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Abstract

Parametric multivariate density estimators, such as the maximum likelihood, can be generalized by mixing
them with a kernel estimator. The mixture weights can be chosen to optimize a measure of the goodness-
of-fit. The optimal weight of the kernel estimator, which we call the lack-of-fitness coefficient, then provides
a simple check of the parametric model. The test statistic is defined as the appropriately normalized lack-
of-fitness coefficient. When the parametric density model is correct, the statistic converges in distribution
to the positive part of a standard Gaussian variable, regardless of the dimension of the observations. In
addition, the test has good power against alternative hypotheses approaching the density model.
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1 Introduction

Let X1, . . . , Xn be independent and identically distributed Rd-valued random vectors with density f0. Our
goal is to test a composite null hypothesis for this density, that is f0 belongs to a specified parametric model
of densities, such as the multivariate Gaussian model. There are a number of tests available for this problem,
derived from three main types of approaches to testing the goodness-of-fit testing for density models: the
smooth tests, the tests based on the distance between a nonparametric estimator and a model-based density
estimator, and the tests based on the so-called weighted L2−statistics, including the energy statistics.

One way to measure the discrepancy between the true density of the data and a target density in a
given parametric model, is to consider their log-likelihood ratio. A class of tests, called smooth tests, is then
obtained by considering a suitable orthonormal expansion of the log-likelihood ratio, and testing the nullity
of the coefficients in the expansion. Neyman [1] introduces this idea for testing uniformity, and uses Rao’s
score statistic, with a given number of coefficients in the log-likelihood ratio expansion. Several data-driven
versions of Neyman’s test, where the number of coefficients is chosen automatically, have been proposed. See
for example Ledwina [2] and Fan [3]. Claeskens and Hjort [4] consider a related idea, but they propose to test
the nullity of the coefficients in the expansion using a likelihood ratio test (LRT) instead of the score test.
While there is an asymptotic equivalence between Rao’s score and the LRT statistic when the number of
coefficients to be tested is fixed, Claeskens and Hjort [4] provide evidence that their approach performs better.
They also propose a data-driven selection of the number of coefficients to be tested using AIC and BIC.

Another natural way to check the adequacy of a density model is to consider a norm between a non-
parametric estimator, typically obtained by kernel smoothing, and the density estimator obtained within the
model. Cao and Lugosi [5] investigated this approach with the L1−norm. Their approach allows for general
density models, not necessarily parametric. The tests based on the L2−distance, first considered by Bickel and
Rosenblatt [6], are somewhat more convenient since, in this case, the difficult part of the problem is reduced
to finding an estimate of the squared L2−norm of the true density. Fromont and Laurent [7] construct a test

*This version: June 19, 2024

1



based on this idea when the model, which is either a given univariate density or the location/scale family
obtained from it. Their test is related to the data-driven smooth tests, but Fromont and Laurent [7] propose
to construct adaptive estimates of the squared L2−norm of the true density, rather than the density itself.
For some alternative ways of using the L2−distance between the parametric and nonparametric estimators,
see also Fan [8], Wen and Wu [9], Tenreiro [10], and the references therein.

The fact that the distribution of a random vector belongs to a given family of probability distributions
can be characterized by an infinite set of moment equations. The most elementary example is provided by
the distribution function, and this leads to popular tools such as Cramér-von Mises and Kolmogorov-Smirnov
tests. See also Khmaladze [11] for extensions to multivariate observations. Alternatively, one can consider the
moment generating function or the characteristic function, etc. The empirical version of the moments leads
to an empirical process that can be used to construct functionals, typically weighted L2− functionals, to
test the goodness-of-fit of a given model. The Cramér-von Mises test, obtained with a univariate distribution
function, and the BHEP (Baringhaus-Henze-Epps-Pulley; [12, 13]) tests of multivariate normality, using the
characteristic functions, are some such examples. Tests based on the energy distance, which is a weighted
L2−distance between the characteristic functions, are another, more recent example. See Székely and Rizzo
[14], Székely and Rizzo [15]. Although the model checking approach based on moment equations does not
require a dominated model, most of the attention has been given to parametric models with density, in
particular to the Gaussian model. It is worth noting that it is possible to connect some weighted L2−tests to
the L2−distance kernel based tests by imposing the weights to localize around a point. See Ebner and Henze
[16] for an illuminating review.

Our test follows the idea of comparing the density in the model with that of a more general model.
However, instead of considering the norm between a nonparametric estimator and the density estimator
obtained within the model, we follow an idea introduced by Olkin and Spiegelman [17]. They considered two-
component mixtures of densities, where one component is the density estimated in the parametric model, and
the other one is a nonparametric density estimator. The mixture weight of the parametric density, which we
call the fitness coefficient, is chosen by maximum likelihood. The null hypothesis, i.e., the parametric model is
correct, is then characterized by the fact that the fitness coefficient is equal to 1. We use the fitness coefficient
to construct a test statistic with a the limit in distribution equal to the positive part of a standard normal
distribution. Our pivotal statistic is simple, requires no bias correction, and has the same limit distribution
under the null hypothesis for any fixed dimension d and general parametric density models. A similar test has
proposed by [18] in the context of regression models, where the mixture weight is selected by least squares
and thus has an explicit expression.

The paper is organized as follows. Section 2 is devoted to the formal presentation of our method. In
Section 2.2 we define the lack-of-fitness coefficient from which the lack-of-fitness test statistic is derived, and
provide an insight into our construction. The asymptotic properties of the lack-of-fitness statistic under the
composite null hypothesis and alternative hypotheses are derived in Section 3. Our test is consistent against
a wide family of alternative hypotheses. Section 4 discusses some implementation aspects, including a simple
and effective data-driven bandwidth rule for the lack-of-fitness test based on the likelihood maximization,
and a parametric bootstrap method for finite sample corrections. The results of a simulation study are also
presented in Section 4. There, the new test is compared with two tests based on a L2−distance in the spirit
of Bickel and Rosenblatt [6]. Their critical values are adjusted by the same simple parametric bootstrap.
The parametric models investigated are the two and three dimensional Gaussian families, and the alternative
hypotheses are defined as mixtures of Gaussian distributions. Our test shows good performance for sample
sizes as small as 50 or 100. We conclude our presentation with a discussion in Section 5. There we note that
the lack-of-fit principle is a general one, and can be applied to a wide range of problems, such as testing
non-nested parametric models against nonparametric alternatives, testing semiparametric models, testing
conditional independence. The Appendix contains the proof of our main results, and additional technical
proofs are presented in a Supplementary Material.

