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Introduction Univariate case

First steps: univariate case (1/2)

For BH a fBm with Hurst index H ∈ (0, 1),

E
[{

BH(t)−BH(s)
}2
]
= |t− s|2H , s, t ∈ R+

Estimating equation for the Hurst parameter :

H =
log
(
E
[{

BH(t)−BH(s)
}2])

2 log |t− s|
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Introduction Univariate case

First steps: univariate case (2/2)

Let X be a process defined on a subset of R, with non-differentiable sample paths

GKP (2022) : H(t0) ∈ (0, 1) and L(t0) > 0 exist such that

E
[
{X(t)−X(s)}2

]
≈ L(t0)

2|t− s|2H(t0), ∀s ≤ t0 ≤ t

for t and s close to t0

Estimating equation :

H(t0) ≈
log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
, t0 ∈ [t1, t2] ⊂ [t1, t3]

where
θ(t, s) = E

[
{X(t)−X(s)}2

]
and |t1 − t2| = 2|t1 − t3|.

Omar Kassi Directional Regularity 18th March, 2024 4 / 23



Introduction Univariate case

First steps: univariate case (2/2)

Let X be a process defined on a subset of R, with non-differentiable sample paths

GKP (2022) : H(t0) ∈ (0, 1) and L(t0) > 0 exist such that

E
[
{X(t)−X(s)}2

]
≈ L(t0)

2|t− s|2H(t0), ∀s ≤ t0 ≤ t

for t and s close to t0

Estimating equation :

H(t0) ≈
log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
, t0 ∈ [t1, t2] ⊂ [t1, t3]

where
θ(t, s) = E

[
{X(t)−X(s)}2

]
and |t1 − t2| = 2|t1 − t3|.

Omar Kassi Directional Regularity 18th March, 2024 4 / 23



Introduction Univariate case

First steps: univariate case (2/2)

Let X be a process defined on a subset of R, with non-differentiable sample paths

GKP (2022) : H(t0) ∈ (0, 1) and L(t0) > 0 exist such that

E
[
{X(t)−X(s)}2

]
≈ L(t0)

2|t− s|2H(t0), ∀s ≤ t0 ≤ t

for t and s close to t0

Estimating equation :

H(t0) ≈
log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
, t0 ∈ [t1, t2] ⊂ [t1, t3]

where
θ(t, s) = E

[
{X(t)−X(s)}2

]
and |t1 − t2| = 2|t1 − t3|.

Omar Kassi Directional Regularity 18th March, 2024 4 / 23



Introduction Motivation

Detour to non-parametric regression

Let (Xi, Yi), i = 1, . . . , n be data pairs observed under the model

Yi = f(Xi) + εi, i = 1, . . . , n,

where f : [0, 1]d → R and the Xi’s are i.i.d uniformly distributed on the hypercube

If f belongs to the anisotropic Hölder class, then under suitable assumptions, the
minimax rate of estimation is n−β/(2β+1), where β is the effective smoothness:

β−1 =

d∑
i=1

β−1
i ,

where βi is the regularity along dimension ei

In the isotropic case, the effective smoothness is given by

β−1 = d min
i=1,...,d

β−1
i .
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Introduction Motivation

Are you really isotropic?

Anisotropy / isotropy is often determined within the confines of the canonical basis
as it is a notion of smoothness along a dimension

But this is not the full story!

Let T be an open subset of R2, and f : R2 → R, and {u1, u2} be an orthonormal
basis, where the function f is βi-Hölder continuous along ui, for i = 1, 2

Let v ∈ S such that v = α1u1 + α2u2. Then we have

|f(t)− f(t−∆v)| ≤ L1|α1∆|β1 + L2|α2∆|β2
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Introduction Motivation

Let’s define things

Directional Regularity
Let X a continuous and non-differentiable stochastic process, u ∈ S a unit vector and
Hu : T → (0, 1). We say that the process X has a local regularity Hu in a point t ∈ T
along the direction u if a bounded function Lu : T → R+ exist such that :

θu(t,∆) := E

[{
X

(
t− ∆

2
u

)
−X

(
t− ∆

2
u

)}2
]
= Lu(t)∆

2Hu(t) +G(t,∆),

where G(t,∆) =
∆→0

o
(
∆2Hu(t)

)
. We call the map u 7→ Hu directional regularity.

