) = z (vik — Reyax)-

Y27

Estimation de variance :

Vo(Re) = ) uk(R) ul(R)Ak/,

kiey ko T
~ ~ a0 (R) 0)(R) Ay
VHT,1(R7r) = Z 75 )7(1')7r
es T I T
Extimation
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Estimation d'une fonction de totaux

Base de données d’aéroports

Estimation du taux de passagers en transit
Nous souhaitons estimer le taux de passagers en transit :

Nb passagers en transit en 2020  t,

Nb passagers en 2020 i

R

Nous considérons le cas :
@ d’un sondage aléatoire simple :

ty17r . Zkes Yik

ﬁﬂ— = ~ — )
tyor  Dkes Yok

@ d'un sondage aléatoire simple stratifié :

A H _
tylﬂ' o Zh:1 NhYlh
~ ==H o - -
ty,m Zh:l Npyan
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Estimation d'une fonction de totaux

Base de données d’aéroports

Estimation du taux de passagers en transit : SRS

[ [[ Pass19 [ Popl9 [ Pass20 (yor) | Trans20 (y1x) | O
AJACCIO 1 500 000 | 100 000 900 000 1 300 —1.14 10—%
RENNES 900 000 730 000 300 000 200 —9.09 103

FIGARI 700 000 20 000 500 000 2 900 4.3210*
TOULON 500 000 630 000 200 000 0 —9.09 103
PERPIGNAN 500 000 320 000 200 000 0 —9.09 103
TARBES 500 000 120 000 100 000 0 —4.55 103
72 — 367 000 %1 =733 5=0
s2p = 8.67 101° | 52, =1.3810° | 52 =45210°8

fypr = Njp = 4400 000 Vit (Ber) = N°2Es), = 1.04 10"
fyr =Ny = 8800 Vit (fy) = N212Es2 = 1.66 107
=12 0.2% Vur (R) = N2Lfs? = 5431077,
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Base de données d’aéroports

Estimation du taux de passagers en transit : SRS

#Recuperation du jeu de donnees

> aeroports <- read.csv(".../aeroports.csv", header=TRUE)
#Echantillon selectionne par SRS

> ech=c(0,0,1,0,0,0,1,1,0,1,1,1)

> y2ech=aeroports[ech==1,4]

> ylech=aeroports[ech==1,5]

# Probabilites d’inclusion

> n=6

> Npop=12

> pi=rep(n/Npop,Npop)

> pikl=UPmaxentropypi2(pi)

> pikl_ech=pikl[ech==1,ech==1]

> varest=vartaylor_ratio(ylech,y2ech,pikl_ech)
> varest

$ratio

[1] 0.002

$estvar

[1] 5.429752e-07




Estimation d'une fonction de totaux

Base de données d’aéroports
Estimation du taux de passagers en transit : STSRS

[ Passl9 [ Popl9 [ Pass20 (yax) Trans20 (1) | O
BASTIA 1600 000 | 100 000 800 000 1400 —1.1410~*
AJACCIO 1 500 000 | 100 000 900 000 1300 —9.09 105
STRASBOURG | 1300 000 | 800 000 500 000 1 300 4.32 104
Y21 =733 333 y1,1=12333 iy =0
s21 =43310% | s%,=33310° | 57, =25010""
RENNES 900 000 | 730 000 300 000 200 —9.0910°°
TOULON 500 000 | 630 000 200 000 0 —-9.09 103
PERPIGNAN 500 000 | 320 000 200 000 0 —4.55 105
V2,2 = 233 333 V1,2 = 67 2 =0
Stpp =3.3310° | s?;,=1.3310* | s7, =5.0010"°
for = >.2_1 Nyyap = 5800 000 Vit (Bor) = S5, N2 1;hfh s, = 28101
Byn =32, Najan = 8 400 Vit (Ban) = iy N21TBs2, = 105
N 2 - A A~
R = et s 0.14% Vur (R) = $hoy N2 2 tes? 1.53 107,

T X2, NiFan

Guillaume Chauvet (ENSAI)

Estimation

n, “ih

20/10/2025

74 /76



Estimation d'une fonction de totaux

En résumé

Un paramétre complexe qui s'écrit comme une fonction de totaux peut étre
estimé approximativement sans biais par substitution :

0= f(t,) estimé par 0, = (&)

Nous obtenons un estin;_ateur de variance en insérant la variable linéarisée
estimée Oy = {f'(fx)} {y«} dans I'estimateur de variance associé au plan
de sondage :

~ A g ) D
Ve (B) = 3 e
ies kI Tk

En utilisant une approximation normale pour 6, nous obtenons l'intervalle
de confiance

éﬁ + Zl—% VHT,l (Aﬂ)
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Estimation d'une fonction de totaux
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