2 The method

The aim in this paper is to test a given parametric model of probability densities using an independent sample
X1, . . . , Xn from X ∈ Rd which admits the density f0. Let P = {fθ : θ ∈ Θ} denote the model, where Θ is
the set of parameters. The null hypothesis is then

H0 : ∃θ0 ∈ Θ such that f0 = fθ0 ∈ P. (1)
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For simplicity, in the following we assume that θ0 satisfying (1) is unique. The method proposed below, allows
to test the goodness-of-fit of P against nonparametric alternative hypotheses approaching the model. Let us
denote them by H1,n, in which case f0 ̸∈ P. Under H1,n, the density f0 may depend on n, but for simplicity
we omit this dependence in the notation. In particular, H1,n, n ≥ 1, can be what is usually called a sequence
of local (or directional) alternatives, defined as follows : for some fixed f∗ ̸∈ P and 0 < δn ≤ 1, the sequence
of local alternative hypotheses is given by

f0 = (1− δn)fθ0 + δnf∗, n ≥ 1. (2)

With δn = 0, H1,n and H0 would coincide. It is worth noting, however, that our theory is built without
reference to any particular form of f0, such as that in (2).

To define our method, we need to be more specific on the way θ0 is estimated, and to introduce the model
free estimates.

2.1 Parametric versus nonparametric fit

The null hypothesis (1) is a composite null hypothesis and, for testing it, we need an estimate θ̂n of θ0.

Many common parametric estimation method can be considered to obtain θ̂n. Let us consider the class of
M−estimators [see, for example, 19, Chapter 5]. With independent data, the underlying ideas of this common
method for building parametric estimator is to maximize a criterion function of the type

θ 7→ Mn(θ) =
1

n

n∑
i=1

mθ(Xi) θ ∈ Θ.

Let
θ̂n ∈ argmax

θ∈Θ
Mn(θ),

be theM−estimator. This framework includes the maximum likelihood estimator (MLE), for whichmθ(Xi) =
log(fθ(Xi)), but also methods based on moments, or robust estimators.

The M−estimation approach usually requires that the map θ 7→ E[Mn(θ)] reaches its maximum at
a unique point. Under the null hypothesis (1), the unique maximum of E[Mn(θ)] must be θ0. Under the
alternative hypotheses H1,n, we will consider θ a pseudo-true value of the model. This is typically defined as

θ = argmax
θ∈Θ

E[Mn(θ)], (3)

and, for simplicity, we assume θ to be the uniquely defined one. In general, under H1,n with δn > 0 the
pseudo-true value θ depends on n, and θ ̸= θ0. For simplicity, we omit the dependence on n in the notation
for the pseudo-true value θ. The θ is the element of Θ which corresponds to the least misspecified density in
the model P, according to the criterion Mn(θ). When δn = 0 (i.e., under H0) we have θ = θ0 for all n.

Remark 1. Whenever f0 ̸∈ P but f0 approaches the model P is some sense, for example δn ↓ 0 in (2),
it is expected that θ converges to θ0. It is worth noting that in some cases, θ = θ0 even when f0 /∈ P. For
example when P is the Gaussian vector model with given variance, θ − θ0 is exactly equal to the difference
between the expectations of the observations under f0 and fθ0 , respectively. On the one hand, this means that
whenever the expectation under f0 is equal to θ0, we have θ = θ0. On the other hand, it is generally expected
that the rate of convergence for ∥θ − θ0∥ will be determined by some distance between f0 and the model P.
For example, if f0 is a sequence of local alternatives as in (2), it is expected that ∥θ − θ0∥ = O(δn).

Our construction requires also a model free, nonparametric estimate of the true density f0 of the inde-
pendent observations at the sample points X1, . . . , Xn ∈ Rd. We consider the leave-one-out (LOO) density
kernel estimator

f̂LOO
n,i =

1

(n− 1)hd
n

∑
j ̸=i

K

(
Xj −Xi

hn

)
, 1 ≤ i ≤ n,

where K : Rd → R≥0 is a symmetric probability density function, and hn is the bandwidth.
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2.2 Lack-of-fitness coefficient

Olkin and Spiegelman [17] considered mixtures of densities αfθ̂n + (1 − α)f̂n,i and proposed a data-driven
choice of the mixture weight by maximizing a likelihood criterion :

α̂OS
n = arg max

α∈[0,1]

n∑
i=1

log
(
αfθ̂n(Xi) + (1− α)f̂n,i

)
. (4)

Here, f̂n,i is the Parzen-Rosenblatt density estimator computed at Xi, which, using our notation, can be

written as nf̂n,i = (n− 1)f̂LOO
n,i + h−d

n K(0). The mixture defined by α̂OS
n permits to get a density estimator

robust to misspecification while retaining a performance comparable to parametric estimators when the true
density is close to the model. Olkin and Spiegelman [17] state that α̂OS

n converges to 1 in probability when
the model is well specified, and to 0 otherwise. They also claim the rate of convergence of 1 − α̂OS

n when
the parametric model is correctly specified. [18] considered the idea of Olkin and Spiegelman in the context
of least-squares for regression models, allowing for α on the whole real line, and proved the asymptotic
distribution of optimal mixing weight. The appealing feature of least-squares regression estimation is the
explicit form of the mixing weight. [20] reconsidered the mixture weight selection (4), with f̂n,i replaced by a

leave-and-repair estimator, which is a modification of f̂LOO
n,i . They named the solution of their maximization

problem the fitness coefficient. Leave-one-out kernel estimators overcome the undesirable effects caused by
this bias term of the Parzen-Rosenblatt when computed at the sample points. They are thus preferable when
selecting the mixing weight α.

In this paper, we investigate the asymptotic distribution of a mixture weight selected as in (4). In order to
avoid the control of small values of kernel density estimator, we restrict the domain of interest to a compact
set S ⊂ Rd on which the true density stays away from zero. In particular, this allows to use the more user
friendly LOO kernel estimator, and avoid the leave-and-repair estimator considered by [20]. More precisely, let

α̂n ∈ arg max
α∈[0,1]

{
n∑

i=1

IS(Xi) log
(
αfθ̂n(Xi) + (1− α)f̂LOO

n,i

)
− (1− α)nβ̂n − αnγ̂n

}
, (5)

with β̂n =
∫
S
f̂ndλ and γ̂n =

∫
S
fθ̂ndλ. Here, λ denotes the Lebesgue measure on Rd.

Definition 1. For any bounded set S ⊂ Rd such that infS f0 > 0, the random variable 1 − α̂n obtained by
(5) is the lack-of-fitness coefficient (on S).

Let us explain the rationale behind the definition (5). The study of the likelihood-based estimators crucially
relies on the property of the Kullback-Leibler (KL) divergence to be non-negative. Restricting the sum in
(5) to sample points in S breaks this property. We then need to consider a generalized Kullback-Leibler (KL)
divergence which extends the KL divergence to non-negative functions which do not necessarily integrate to
1. To define this extension, let us note that for any g1, g2 non-negative, measurable functions defined on Rd,
such that

∫
(g1 + g2)dλ < ∞, we have :

−
∫

log(g1/g2)g2dλ+

∫
(g1 − g2)dλ ≥

∫
(
√
g1 −

√
g2)

2dλ. (6)

In view of this inequality, we consider the following definition for the generalized KL divergence : for any f
and f0 density functions on Rd, and any set S ⊂ Rd, let

KLS(f0∥f) = −
∫
S

log(f/f0)f0dλ+

∫
S

(f − f0)dλ.