If Hu does not depend on the direction u, we say X is isotropic

Otherwise, we call X anisotropic

Anisotropy is not just a notion of smoothness along a dimension, but also along a
direction
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Introduction Motivation

Let’s go to processes

Let u1,u2 be two unit vectors that spans R2, and H1 < H2 be two continuously
differentiable functions along u1, u2 respectively

Define the sum of two independent fractional brownian motions (fBms):

X(t) = B1(t1) +B2(t2), ∀t ∈ T ,

where (t1, t2) are the coordinates of t in the u1,u2 basis

For a small variation ∆, we have

E
[
{Bi(t−∆/2)−Bi(t+∆/2}2

]
= ∆2Hi , ∀t ∈ R+.

Independence of B1 and B2 implies:

E
[
{X(t−∆/2ui)−X(t+∆/2ui)}2

]
= ∆2Hi .

Using a lemma introduced soon, the sum of regularities when working in the
u1,u2 basis is H1 +H2 > 2H1, where the latter corresponds to the isotropic case!
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Introduction Setup

Back to Multivariate FDA

Observe an independent sample of random functions X(1), . . . , X(N) defined on
T , where T is an open subset of Rd

+. Focus on d = 2 throughout this talk.

Realisations of a stochastic process X : T → R, where E∥X∥22 < ∞ such that
⟨f, g⟩ =

∫
t∈T f(t)g(t)dt

Suppose that observations come in the form of (Y (j)(tm), tm), generated from

Y (j)(tm) = X(j)(tm) + ε(j)(tm), 1 ≤ j ≤ N, 1 ≤ m ≤ M0, tm ∈ T ,

where the errors are independent, centered random variables.

Goal: Formally introduce the notion of directional regularity in FDA, its estimation,
identification, and consequences
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Introduction Setup

The key lemma

Lemma

Assume that there exists basis vectors (u1,u2) ∈ S that spans R2 such that
Hu1 < Hu2 . Moreover, suppose that the functions Lu1 and Lu2 are continuously
differentiable. For any v ∈ S, we have the following dichotomy:

If v ̸= ±u2, then the regularity along v is Hu1 .

Otherwise, the local regularity along v is Hu2 .

Map v 7→ Hv can only take at most two possible values

Maximisation problem argmaxv∈S Hv admits two solutions u2 and −u2

Finding the maximising direction u2 is equivalent to finding the angle α ∈ [0, π)
between the two basis vectors e1 and u1:

argmax
v∈S

Hv = arg max
α∈[0,π)

Hu(α),

where u(α) = cos(α)e1 + sin(α)e2.
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Introduction Setup

The picture that says it all

Illustration of directional regularity
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Methodology Estimator

How to estimate α?

Let H1, H2 denote the regularity of X along u1 and u2 respectively, where
H1 < H2, and ⟨e1,u1⟩ = cos(α)

Proposition

Suppose that u1 ̸= ±ei, for i = 1, 2. Then for a process X satisfying (7) and any fixed
point t ∈ T , we have

|g(α)| =
(
θe2(t,∆)

θe1(t,∆)

) 1
2H

+O
(
∆β∧|H1−H2|

)
,

where g = tan1{H1 < H2}+ cot1{H1 > H2}, and H = min{H1, H2}.

Angles can be computed, up to a reflection, by taking the ratios of mean-squared
variations along the canonical basis
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Methodology Estimator

Plug-in estimators

Natural plug-in estimator for the mean-squared variations is then given by

θ̂ei(t,∆) =
1

N

N∑
j=1

{
X̃(j) (t− (∆/2)ei)− X̃(j) (t+ (∆/2)ei)

}2

, i = 1, 2, (1)

where X̃(j) denotes some observable approximation of X(j).

Regularity Hv can be estimated with

Ĥ =

{
mini=1,2

log(θ̂ei (t,2∆))−log(θ̂ei (t,∆))

2 log(2)
if θ̂ei(t, 2∆), θ̂ei(t,∆) > 0,

1 otherwise.
(2)

Putting (1) and (2) together, we thus have

g−1
∣∣∣ĝ(α)∣∣∣ = g−1

(
θ̂e2(t,∆)

θ̂e1(t,∆)

) 1

2Ĥ

, (3)

where g−1 = arctan or g−1 = arccot
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Methodology Estimator

Identification issues

Two identification issues are present in (3)

First is associated to g: we only know either g = tan or g = cot, which depends on
whether H1 < H2 or vice-versa

Second arises from the absolute value: we either have tan(α) or tan(π − α) if
g = tan, and similarly for the cot case

Basically we need to identify a unique angle amongst the four possible options
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Methodology Estimator

Resolving the identification problem (1)

Let’s not forget what the angle gives us: the direction of the maximising regularity!

Any unit vector u ∈ S can be represented in the canonical basis:

u(β) = cos(β)e1 + sin(β)e2.

