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Introduction Univariate case

First steps: univariate case (1/2)

@ For BY a fBm with Hurst index H € (0,1),

E {{BH(t) - BH(S)}Q} —|t—s*", steRy
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Introduction Univariate case

First steps: univariate case (1/2)

@ For BY a fBm with Hurst index H € (0,1),

E {{BH(t) - BH(S)}Q} —|t—s*", steRy

@ Estimating equation for the Hurst parameter :

log (E [{B"(t) — B (s)}”
H= ( [210g|t—5| D
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Introduction Univariate case

First steps: univariate case (2/2)

@ Let X be a process defined on a subset of R, with non-differentiable sample paths
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Introduction Univariate case

First steps: univariate case (2/2)

@ Let X be a process defined on a subset of R, with non-differentiable sample paths
@ GKP (2022) : H(to) € (0,1) and L(to) > 0 exist such that
E[{X(t) — X()}°] = L(to)?|t — s|*""), ¥s <19 <t

for t and s close to to
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Introduction Univariate case

First steps: univariate case (2/2)

@ Let X be a process defined on a subset of R, with non-differentiable sample paths

@ GKP (2022) : H(to) € (0,1) and L(to) > 0 exist such that
E [{X(t) = X(5)}°] ~ L(to)*[t — s[*"1*), vs <to <t
for t and s close to ¢o
@ Estimating equation :

N log(0(t1,t2)) — log(0(t1,t3))
H(to) ~ 21og(2)

) to € [t1,t2] C [t1,13]

where
0(t,s) =E[{X(t) — X(s)}°] and |t1 —ta] = 2|t1 — ts].
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Introduction Motivation

Detour to non-parametric regression

@ Let (X,,Y5),i=1,...,n be data pairs observed under the model
Y;:f(Xz)—Féz, izl,...,n,

where f : [0,1]¢ — R and the X;’s are i.i.d uniformly distributed on the hypercube

@ If f belongs to the anisotropic Hoélder class, then under suitable assumptions, the
minimax rate of estimation is n=?/2#*1 where 3 is the effective smoothness:

where g; is the regularity along dimension e;

@ In the isotropic case, the effective smoothness is given by

1 . 1
=d min §; .
p i:1,4.4,dﬁZ
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Introduction Motivation

Are you really isotropic?

@ Anisotropy / isotropy is often determined within the confines of the canonical basis
as it is a notion of smoothness along a dimension

@ But this is not the full story!

@ Let 7 be an open subset of R?, and f : R? — R, and {us, uz} be an orthonormal
basis, where the function f is 8;-Hdlder continuous along u;, fori = 1,2

@ Let v € S such that v = ayu;1 + asuz. Then we have

£ (t) = £(t = AV)| < Liar A + LojazA|™
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Introduction Motivation

Let’s define things

Directional Regularity

Let X a continuous and non-differentiable stochastic process, u € S a unit vector and
H, : T — (0,1). We say that the process X has a local regularity Hy, in a pointt € T
along the direction u if a bounded function L., : T — Ry exist such that :

D]

where G(t,A) = o (AQH““)) . We call the map u — H,, directional regularity.

—0

Ou(t,A) :=E = La(t)A*® L G(t, A),

@ If H, does not depend on the direction u, we say X is isotropic

@ Otherwise, we call X anisotropic

@ Anisotropy is not just a notion of smoothness along a dimension, but also along a
direction
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Introduction Motivation

Let’s go to processes

@ Let u1, us be two unit vectors that spans R?, and H; < H- be two continuously
differentiable functions along u1, u2 respectively

@ Define the sum of two independent fractional brownian motions (fBms):
X (t) = Bi(t1) + Ba(t2), vte T,

where (t1,t2) are the coordinates of t in the u, uz basis
@ For a small variation A, we have

E[{Bi(t — A/2) — Bi(t + A/2}°] = A%, VteR,.
@ Independence of By and B, implies:
E[{X(t—A/2w) — X(t + A/2w)}?] = A*.

@ Using a lemma introduced soon, the sum of regularities when working in the
ui,uz basis is H; + Hs > 2H;, where the latter corresponds to the isotropic case!
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Back to Multivariate FDA

@ Observe an independent sample of random functions X, ..., X defined on
T, where 7T is an open subset of R%. Focus on d = 2 throughout this talk.

@ Realisations of a stochastic process X : 7 — R, where E||X||3 < oo such that

(£,9) = [oer F(t)g(t)dt

@ Suppose that observations come in the form of (Y %) (t,,), t..), generated from

YD () = XD (t) +D(t), 1<ji<N,1<m<Mo,tmeT,

where the errors are independent, centered random variables.

@ Goal: Formally introduce the notion of directional regularity in FDA, its estimation,
identification, and consequences

Directional Regularity 18th March, 2024 9/23



Introduction Setup

The key lemma

Lemma

Assume that there exists basis vectors (uz,uz) € S that spans R? such that
Hy, < Hu,. Moreover, suppose that the functions L., and L., are continuously
differentiable. For any v € S, we have the following dichotomy:

@ If v # du2, then the regularity along v is Hy, .
@ Otherwise, the local regularity along v is Hy,,,.

Map v — H, can only take at most two possible values

(]

Maximisation problem arg max,cs Hy admits two solutions uz and —u;

Finding the maximising direction u- is equivalent to finding the angle « € [0, )
between the two basis vectors e1 and uy:

argmava = arg max Hu(a),
ves a€el0,m

where u(a) = cos(a)er + sin(a)ez.
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Introduction Setup

The picture that says it all

Tllustration of directional regularity

Variance of Anisotropic process
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Methodology Estimator

How to estimate o?