As a direct consequence of (6), we have the following result.

Lemma 1. We have

KLS(f0∥f) ≥
∫
S

(
√

f −
√

f0)
2dλ.

Consequently, KLS(f0∥f) = 0 if and only if f = f0 a.e. on S.
Up to terms without influence on the optimization, the criterion optimized in (5) is an approximation of

the KLS divergence, and this explains the role of β̂n and γ̂n. Let us point out that even in the case where
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the densities in the model are supported on the compact S, such that γ̂n = 1, it is still likely that β̂n < 1,
and thus β̂n should be considered in (5).

3 Convergence results for the lack-of-fitness statistics

3.1 The representation of the minimiser of a convex process

A key result used for our theoretical results is an extended version of the “Basic Corollary” given in [21],
which we present below. The proof is presented in the Supplementary Material.

Lemma 2. Let 0 ≤ an, n ≥ 1, be sequence of numbers such that an → ∞. Let An : [0, an] → R, n ≥ 1, be a
sequence of random convex function such that, for all g ≥ 0,

An(g) = {g2V/2− gZn}+ oP(1), (7)

where V > 0 is some constant and (Zn)n≥1 is a stochastically bounded sequence of random variables. Then

gn = V −1(Zn ∨ 0) + oP(1), where gn ∈ arg min
g∈[0,an]

An(g).

We will use this result with gn equal to a suitable normalization of the lack-of-fitness coefficient 1−α̂n. Let
us point out that the lack-of-fitness coefficient estimator is a M−estimator under non-standard conditions,
because the limit of the estimator is expected to be on the boundary of the parameter set. Lemma 2 is a
powerful theoretical tool allowing to handle general situations, including our non-standard setup.

3.2 Assumptions

For any vector a, ∥a∥ denotes its Euclidean norm. Let us recall that f0 is the true density of X from which
the independent sample X1, . . . , Xn is drawn. It can depend on n under the alternative hypotheses H1,n.

Assumption A. The set S ⊂ Rd from Definition 1 is compact with nonvoid interior. A constant b exists
such that

0 < b ≤ inf
x∈S

f0(x) ≤ sup
x∈S

f0(x) ≤ b−1 < ∞.

Assumption B. The density f0 is twice differentiable on Rd, with squared integrable second order partial
derivatives that are uniformly bounded on S, and uniformly with respect to n.

Assumption C. The parameter set Θ of the model P, is a subset of some dΘ−dimensional Euclidean space.
Let θ be a pseudo-true value of the model, for example defined as in (3).
(a) A sequence {δn, n ≥ 1} ⊂ [0, 1] and a constant C > 0 exist such that

Q∗
n :=

∫
S

{
fθ − f0

}2
dλ ≥ Cδ2n. (8)

Moreover, we have supx∈S

∣∣fθ(x)− f0(x)
∣∣ = O(δn).

(b) The estimator θ̂n satisfies
∥∥∥θ̂n − θ

∥∥∥ = OP(n
−1/2), under the null hypothesis (where θ = θ0) and under

the alternatives H1,n.
(c) For any x ∈ S, θ 7→ fθ(x) is continuously differentiable. The gradient ∇θfθ(x) ∈ RdΘ is bounded on

Θ× S and a constant Cr exists such that

∀θ, θ′ ∈ Θ and ∀x ∈ S, ∥∇θfθ(x)−∇θfθ′(x)∥ ≤ Cr ∥θ − θ′∥ .

Assumption D. The kernel function K : Rd → R≥0 integrates to 1 and takes one of the two following forms,

(a) K(x) ∝ K(0)(∥x∥) or (b) K(x) ∝
d∏

k=1

K(0)(|xk|),
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where K(0) : [0, 1] → R≥0 is of bounded variation. The bandwidth sequence satisfies

nhd
n/ log(n) → ∞ (variance condition), nhd+4

n → 0 (bias condition).

Assumption A imposes constraints on the choice of S in order to avoid the parts of the support with very
low or very high probability. These parts would require a more complex control of quantities related to the
nonparametric estimator of the density. In the empirical study section, we use a simple definition of S using
some fixed extreme quantiles. Note that the choice of S may also be guided by the practitioner’s purposes,
who may be interested in focusing on specific parts of the support of X. Assumption B imposes standard
regularity conditions on the density model and the density defining the deviation from the model. Condition
(a) in Assumption C introduces a distance between the model and the true density of the data. Under the
null hypothesis H0 we necessarily have Q∗

n = δn = 0, ∀n ≥ 1, while δn > 0 is expected under the alternative
hypotheses H1,n. Combining Assumptions A and B, we get

Cb2δ2n ≤ E

[{
fθ0(X)− f∗(X)

f0(X)

}2

IS(X)

]
≤ λ(S)b−2 sup

x∈S

∣∣fθ(x)− f0(x)
∣∣2 = O(δ2n),

an this double inequality, determined by f0 but also by the set S, the model P and the M−estimation
method, will be used to examine the power of our test. Conditions (b) and (c) in Assumption C introduce
mild conditions on the model P that are often encountered in M−estimation; see, for example, [19] and
[22]. Finally, the conditions on the kernel function and the bandwidth range in Asssumption D are mild. In
order to obtain the technical results involving the density kernel estimators presented in the Supplementary
Material, it is very convenient to consider a symmetric, compactly supported kernel K. However, in our
implementation, we utilize the Gaussian kernel, supported on Rd. Note that, in practice, it can be considered
as compactly supported because its integral over, say, [−4, 4] is very close to 1. The conditions imposed on
the bandwidth guarantee the uniform convergence of the kernel density estimator [see, e.g., 23]. A range of
bandwidths comparable to that we consider is required for the tests based on L2−distance, see [8]. Our bias
condition forces the bias of the kernel estimator to be negligible compared to the variance, which is required
to derive a pivotal test statistics. Similar conditions are required for the Bickel and Rosenblatt [6] estimator,
see also [24].

3.3 Main results

Let us introduce some more notation. When f is a function defined on Rd, we write fi instead of f(Xi), such
for instance f0,i and IS,i instead of f0(Xi) and IS(Xi), respectively.

Our main results are obtained by applying Lemma 2 to a suitable objective function An(g) derived from
the function of α maximized in (5). To build the function An(g), we use Taylor expansion, with respect to α,
of the function in (5), next suitably rescale α, and finally add some centering terms that do not depend on α.
The details are given at the beginning of the proof of Theorem 1, in the Appendix. The following preliminary
results, investigates the Taylor expansion terms related to Zn and V in (7). The first result, which is valid
under the null and the alternative hypotheses H1,n, concerns the linear and the quadratic terms related to
the nonparametric density estimator in the Taylor expansion of the objective function, that are

M (np)
n =

1

n

n∑
i=1

(
f̂LOO
n,i − f0,i

f0,i
IS,i − β̃n

)
and Q(np)

n =
1

n

n∑
i=1

(
f̂LOO
n,i − f0,i

f0,i

)2

IS,i,

respectively. Here, β̃n =
∫
S
(f̂n − f0)dλ is a centering term.

