

Directional Regularity: Achieving faster rates of convergence in multivariate functional data

Omar Kassi, Sunny Wang CREST-ENSAI

> Brown Bag Seminar Rennes

21st March, 2024

Outline

- Introduction
 - Regularity in FD
 - Motivation
 - Setup
- Methodology
 - Estimator
- Theoretical Guarantees
- Numerical Properties
- Smoothing

 The observation unit (entity), the datum, could be one or several curves, image(s), or several such objects

- The observation unit (entity), the datum, could be one or several curves, image(s), or several such objects
- Related fields: Signal Processing, Longitudinal Data...

- The observation unit (entity), the datum, could be one or several curves, image(s), or several such objects
- Related fields: Signal Processing, Longitudinal Data...
- Data are (in)dependent realizations of some variable

$$X:(\Omega,\mathcal{A})\to(\mathcal{X},\mathcal{F})$$

- The observation unit (entity), the datum, could be one or several curves, image(s), or several such objects
- Related fields: Signal Processing, Longitudinal Data...
- Data are (in)dependent realizations of some variable

$$X:(\Omega,\mathcal{A})\to(\mathcal{X},\mathcal{F})$$

- When \mathcal{X} is a space of curves/images/signals
 - Functional Data problem

- The observation unit (entity), the datum, could be one or several curves, image(s), or several such objects
- Related fields: Signal Processing, Longitudinal Data...
- Data are (in)dependent realizations of some variable

$$X:(\Omega,\mathcal{A})\to(\mathcal{X},\mathcal{F})$$

- When \mathcal{X} is a space of curves/images/signals
 - Functional Data problem
- Functional Data Analysis (FDA) deals with the statistical description and modeling of samples of random variable taking values in spaces of functions

Regularity in the univariate case (1/2)

• For B^H a fBm with Hurst index $H \in (0,1)$,

$$\mathbb{E}\left[\left\{B^{H}(t) - B^{H}(s)\right\}^{2}\right] = |t - s|^{2H}, \quad s, t \in \mathbb{R}_{+}$$

Omar Kassi, Sunny Wang

Regularity in the univariate case (1/2)

• For B^H a fBm with Hurst index $H \in (0,1)$,

$$\mathbb{E}\left[\left\{B^{H}(t) - B^{H}(s)\right\}^{2}\right] = |t - s|^{2H}, \quad s, t \in \mathbb{R}_{+}$$

Estimating equation for the Hurst parameter :

$$H = \frac{\log \left(\mathbb{E}\left[\left\{ B^{H}(t) - B^{H}(s) \right\}^{2} \right] \right)}{2\log |t - s|}$$

Omar Kassi, Sunny Wang

Regularity in the univariate case (2/2)

• Let X be a process defined on a subset of \mathbb{R} , with non-differentiable sample paths

Regularity in the univariate case (2/2)

- Let X be a process defined on a subset of \mathbb{R} , with non-differentiable sample paths
- GKP (2022) : $H(t_0) \in (0,1)$ and $L(t_0) > 0$ exist such that

$$\mathbb{E}\left[\left\{X(t) - X(s)\right\}^{2}\right] \approx L(t_{0})^{2} |t - s|^{2H(t_{0})}, \quad \forall s \leq t_{0} \leq t$$

for t and s close to t_0

Regularity in the univariate case (2/2)

- Let X be a process defined on a subset of \mathbb{R} , with non-differentiable sample paths
- GKP (2022) : $H(t_0) \in (0,1)$ and $L(t_0) > 0$ exist such that

$$\mathbb{E}\left[\left\{X(t)-X(s)\right\}^2\right]\approx L(t_0)^2|t-s|^{2H(t_0)},\quad \forall s\leq t_0\leq t$$

for t and s close to t_0

Estimating equation :

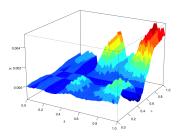
$$H(t_0) \approx \frac{\log(\theta(t_1, t_2)) - \log(\theta(t_1, t_3))}{2\log(2)}, \quad t_0 \in [t_1, t_2] \subset [t_1, t_3]$$

where

$$\theta(t,s) = \mathbb{E}\left[\left\{X(t) - X(s)\right\}^2\right]$$
 and $|t_1 - t_2| = 2|t_1 - t_3|$.

Multivariate functional data

- ullet The realizations of the stochastic process X are surfaces
 - Satellite images
 - Measurements of temperature or salinity in oceanology



Detour to non-parametric regression

• Let $(X_i, Y_i), i = 1, \dots, n$ be data pairs observed under the model

$$Y_i = f(X_i) + \varepsilon_i, \qquad i = 1, \dots, n,$$

where $f:[0,1]^d \to \mathbb{R}$ and the X_i 's are i.i.d uniformly distributed on the hypercube

Detour to non-parametric regression

• Let $(X_i, Y_i), i = 1, ..., n$ be data pairs observed under the model

$$Y_i = f(X_i) + \varepsilon_i, \qquad i = 1, \dots, n,$$

where $f:[0,1]^d \to \mathbb{R}$ and the X_i 's are i.i.d uniformly distributed on the hypercube

• If f belongs to the anisotropic Hölder class, the minimax rate of estimation is $n^{-\beta/(2\beta+1)}$, where β is the effective smoothness:

$$\beta^{-1} = \sum_{i=1}^{d} \beta_i^{-1},$$

with eta_i is the regularity along dimension \mathbf{e}_i

 Anisotropy / isotropy is often determined within the confines of the canonical basis as it is a notion of smoothness along a dimension

- Anisotropy / isotropy is often determined within the confines of the canonical basis as it is a notion of smoothness along a dimension
- But this is not the full story!