Correct α between u1 and e1 is thus given by

α = argmaxβ∈{γ,π−γ,π/2−γ,π/2+γ}Hu(β),

where γ = arccot
(
(θe1(t,∆)/θe2(t,∆))1/(2He(t,∆))

)
.
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Methodology Estimator

Resolving the identification problem (2)

Let α̂cot be the angle α̂ computed by (3) with g = tan, and α̂tan be computed
similarly but with g = arctan. Construct four vectors

v̂1
cot =

(
cos(α̂cot), sin(α̂cot)

)⊤
, v̂2

cot =
(
cos(π − α̂cot), sin(π − α̂cot)

)⊤
,

v̂1
tan =

(
cos(α̂tan), sin(α̂tan)

)⊤
, v̂2

tan =
(
cos(π − α̂tan), sin(π − α̂tan)

)⊤
.

Then we can estimate the regularity Hv along the four directions above and find
the largest one
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Methodology Estimator

Regularity estimator

Need a way to estimate the regularity Hv along an arbitrary direction v

Use the following noise-adapted estimator:

Ĥv =

{
log(θ̂v(t,2∆)−2σ̂2)−log(θ̂v(t,∆)−2σ̂2)

2 log(2)
if θ̂v(t, 2∆), θ̂v(t,∆) > 2σ̂2,

1 otherwise.
(4)

Noise estimator is given by

σ̂2
m =

1

2N

N∑
j=1

(
Y (j)(tm)− Y (j)(tm,1)

)2
,

with tm,1 denoting the closest observed point to tm.

Ĥv can be sensitive to spacings ∆ =⇒ compute it on a grid of points ∆ that
maximises

α̂ = argmaxβ∈{γ̂,π−γ̂,π/2−γ̂,π/2+γ̂}

p∑
i=1

Ĥu(β)(∆i),

where γ̂ = arccot
(
(θ̂e1(t,∆)/θ̂e2(t,∆))1/(2Ĥ(∆))

)
and Ĥu(β)(∆i) is from (4).
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Theoretical Guarantees

Theoretical Properties

Theorem

Suppose some mild conditions hold true. Then, three positive constants C1, C2 and u
exist such that for any

1 ≥ ε ≥ umax{m−ν ,∆1∧|2H1−2H2|},

P
(
| ̂g(α,∆)− g(α,∆)| ≥ ε

)
≤ C1 exp

(
−C2ε

2N
∆6H

log2(∆)

)
.

where g is defined in Proposition 12.

Corollary

The following rates of convergence hold for α̂:

|α̂(∆)− α| = OP

(
max

{
1

min{
√
N,mH}

,
| log∆|√
N∆3H

,m−ν

})
.
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Numerical Properties

Simulation setup

Consider the sum of two fBms f(B1, B2) = B1 +B2

Curves N ∈ {100, 200}, M0 = 512 points, noise σ ∈ {0, 0.01, 0.05, 0.1}, Angles
α ∈ {π/3, π/5, 5π/6}, H1 = 0.8, H2 = 0.5

∆ = M
−1/4
0 (1 + ∆c), where ∆c = 0.25 for estimation of α

∆ = {M−1/4,∆1, . . . ,∆k−1, 0.4}, where #∆ = 15 for identification

Risk measure
Rα = |α̂− α|
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Numerical Properties

Simulation Results

Figure 1: Boxplots for M = 51 (sum)
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Numerical Properties

Application: Smoothing Surfaces

As usual, smoothing surfaces non-parametrically depends crucially on smoothing
parameter

In the case of kernel smoothing, this is the bandwidth matrix. Observing
(Y

(i)
m , t

(i)
m ) from

Y (i)
m = X(i)(t(i)m ) + ε(i)m ,

we want to build estimates X̂(i)(t;B), where B is some bandwidth matrix

Consideration of directional regularity allows one to perform a change of basis
using a rotation matrix:

R̂α =

(
cos(α̂) sin(α̂)
sin(α̂) cos(α̂)

)

By working instead with

Z(t) := X(R−1
α · t), ∀t ∈ T ,

one can obtain faster rates of convergence!
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Numerical Properties

Simulation results
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Numerical Properties

Conclusion

Anisotropy depends not only on the dimension, but the direction

Taking into account the directional regularity can allow one to obtain faster rates of
convergence, even if isotropic on the canonical basis

Algorithms for the estimation and identification of the directional regularity that
works well in practice are constructed

One application is the improved rate in smoothing surfaces

But the consequences are not limited to smoothing! Thus recommend it as a
standard pre-processing step in multivariate fda
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