Lemma 3. Suppose that Assumptions A, B and D are fulfilled. Then, under H0 and H1,n,

hd/2
n nM (np)

n ⇝ N (0, 2vKλ(S)),

and
hd
nnQ

(np)
n → vKλ(S), in probability,

where vK =
∫
K2(u)du, and ⇝ denotes convergence in distribution.
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The second preliminary result concerns terms involving the model based estimator :

M (p)
n =

1

n

n∑
i=1

(
fθ̂n,i − f0,i

f0,i
IS,i − γ̃n

)
, Q(p)

n =
1

n

n∑
i=1

(
fθ̂n,i − f0,i

f0,i

)2

IS,i,

and

C(p,np)
n =

1

n

n∑
i=1

fθ̂n,i − f0,i

f0,i

f̂LOO
n,i − f0,i

f0,i
IS,i. (9)

Here, γ̃n =
∫
S
(fθ̂n −f0)dλ is a centering term. These quantities have a different behavior under H0 and H1,n.

Lemma 4. Suppose that Assumptions A to C hold true, and δn from Condition (a) in Assumption C is such
that either δn ≡ 0 or nδ2n → ∞. Then

nM (p)
n = OP(n

1/2δn) +OP(1).

Moreover, a non-random, positive and bounded away from zero sequence {un, n ≥ 1} exists such that

nQ(p)
n = nδ2n × {un + oP(1)}+OP(1).

The third preliminary result concerns a term involving both the model based and model free estimators.

Lemma 5. Suppose that Assumptions A to D hold true, and δn from Condition (a) in Assumption C is such
that either δn ≡ 0 or nδ2n → ∞. Then

nC(p,np)
n = OP(

√
nh2

n) +OP(1) +OP(nh
2
nδn) +OP(

√
nδn).

As a consequence of the preliminary lemmas, we deduce that whenever fθ = f0, which is the case under

H0, the linear terms M
(p)
n , Q

(p)
n and the cross-products term C

(p,np)
n are negligible compared to M

(np)
n as soon

as nhd+4
n → 0. As a consequence, the term h

d/2
n nM

(np)
n will determine the weak convergence of the sequence

of lack-of-fitness coefficients (1− α̂n) under H0.
We now derive the asymptotic behavior of the lack-of-fitness coefficient. We first study the behavior under

the null composite hypothesis (1).

Theorem 1. Suppose that Assumptions A to D are fulfilled. Under H0,(
vKλ(S)

2hd
n

)1/2

(1− α̂n)⇝ N (0, 1) ∨ 0,

where ⇝ denotes convergence in distribution, vK =
∫
K2(u)du.

Corollary 1. Let a ∈ (0, 1/2) and za be the a−th quantile of the standard normal law. Under the assumptions
of Theorem 1, the test defined by

I
({

vKλ(S)h−d
n /2

}1/2
(1− α̂n) ≥ z1−a

)
, (10)

has asymptotic level a.

3.4 Power study

Under the alternative hypotheses where fθ ̸= f0, the power of our test is expected to be driven by the

quadratic term Q
(p)
n . Let us first discuss the case of alternatives hypotheses ‘slowly’ converging towards H0,

that is the case where δn from Condition (8) satisfies

nhd
nδ

2
n → C, 0 < C ≤ ∞. (11)

This includes the alternative hypotheses where f0 does not approach the model P. Under the bias condition
nhd+4

n → 0 imposed in Assumption D, condition (11) means that the squared convergence rate of the LOO
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kernel estimator, given by Q
(np)
n , is negligible compared to δ2n. By Lemma 4, it also negligible compared to

Q
(p)
n . We show in equation (19) in the Appendix that in this case, a constant CC exists, such that α̂n ∈

[0, CC] ⊂ [0, 1) with probability tending to 1. In particular, α̂n = oP(1) when C = ∞. This means that

h
−d/2
n (1− α̂n) → ∞ in probability, and our test is consistent against H1,n if δn satisfies (11). Let us note that

nhd
nδ

2
n = nhd+4

n × (h−2
n δn)

2, and given our bias condition nhd+4
n → 0, the condition (11) necessarily requires

h−2
n δn → ∞.
By a more refined analysis, we will show that our test is also consistent against alternatives H1,n defined

by sequences δn, n ≥ 1, such that nhd
nδ

2
n → 0 as long as

nhd/2
n δ2n → ∞ and h−2

n δn → ∞. (12)

This case requires a specific treatment because when nhd
nδ

2
n → 0 we get α̂n → 1 in probability. However, the

second part of condition (12) guarantees that the rate of Q
(p)
n dominates those of C

(p,np)
n and M

(np)
n . Then,

h
−d/2
n (1− α̂n) still converges to infinity in probability and our test is able to detect H1,n.

Theorem 2. Suppose that assumptions of Theorem 1 are fulfilled. Then, under the alternative hypotheses
H1,n satisfying either (11) or (12), for any C > 0,

P
(
h−d/2
n (1− α̂n) > C

)
→ 1,

and thus the test defined by (10) is consistent.

The condition in (12) can be rewritten under the form

δn ≫ h2
n + {nhd/2

n }−1/2. (13)

The right-hand side is minimized by

hn ∼ n− 1
4+d/2 . (14)

This means that the fastest decreasing rate δn allowed by (12) is δn ≫ n−2/(4+d/2). In the case of d = 1 we

get δn ≫ n−4/9. In particular, assuming in (13) that h2
n ≪ {nhd/2

n }−1/2, i.e., nh
4+d/2
n → 0, the deviation δn

can be chosen as δn ≫ {nhd/2
n }−1/2. The same detection rate is established for the Bickel and Rosenblatt [6]

test [see 8, Theorem 3.5, case (c2)].

Remark 2. A careful reading of the proof of Theorem 2 reveals that consistency may be achieved even when
the condition h−2

n δn → ∞ is not satisfied. Indeed, the proof is based on the fact that

nhd/2
n

{
Q(p)

n − C(p,np)
n −M (p)

n

}
≥ nhd/2

n δ2n{un + oP(1)} → ∞, in probability, (15)

with the non-random sequence {un, n ≥ 1} remaining above 0. On the one hand, this is a consequence of