7/43

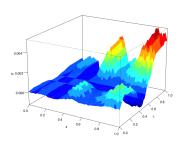
- Anisotropy / isotropy is often determined within the confines of the canonical basis as it is a notion of smoothness along a dimension
- But this is not the full story!
- Let \mathcal{T} be an open subset of \mathbb{R}^2 , and $f: \mathbb{R}^2 \to \mathbb{R}$, and $\{\mathbf{u_1}, \mathbf{u_2}\}$ be an orthonormal basis, where the function f is β_i -Hölder continuous along $\mathbf{u_i}$, for i=1,2

- Anisotropy / isotropy is often determined within the confines of the canonical basis as it is a notion of smoothness along a dimension
- But this is not the full story!
- Let $\mathcal T$ be an open subset of $\mathbb R^2$, and $f:\mathbb R^2\to\mathbb R$, and $\{\mathbf u_1,\mathbf u_2\}$ be an orthonormal basis, where the function f is β_i -Hölder continuous along $\mathbf u_i$, for i=1,2
- Let $\mathbf{v} \in \mathbb{S}$ such that $\mathbf{v} = \alpha_1 \mathbf{u_1} + \alpha_2 \mathbf{u_2}$. Then we have

$$|f(\mathbf{t}) - f(\mathbf{t} - \Delta \mathbf{v})| \le L_1 |\alpha_1 \Delta|^{\beta_1} + L_2 |\alpha_2 \Delta|^{\beta_2}$$

- Anisotropy / isotropy is often determined within the confines of the canonical basis as it is a notion of smoothness along a dimension
- But this is not the full story!
- Let $\mathcal T$ be an open subset of $\mathbb R^2$, and $f:\mathbb R^2\to\mathbb R$, and $\{\mathbf u_1,\mathbf u_2\}$ be an orthonormal basis, where the function f is β_i -Hölder continuous along $\mathbf u_i$, for i=1,2
- Let $\mathbf{v} \in \mathbb{S}$ such that $\mathbf{v} = \alpha_1 \mathbf{u_1} + \alpha_2 \mathbf{u_2}$. Then we have

$$|f(\mathbf{t}) - f(\mathbf{t} - \Delta \mathbf{v})| \le L_1 |\alpha_1 \Delta|^{\beta_1} + L_2 |\alpha_2 \Delta|^{\beta_2}$$



Directional Regularity

Let X be a continuous & non-differentiable stochastic process, $\mathbf{u} \in \mathbb{S}$ a unit vector and $H_{\mathbf{u}}: \mathcal{T} \to (0,1)$. X has local regularity $H_{\mathbf{u}}$ at $\mathbf{t} \in \mathcal{T}$ along the direction \mathbf{u} if $L_u: \mathcal{T} \to \mathbb{R}_+$ exist such that :

$$\theta_{\mathbf{u}}(\mathbf{t}, \Delta) := \mathbb{E}\left[\left\{X\left(\mathbf{t} - \frac{\Delta}{2}\mathbf{u}\right) - X\left(\mathbf{t} + \frac{\Delta}{2}\mathbf{u}\right)\right\}^{2}\right] = L_{\mathbf{u}}(\mathbf{t})\Delta^{2H_{\mathbf{u}}(\mathbf{t})} + G(\mathbf{t}, \Delta),$$

where $G(\mathbf{t}, \Delta) = o\left(\Delta^{2H_{\mathbf{u}}(\mathbf{t})}\right)$. We call the map $\mathbf{u} \mapsto H_{\mathbf{u}}$ directional regularity.

Directional Regularity

Let X be a continuous & non-differentiable stochastic process, $\mathbf{u} \in \mathbb{S}$ a unit vector and $H_{\mathbf{u}}: \mathcal{T} \to (0,1)$. X has local regularity $H_{\mathbf{u}}$ at $\mathbf{t} \in \mathcal{T}$ along the direction \mathbf{u} if $L_u: \mathcal{T} \to \mathbb{R}_+$ exist such that :

$$\theta_{\mathbf{u}}(\mathbf{t}, \Delta) := \mathbb{E}\left[\left\{X\left(\mathbf{t} - \frac{\Delta}{2}\mathbf{u}\right) - X\left(\mathbf{t} + \frac{\Delta}{2}\mathbf{u}\right)\right\}^{2}\right] = L_{\mathbf{u}}(\mathbf{t})\Delta^{2H_{\mathbf{u}}(\mathbf{t})} + G(\mathbf{t}, \Delta),$$

where $G(\mathbf{t}, \Delta) \underset{\Delta \to 0}{=} o\left(\Delta^{2H_{\mathbf{u}}(\mathbf{t})}\right)$. We call the map $\mathbf{u} \mapsto H_{\mathbf{u}}$ directional regularity.