@ Let H,, H, denote the regularity of X along ui and u. respectively, where
Hy, < Hz, and (e1,u1) = cos(«)

Proposition

Suppose that u; # te;, fori = 1,2. Then for a process X satisfying (7) and any fixed
pointt € 7, we have

= () o)

where g = tan 1{H1 < Hz} + cot 1{H1 > H>}, and H = min{H1, H>}.

@ Angles can be computed, up to a reflection, by taking the ratios of mean-squared
variations along the canonical basis
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Methodology Estimator

Plug-in estimators

@ Natural plug-in estimator for the mean-squared variations is then given by
i=12, (1)

0., (t, A) Z {X@) (t — (A/2)es) — X9 (¢ + (A/Q)e,)} 7
where X@) denotes some observable approximation of X ¢/

@ Regularity H, can be estimated with
log(fe; (t,24)) —log(fe; (t,4)) if é\ei (t, 2A), aei (t, A) >0

2log(2)
2

[ae)

min;— 2
1 otherwise.

@ Putting (1) and (2) together, we thus have
%
1 —1 eez (t7 A) 2
g ‘g a)l=g = , 3
(@) ( 6 a @)
~! = arctan or g~! = arccot
18th March, 2024 13/23
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Methodology Estimator

Identification issues

@ Two identification issues are present in (3)

@ First is associated to g: we only know either g = tan or g = cot, which depends on
whether H, < H, or vice-versa

@ Second arises from the absolute value: we either have tan(a) or tan(m — «) if
g = tan, and similarly for the cot case

@ Basically we need to identify a unique angle amongst the four possible options
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Methodology Estimator

Resolving the identification problem (1)

@ Let’s not forget what the angle gives us: the direction of the maximising regularity!

@ Any unit vector u € S can be represented in the canonical basis:

u(B) = cos(B)er + sin(B)ea2.

@ Correct o between u; and ey is thus given by
Q= AGMAXge (o 7y 7 /2,7 /24 } Hu(B)

where ~ = arccot ((091 (t, A) /0oy (t, A))Y <2He<tvﬂ>>).
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Methodology Estimator

Resolving the identification problem (2)

@ Let a°°* be the angle @ computed by (3) with g = tan, and a*** be computed
similarly but with g = arctan. Construct four vectors

Vit = (cos(@*"), sin(awt))T , V2% = (cos(m — @), sin(r — aCOt))T ,
Vit = (cos(a™"), sin(é?ta"))-r , V2" = (cos(m — @), sin(r — ata"))T .

@ Then we can estimate the regularity H, along the four directions above and find
the largest one
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Methodology Estimator

Regularity estimator

@ Need a way to estimate the regularity H, along an arbitrary direction v
@ Use the following noise-adapted estimator:

og(2)

= ~2 o _ 6'2 . -~ ~ PR

o [ loslv(828) 2200 os(O (B A)2290) i g, (6,2A), 04 (¢, A) > 257

v .
1 otherwise.

@ Noise estimator is given by

52 = o Z ( YO (¢ Yu)(tm’l))?’

with t,,,,1 denoting the closest observed point t0 ty,.

e I, can be sensitive to spacings A — compute it on a grid of points A that
maximises

P
G = A MAX e (5 r5,m/2—5,m/245) D (o) (D),
i=1

where 7 = arccot ((01,1 (t, A) /By (¢, A))”QE(A))) and Hy s (A) is from (4).
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Theoretical Properties

Theorem

Suppose some mild conditions hold true. Then, three positive constants C1, Cs and u
exist such that for any

1>e>umax{m *, AMNPHL—2H1

—— 2 A6H
P (|Q(Q:A) —g(a, A)| = 5) < Crexp (*025 Nm) .

where g is defined in Proposition 12.

Corollary

The following rates of convergence hold for a::
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Numerical Properties

Simulation setup

@ Consider the sum of two fBms f(Bi, B2) = By + B2

@ Curves N € {100,200}, My = 512 points, noise o € {0,0.01,0.05, 0.1}, Angles
a € {r/3,m/5,5mr/6}, H = 0.8, H, = 0.5

® A =M;"*(1+ A.), where A, = 0.25 for estimation of o
@ A={MY* Ay ... A, 1,04}, where #A = 15 for identification

@ Risk measure
Ra =|a—qf
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Numerical Properties

Simulation Results

Figure 1: Boxplots for M = 51 (sum)

Boxplots f1 = By + By (N = 100, M = 51) Boxplots f1 = By + By (N = 200, M = 51)
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Numerical Properties

Application: Smoothing Surfaces

@ As usual, smoothing surfaces non-parametrically depends crucially on smoothing
parameter

@ In the case of kernel smoothing, this is the bandwidth matrix. Observing
(Yrﬁf), tﬁf)) from
v = XO ) + <8,

we want to build estimates X ) (t; B), where B is some bandwidth matrix

@ Consideration of directional regularity allows one to perform a change of basis

using a rotation matrix:
= cos(@) sin(@)
Ro=1| . '~ P
sin(@) cos(Q@)

@ By working instead with
Z(t):=XR;"-t), VteT,

one can obtain faster rates of convergence!
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Simulation results

Risk comparison (Anisotropic vs Isotropic)

True Surface Noisy, Discretised Surface

Directional Regularity

o
g

‘Smoothed Surface with Change of Basis
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Numerical Properties

Conclusion

@ Anisotropy depends not only on the dimension, but the direction

@ Taking into account the directional regularity can allow one to obtain faster rates of
convergence, even if isotropic on the canonical basis

@ Algorithms for the estimation and identification of the directional regularity that
works well in practice are constructed

@ One application is the improved rate in smoothing surfaces

@ But the consequences are not limited to smoothing! Thus recommend it as a
standard pre-processing step in multivariate fda
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