Lemma 4 from which we have M
(p)
n = oP(Q

(p)
n ) as soon as nδ2n → ∞. On the other hand, by Lemma 4 we have

Q
(p)
n = δ2n{un + oP(1)}. Consequently, nhd/2

n Q
(p)
n → ∞ in probability, as soon as nh

d/2
n δ2n → ∞, as imposed

by the first part of the condition (12). Finally, the proof of Lemma 5, given in the Supplement, indicates that

if nδ2n → ∞, C
(p,np)
n = Ch2

n × {Gn(S) + oP(1)}, where

Gn(S) =

∫
S

fθ − f0
f0

tr{∇2f0}dλ,

and C is a positive constant depending on the kernel K. Here, for any multivariate function f , ∇2f denotes
the Hessian matrix of f . It now becomes clear the role of the second part of the condition (12) : if h−2

n δn → ∞,

then C
(p,np)
n = oP(δ

2
n) and, regardless the sign of Gn(S), the term C

(p,np)
n is negligible compared to Q

(p)
n . The

consistency of the test is then guaranteed by (15), obtained using h−2
n δn → ∞. However, we deduce from above

that the consistency may be achieved even when the condition h−2
n δn → ∞ is not satisfied, depending on the

sign of Gn(S), determined by S, f0 and the M−estimation approach used with the model P. The question of

how to exploit the behavior of C
(p,np)
n to obtain a more powerful test remains open.
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4 Simulation study

In this section, we investigate the finite sample behavior of our lack-of-fitness test when testing the Gaussian
distribution assumption with i.i.d. data. The lack-of-fitness test is compared with L2-distance lack-of-fit
testing approaches in the spirit of [6] and revisited by [8, 24]. We also consider the BHEP test [12, 13, 16],
which will here serve as a benchmark. On contrary to our test or the L2-distance type test, BHEP is specifically
designed to detect departures from the normal distributions. Our simulation study is carried out using the R
software.

4.1 Implementation aspects

Recall that f0 : Rd → R≥0 denotes the true density of X from which the independent vectors X1, . . . , Xn are
drawn, and the hypothesis of interest here is

H0 : f0 ∈ {fθ : θ ∈ Θ ⊂ RdΘ},

where fθ is the multivariate Gaussian density function with unknown mean µ and covariance Σ. In this case,
the components of the parameter θ are given by µ and the entries of the lower triangular part of Σ. The
dimension of the parametric model is therefore dΘ = d + d(d + 1)/2. The components of MLE are then
obtained from the empirical mean and covariance computed with the sample X1, . . . , Xn.

Lack-of-fitness calculation.

The lack-of-fitness coefficient α̂n ∈ [0, 1] is computed using (5) where the parametric estimate is the MLE

fθ̂n and the LOO kernel estimates f̂LOO
n,i are constructed using the Gaussian kernel K, which in practice

can be considered being compactly supported. Strictly speaking, the choice of the Gaussian kernel violates
Assumption D, but, as explained below, it facilitates a straightforward implementation of L2-distance based
tests. The set S is defined as the rectangle [q

1
, q1] × . . . × [q

d
, qd] where, for any 1 ≤ k ≤ d, q

k
(resp.

qk) is computed as the η−th (resp. (1 − η)−th) empirical quantile of the 1-dimensional sample of the k-th
coordinates of the observations. We set η = (1− .951/d)/2 which, in our setup where the Xi have independent
components (see below), means that on average we drop 5% of the data. Note that in our setup, both the

integrals β̂n and γ̂n have an explicit expression depending on the standard normal distribution function.
Given the bandwidth hn, we use the function optimize in R to compute α̂n in (5). Finally, the lack-of-fitness

(LoF) test statistic we use is h
−d/2
n {1− α̂n}.

Alternative approaches.

Some of the competing lack-of-fit approaches we consider are inspired by the test introduced in [6] which
follows from the L2-distance between the nonparametric and the model. The test statistics is defined as

d̂21n =
h
−d/2
n√
2σ2

{
(nhd

n)

∫ {
fθ̂n(x)− f̂n(x)

}2

dx− vK

}
.

with σ2 =
∫
(
∫
K(u)K(u + v)du)2dv

∫
f̂n(x)

2dx. Following [8, Section 5], some explicit formulas are given
when a Gaussian kernel is used and when the considered parametric family is Gaussian. We use the same
expression in our implementation of the test. A bias corrected variant, proposed in [8] and further studied in
[24], is based on the following “smoothed” test statistics

d̂22n =
h
−d/2
n√
2σ2

{
(nhd

n)

∫ {
(fθ̂n ⋆ Khn)(x)− f̂n(x)

}2

dx− vK

}
.

In case the kernel is Gaussian and the parametric family is Gaussian, explicit formula similar to d̂21n are
available based on properties on the convolution product between Gaussian densities. Let BR1 and BR2 be
the tests based on the tests statistics d̂21n and d̂22n, respectively.

For the BHEP test we use the implementation proposed in [25] and available in the mnt R package.
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Bandwidth choices.

Both the LoF and the two BR test statistics depend on a bandwidth parameter which plays a crucial role
as it calibrates the nonparametric estimate and thus affects the performance of the tests. There is no reason
to choose the same bandwidth for the different test statistics, and the asymptotic theory provides little
information on how to choose the bandwidths with finite samples in order to ensure accurate level and power.

We consider a set of bandwidths defined as the grid

Hn =
{
cσ̂nn

−1/(4+d/2) : c = 0.5, 0.6, . . . 2
}
, (16)

where σ̂n is a scaling parameter. The rate of decrease of the bandwidth is set to be consistent with the
discussion in Section 3.4 and faster than the rate in (14). To simplify the computations, we used the fact
that the generated Xi have the same variance (see below) and computed the scale factor σ̂n as the empirical
standard deviation using all the nd vector components of the data. Alternatively, the practitioner can pre-
process the data by standardizing each component separately, and define Hn in (16) without the σ̂n factor.

For the LoF, we introduce the following data-driven choice of h on a given grid. Given the maximum
likelihood approach to estimate the parameter θ̂n and a value of α, we here follow a similar idea for choosing
h by solving

ĥn ∈ arg max
h∈Hn

{
n∑

i=1

IS(Xi) log
(
f̂LOO
n,i

)
− nβ̂n

}
.

In this way, both θ̂n and ĥn results from optimizing the likelihood. When selecting α̂n next, this is meant
to put the nonparametric estimate at its advantage, in the context of our likelihood-based approach, and
thereby increasing the power of the test. The grid Hn is scaled and thus depends on the sample, but Hn does
not changed when calibrating the level using the parametric bootstrap described below. Let LoFlik be the

test obtained with the statistic the statistic ĥ
−d/2
n {1− α̂n} and the corresponding bootstrap critical values.

To the best of our knowledge, there is no effective data-driven selection of the bandwidth for the BR
type tests. Therefore, for comparison purposes, in our simulation study we consider an infeasible bandwidth
choice that favours any smoothing-based test and apply it to the two BR tests and also to the LoF test. More
precisely, for each of the BR1, BR2 and LoF, we select the bandwidth that gives the best performance among
all bandwidths in Hn and leads to a similar or better level (after the same parametric bootstrap calibration)
than that obtained with the LoFlik approach described above. Similar or better level means a level closest
to the nominal one, otherwise closest to the level of LoFlik. The best performance is measured using the
average of the rejection frequencies over the eight deviations from the null hypothesis. Let LoFbest, BR1best
and BR2best be the tests obtained with this infeasible bandwidth rule using the statistics h

−d/2
n {1− α̂n}, d̂21,n

d̂22,n, respectively. Note that the infeasible bandwidth rule we propose gives a fixed bandwidth that does not
change across different generated samples, while the data-driven bandwidth used for LoFlik depends on the
sample.

Parametric bootstrap quantile calibration.

In the context of parametric density models, a simple idea for calibrating the level of the test is to use the
parametric bootstrap. Given a data set X1, . . . , Xn, the B bootstrap samples of size n are independently
generated from fθ̂n , and the bootstrap test statistic values are simply the B values obtained by applying the
test statistic to the bootstrap samples. For a level a ∈ (0, 1/2), the bootstrap critical value is given by the
(1−a)−th empirical quantile of the B+1 test statistic values obtained with the data set X1, . . . , Xn and the
B bootstrap samples. The parametric bootstrap was used for all the tests we consider in the comparisons,
that are the LoF, BR1, BR2, and the BHEP tests.

Data generation process.

We now describe the distribution of X under the alternative hypotheses H1,n. The deviations from the Gaus-
sian model are constructed as component-wise mixture models. More precisely, with X = (X(1), . . . , X(d))

we generate each component X(k), 1 ≤ k ≤ d independently as follows. Let X
(k)
0 ∼ N (µ

(k)
0 , 1), B(k) ∼ B(δ)

and X
(k)
∗ ∼ f

(k)
∗ be independent variables, and let

X(k) = (1−B(k))X
(k)
0 +B(k)X

(k)
∗ .
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Here, µ0 = (µ
(1)
0 , . . . , µ

(d)
0 ) is the true mean vector under the null hypothesis, while true covariance is Σ0 = Id.

The multivariate density f∗ = f
(1)
∗ · · · f (d)

∗ defines the direction of the deviation from the null hypothesis, and
δ determines the magnitude of this deviation. When δ = 0, the Bernoulli variables B(k) are all degenerate
and equal to 0, and this corresponds to the null hypothesis. When δ > 0, the true distribution of X is a

mixture of up to 2d components. For example, with d = 2, θ0 = (µ
(1)
0 , µ

(1)
0 , 1, 0, 1), and

f0(x1, x2) = (1− δ)2fθ0(x1, x2) + δ(1− δ)f
(1)
∗ (x1)fµ(2)

0
(x2)

+ δ(1− δ)f
µ
(1)
0
(x1)f

(2)
∗ (x2) + δ2f

(1)
∗ (x1)f

(2)
∗ (x2),

where f
µ
(1)
0

and f
µ
(2)
0

are the densities of normal distributions with variance 1 and mean equal to µ
(1)
0 and

µ
(2)
0 , respectively. When µ

(1)
0 = µ

(2)
0 and f

(1)
∗ = f

(2)
∗ , the true density of X under the alternative hypotheses

is a mixture of three Gaussian densities.
In our simulation setups we consider

d ∈ {2, 3}, δ ∈ {0, 0.05, 0.1, . . . , 0.4}, B = 1999.

Moreover, n ∈ {50, 100, 150, 250}, and the level of the test was set to a = 0.05. Finally, we consider four types
of deviations from H0. The first two are Gaussian type perturbations given by

f
(k)
∗ ∼ N(2, 1) (Model I) and f

(k)
∗ ∼ N(2, 0.25) (Model II), 1 ≤ k ≤ d,

On the alternative hypotheses, with d = 2 and d = 3 the true distribution of X is a mixture of three and
four multivariate Gaussian densities, respectively. We also consider non Gaussian deviations given by

f
(k)
∗ ∼ χ2

1 (Model III) and f
(k)
∗ ∼ χ2

1 − 1 (Model IV), 1 ≤ k ≤ d,

respectively.

4.2 Bandwidth sensitivity analysis

A first goal here is to investigate the sensitivity to the bandwidth choice for the smoothing-based tests LoF,
BR1 and BR2. We do not yet consider any particular rule for choosing the bandwidth, but rather give a
summary of the results obtained considering all the 16 bandwidths in Hn defined in (16). The boxplots of the
rejection frequencies are depicted in Figure 1. The rejection frequencies are computed using 1000 independent
samples. We consider each method LoF, BR1 and BR2 under the null hypothesis and the deviations like in
Models I to IV, when d = 2, n = 250 and hn ∈ Hn. Each boxplot corresponds to a type of test, a type of
deviation from the null hypothesis, an amplitude of the deviation δ, and is constructed from 16×1000 points.
Thus, the sizes of the boxplots reveal the variability of the rejection frequency with respect to the choice of hn.

Looking first at the effective level that is achieved by the different test methods, it is clear that the LoF
and BR2 are the closest to the nominal level of 0.05. They both show small variability with respect the
bandwidth in this situation. The BR1’s level is lower than the nominal one, across all the setups. Moreover,
while the deviation from the null is getting higher, the LoF is the first to detect the alternative. This occurs
in all the setups we consider. Moreover, in other experiments not reported here, the LoF also shows the best
power when compared to BR1 and BR2 with other sample sizes (n = 50, 100, 150) and dimension (d = 3).

To summarize, Figure 1 provides evidence that the LoF approach is much less sensitive to the bandwidth
choice compared to the competitors, and is expected to have good level and power for a larger range of
bandwidths than the BR type tests.

4.3 Results for selected bandwidths

We now present a comparison between the test LoFlik and the tests LoFlik, as well as the infeasible rule
used for LoFbest, BR1best, BR2best, introduced in Section 4.1. The aim is to show that the practical LoFlik

procedure achieves good performance and compares favorably to all the other three ‘optimal bandwidth’
approaches which cannot be used in practice. As already mentioned, in the comparison we also include results
from the BHEP test which will serve as benchmark. The results with the type of deviation from the null
hypothesis corresponding to Model I, Model II, Model III and Model IV in the cases d = 2 and d = 3, are
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Fig. 1 Boxplot of rejection frequency for LoF, BR1 and BR2 statistics for Model I (top) to Model IV (bottom)
when n = 250 and d = 2. Each boxplot represents the distribution of the rejection frequency obtained from 1000
independent Monte-Carlo experiments when varying the bandwidth within the range Hn in (16). On the x−axis is
represented the different deviations δ from the null hypothesis.
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Fig. 2 Rejection frequency obtained from 1000 Monte-Carlo experiments with LoFlik, LoFbest, BR1best, BR2best and
BHEP statistics for H0 and H1n obtained with Model I (Gaussian mixture with different means and same variance),
dimension d = 2 (top) and d = 3 (bottom), sample sizes n ∈ {50, 100, 150, 250}, the bandwidth range Hn in (16).
Critical values computed by parametric bootstrap with B = 1999.

shown in Figure 2, Figure 3, Figure 4, Figure 5, respectively. First of all, all the approaches achieve good and
comparable results under the null as the levels are close to the nominal level a = 0.05. Comparing the power
of the tests, the LoFbest test clearly outperforms the BR1best and BR2besttest, for almost all n, dimensions d
and practically all the types of deviation from the null hypothesis. The only situation where the BR1best has
a slight advantage is when the alternative is a Gaussian mixture with different mean and variance (i.e., in
the Model II case) and d = 3. In particular, the difference between the two BR and two LoF tests is highly
significant with a small sample size. In a consistent way across the models, the BHEP alternative achieves
the best results among most of the considered setups, though in some situations LoFlik shows better power.

Note that in case of Model I, when δ is sufficiently large, the different Gaussian distributions involved
tend to overlap, making their mixture indistinguishable from a normal distribution with large variance. This
explains the phenomenon observed in Figure 2 where : for δ in the middle of the range of δ, the different tests
are able to detect the departure from the null hypothesis, but when δ further increases their power decreases.

5 Discussions and conclusion

As noted by [17], the idea of combining parametric and nonparametric estimators in a two-component mixture
is a general principle that, to the best of our knowledge, has not been much explored. In this paper we use this
idea to introduce a new goodness-of-fit test for parametric density models. The test statistic does not require
a bias correction and, under the null hypothesis, has a simple limit in distribution that does not depend
on either the model or the true density. We call our model checking approach lack-of-fitness. [18] propose a
related procedure but in a regression context where the estimator of the mixture weight has a closed form.
Our statistic requires a bandwidth choice for the nonparametric estimator. We here propose to choose the
bandwidth which maximizes the test statistic on a finite grid. The critical values of this adaptive version of
our test can be easily calibrated by parametric bootstrapping.

Let us discuss some possible extensions of the lack-of-fitness principle. We focus on how the parametric
model P can be made more general. First, for simplicity, we have assumed that the parameter θ0 is identifiable.
However, a careful inspection of the proofs reveals that we have used this condition to simply control the
difference between the fθ and the parametric estimated density fθ̂n . This control was used to derive the rates
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Fig. 3 Rejection frequency obtained from 1000 Monte-Carlo experiments with LoFlik, LoFbest, BR1best, BR2best
and BHEP statistics for H0 and H1n obtained with Model II (Gaussian mixture with different means and variance),
dimension d = 2 (top) and d = 3 (bottom), sample sizes n ∈ {50, 100, 150, 250}, the bandwidth range Hn in (16).
Critical values computed by parametric bootstrap with B = 1999.
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Fig. 4 Rejection frequency obtained from 1000 Monte-Carlo experiments with LoFlik, LoFbest, BR1best, BR2best
and BHEP statistics for H0 and H1n obtained with Model III (Chi-square deviation), dimension d = 2 (top) and
d = 3 (bottom), sample sizes n ∈ {50, 100, 150, 250}, the bandwidth range Hn in (16). Critical values computed by
parametric bootstrap with B = 1999.
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Fig. 5 Rejection frequency obtained from 1000 Monte-Carlo experiments with LoFlik, LoFbest, BR1best, BR2best
and BHEP statistics for H0 and H1n obtained with Model IV (centered Chi-square deviation), dimension d = 2 (top)
and d = 3 (bottom), sample sizes n ∈ {50, 100, 150, 250}, the bandwidth range Hn in (16). Critical values computed
by parametric bootstrap with B = 1999.

of the different terms in the log-likelihood decomposition with respect to α. The same rates can be derived
by using, for example, the uniform convergence rates of empirical processes and U−processes indexed by
Vapnik-Chervonenkis classes of functions. We thus claim that the assumption of an identifiable parameter θ0
can be relaxed.

Second, we have considered the problem of testing a model P against nonparametric alternatives. How-
ever, the lack-of-fitness principle also applies to multiple non-overlapping (or separated) parametric models
P1, . . . ,PK . See [26–28] for some references on this challenging problem. In this case, we can first construct
the K density estimators separately in each model. Next, we can use these K estimators and define fθ̂n as
their mixture, with the mixture weights fitted by maximum likelihood. If one of the models P1, . . . ,PK is
correct, then the mixture weight corresponding to the estimators from that model is expected to converge
to 1, and all the other K − 1 mixture weights are expected to converge to 0. Finally, we apply our lack-of-
fitness approach with this fθ̂n and a model-free LOO density kernel estimator. The test statistic is the one
studied in this paper which, under mild conditions, has the limit distribution given in Theorem 1 if one of
the parametric models is correct. Parametric bootstrap remains a simple way to calibrate the critical values
with finite samples.

Before discussing two further extensions, it should be noted that the lack-of-fitness principle consists in
mixing an estimator from a ‘restricted model’ (e.g. parametric) with a ‘model free’ one (e.g. nonparametric).
The theory supporting the lack-of-fitness principle is based on two key aspects. First, a convergence in
distribution result as in Theorem 1, which is a consequence of the properties of the ‘model free’ density
estimator. Second, the rate of convergence for the estimator derived in the ‘restricted model’ that is faster
than that of the nonparametric density estimator. This suggests that the lack-of-fitness principle can be
applied to more complex situations. For example, let us consider a semiparametric model of elliptical densities
Pe = {f(x) ∝ g((x − µ)⊤Σ−1(x − µ)) : µ ∈ Rd,Σ ≫ 0}, where g is some unknown univariate function
such that

∫
Rd g(x

⊤x)dx = 1. The mean vector µ and the positive definite matrix Σ can be estimated using

the empirical mean and covariance, respectively. Given the estimates µ̂, Σ̂, to construct a semiparametric
estimator of the density f0 in Pe it suffices to consider the 1−dimensional nonparametric kernel density
estimator of the transformed data (Xi − µ̂)⊤Σ̂−1(Xi − µ̂). See [29]. The semiparametric estimator of f0 can
play two roles. On the one hand, it can play the role of a ‘model free’ estimator if the function g is assumed
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to be known in Pe. This would provide a test for a parametric family of elliptical distributions (Gaussian,
multivariate t−distribution...) against semiparametric alternatives. On the other hand, the semiparametric
estimate of f0 can play the role of a ‘restricted model’ estimator and be compared with the fully nonparametric
kernel density estimator using the lack-of-fitness approach, leading to a nonparametric test of the ellipticity
assumption.

Finally, we discuss the problem of testing conditional independence using densities, or equivalently, the
problem of nonparametric significance testing for conditional densities. Suppose that X = (U, V,W ) ∈ Rd

with U, V and W random vectors of dimensions dU , dV and dW , respectively. The null hypothesis is the
conditional independence U ⊥ V | W . Let fU |W (resp. fV |W ) (resp. fW ) be the conditional density of U given
W (resp. the conditional density of V given W ) (resp. the density of W ). Under the condition U ⊥ V | W , the
density f0 of X can be factorized as f0 = fU |W fV |W fW . Then, the fθ̂n above in the paper can be replaced by
the product of the there kernel estimators of the conditional densities fU |W , fV |W and the density fW . This
involves smoothing in the dimensions dU + dW , dV + dW and dW , respectively. On the other hand, f0 can be
estimated by the LOO density estimator in the dimension d = dU+dV +dW . Since d > max{dU+dW , dV +dW },
using appropriate bandwidths for the kernel estimators, our lack-of-fitness approach can be used, and the
behavior of the lack-of-fitness coefficient under the conditional independence is that given in Theorem 1.

In conclusion, we would like to endorse the opinion of [17] that the lack-of-fitness principle is a resourceful
idea that deserves more extensive investigation in the future.

Appendix

Proof of Theorem 1. Since f0 ∈ P, we have infi fθ̂n,i > 0, which guarantees the existence of α̂n in (5).

Moreover, by standard results on the uniform convergence of the kernel density estimator [see, e.g., 23], with
probability tending to 1,

inf
α∈[0,1]

min
i=1,...,n

{αfθ̂n(Xi) + (1− α)f̂LOO
n,i } ≥ b/2.

Next, we slightly modify the objective function in (5) by centering it using quantities that are not dependent
on α. More precisely, let

Ln(α) =

n∑
i=1

{
log

(
αfθ̂n(Xi) + (1− α)f̂LOO

n,i

f0,i

)
IS,i

}
− (1− α)nβ̃n − αnγ̃n,

with β̃n =
∫
S
(f̂n − f0)dλ γ̃n =

∫
S
(fθ̂n − f0)dλ, and note that α̂n ∈ argmax[0,1] Ln(α). For any g ≥ 0, let

αn,g = 1− hd/2
n g and ĝn = h−d/2

n (1− α̂n).

Since αn,ĝn = α̂n, the value ĝn is a point of maximum of the rescaled version of Ln :

ĝn ∈ argmax
g∈[0,h

−d/2
n ]

Ln(αn,g).

To apply Lemma 2, is actually more convenient to define

An(g) = −Ln(αn,g) + nM (p)
n − 1

2
nQ(p)

n ,

which is a convex random function of g, and to notice that

ĝn ∈ argmin
g∈[0,h

−d/2
n ]

An(g).

By second order Taylor expansion of the function, we have

log(1 + (1− α)u+ αv) ≈ (1− α)u+ αv − 1

2
(1− α)2u2 − 1

2
α2v2 − α(1− α)uv,

for small values of |u|, |v|. We can write

An(g) = −(1− αn,g)nM
(np)
n + (1− αn,g)nM

(p)
n
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+
1

2
(1− αn,g)

2nQ(np)
n +

1

2
(α2

n,g − 1)nQ(p)
n

+ (1− αn,g)αn,gnC
(p,np)
n +Rn(g)

=: −gZn + g2V/2 +Dn(g), (17)

with Zn = h
d/2
n nM

(np)
n , V = vKλ(S), C

(p,np)
n defined in (9) and Rn(g) is a Taylor expansion remainder.

Using that (α2 − 1) = 2(α− 1) + (α− 1)2 and (1− α)α = (1− α)− (1− α)2, we rewrite

Dn(g) = −g ×
{
hd/2
n nQ(p)

n − hd/2
n nC(p,np)

n − hd/2
n nM (p)

n

}
+ g2 ×

{
1

2

[
hd
nnQ

(np)
n − V

]
+ hd/2

n ×
[
1

2
hd/2
n nQ(p)

n − hd/2
n nC(p,np)

n

]}
+Rn(g). (18)

The reminder Rn(g) is clearly negligible. By the Lemmas 4 and 5, under H0,

∀g ∈ [0, h−d/2
n ], Dn(g) = oP(1).

The application of Lemma 2 then implies

ĝn = h−d/2
n (1− α̂n) = V −1

(
hd/2
n nM (np)

n ∨ 0
)
+ oP(1).

Combining Slutsky’s Lemma and Lemma 3 leads to the conclusion, under H0.

Proof of Theorem 2. Consider first departures from the null hypothesis with δn satisfying (11). We show in
the following that in this case, α̂n ≤ c with probability tending to 1, where c is some constant in [0, 1). Indeed,

using the Taylor expansion used in the proof of Theorem 1, but without adding any longer nM
(p)
n − nQ

(p)
n /2

to Ln(α), we get

Ln(α) ≈ αnM (p)
n + (1− α)nM (np)

n

− (1/2)(1− α)2nQ(np)
n − (1/2)α2nQ(p)

n − α(1− α)nC(p,np)
n + reminder,

with a reminder term that can be shown to be sufficiently small, just as in Theorem 1. Lemma 4 implies

that nQ
(p)
n /(nδ2n) stays larger than C/2 with probability tending to 1. Moreover, by Lemmas 3, 4 and 5, we

get that nM
(np)
n /(nδ2n), nM

(p)
n /(nδ2n) and nC

(p,np)
n /(nδ2n) converge to zero in probability, provided (11) holds

true. Moreover, by Lemma 3, we have

nQ
(np)
n

nδ2n
=

nhd
nQ

(np)
n

nhd
nδ

2
n

→ C−1 × vKλ(S).

We then deduce

Ln(α)/(nδ
2
n) = −

{
C−1 × vKλ(S)

}
(1− α)2/2− nQ

(p)
n

nδ2n
α2/2 + oP(1).

By a simple modification of Lemma 2, we get that, with probability tending to 1,

0 ≤ arg min
α∈[0,1]

{−Ln(α)/(nδ
2
n)} = arg max

α∈[0,1]
Ln(α) = α̂n

≤ CC =:
C−1 × vKλ(S)

C/2 + C−1 × vKλ(S)
∈ [0, 1). (19)

In the regime for δn defined by (12) and the condition nhd
nδ

2
n → 0, we have α̂n → 1 in probability, and

we need a different justification. By Lemmas 4 and 5 and the condition h−2
n δn → ∞, we deduce

Rn := hd/2
n nQ(p)

n − hd/2
n nC(p,np)

n − hd/2
n nM (p)

n = nhd/2
n δ2n{un + oP(1)}.
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Under the alternative hypotheses, the decomposition (17)-(18) becomes

An(g) = −gZn + g2V/2− gRn + negligible terms.

Let C > 0 and define the event
En = {Rn > CV − Zn},

with Zn = h
d/2
n nM

(np)
n . Under the hypotheses H1,n, we have P(En) → 1. Let

ĝn = arg min
0≤g≤h

−d/2
n

An(g) and ĝC,n = arg min
0≤g≤h

−d/2
n

AC,n(g),

where AC,n(g) = −gCV + g2V/2 + negligible terms, with the same negligible terms as in the expression of
An(g). On the event En, we have ĝn ≥ ĝC,n. On the other hand, the functionAC,n(g)−An(g) is a linear function
of g, so AC,n(g) is also convex. The Lemma 2 implies ĝC,n = C + oP(1), and thus P ({ĝC,n ≥ C/2}) → 1. We
deduce that P ({ĝn ≥ C/2} ∩ En) ≤ P ({ĝn ≥ C/2}) → 1, and the result follows.

Supplementary information. The proofs of the Lemmas 2 to 5 above, and some additional technical
results are provided in a Supplementary Material.
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