• If $H_{\mathbf{u}}$ does not depend on the direction \mathbf{u} , we say X is isotropic

Omar Kassi, Sunny Wang

Directional Regularity

Let X be a continuous & non-differentiable stochastic process, $\mathbf{u} \in \mathbb{S}$ a unit vector and $H_{\mathbf{u}}: \mathcal{T} \to (0,1)$. X has local regularity $H_{\mathbf{u}}$ at $\mathbf{t} \in \mathcal{T}$ along the direction \mathbf{u} if $L_u: \mathcal{T} \to \mathbb{R}_+$ exist such that :

$$\theta_{\mathbf{u}}(\mathbf{t}, \Delta) := \mathbb{E}\left[\left\{X\left(\mathbf{t} - \frac{\Delta}{2}\mathbf{u}\right) - X\left(\mathbf{t} + \frac{\Delta}{2}\mathbf{u}\right)\right\}^{2}\right] = L_{\mathbf{u}}(\mathbf{t})\Delta^{2H_{\mathbf{u}}(\mathbf{t})} + G(\mathbf{t}, \Delta),$$

where $G(\mathbf{t}, \Delta) \underset{\Delta \to 0}{=} o\left(\Delta^{2H_{\mathbf{u}}(\mathbf{t})}\right)$. We call the map $\mathbf{u} \mapsto H_{\mathbf{u}}$ directional regularity.

- If $H_{\mathbf{u}}$ does not depend on the direction \mathbf{u} , we say X is isotropic
- Otherwise, we call X anisotropic

Directional Regularity

Let X be a continuous & non-differentiable stochastic process, $\mathbf{u} \in \mathbb{S}$ a unit vector and $H_{\mathbf{u}}: \mathcal{T} \to (0,1)$. X has local regularity $H_{\mathbf{u}}$ at $\mathbf{t} \in \mathcal{T}$ along the direction \mathbf{u} if $L_u: \mathcal{T} \to \mathbb{R}_+$ exist such that :

$$\theta_{\mathbf{u}}(\mathbf{t}, \Delta) := \mathbb{E}\left[\left\{X\left(\mathbf{t} - \frac{\Delta}{2}\mathbf{u}\right) - X\left(\mathbf{t} + \frac{\Delta}{2}\mathbf{u}\right)\right\}^{2}\right] = L_{\mathbf{u}}(\mathbf{t})\Delta^{2H_{\mathbf{u}}(\mathbf{t})} + G(\mathbf{t}, \Delta),$$

where $G(\mathbf{t}, \Delta) \underset{\Delta \to 0}{=} o\left(\Delta^{2H_{\mathbf{u}}(\mathbf{t})}\right)$. We call the map $\mathbf{u} \mapsto H_{\mathbf{u}}$ directional regularity.

- If $H_{\mathbf{u}}$ does not depend on the direction \mathbf{u} , we say X is isotropic
- Otherwise, we call X anisotropic
- Anisotropy is not just a notion of smoothness along a dimension, but also along a direction

Omar Kassi, Sunny Wang

Example 1: Sum of fBms (1/2)

• Let $\mathbf{u_1}, \mathbf{u_2}$ be two unit vectors that spans \mathbb{R}^2 , and $H_1 < H_2 \in (0,1)$.

Example 1: Sum of fBms (1/2)

- Let $\mathbf{u_1}, \mathbf{u_2}$ be two unit vectors that spans \mathbb{R}^2 , and $H_1 < H_2 \in (0,1)$.
- Consider

$$X(\mathbf{t}) = B^{H_1}(t_1) + B^{H_2}(t_2), \qquad \forall \mathbf{t} \in \mathcal{T},$$

where (t_1, t_2) are the coordinates of t in the $(\mathbf{u_1}, \mathbf{u_2})$

Example 1: Sum of fBms (1/2)

- Let $\mathbf{u_1}, \mathbf{u_2}$ be two unit vectors that spans \mathbb{R}^2 , and $H_1 < H_2 \in (0,1)$.
- Consider

$$X(\mathbf{t}) = B^{H_1}(t_1) + B^{H_2}(t_2), \qquad \forall \mathbf{t} \in \mathcal{T},$$

where (t_1, t_2) are the coordinates of ${\bf t}$ in the $({\bf u_1}, {\bf u_2})$

• Independence of B_1 and B_2 implies:

$$\mathbb{E}\left[\left\{X(\mathbf{t} - (\Delta/2)\mathbf{u_i}) - X(\mathbf{t} + (\Delta/2)\mathbf{u_i})\right\}^2\right] = \Delta^{2H_i}.$$

Example 1: Sum of fBms (2/2)

• Take again the sum of two independent fBms, where $e_i = a_{1,i}u_1 + a_{2,i}u_2$

Example 1: Sum of fBms (2/2)

- Take again the sum of two independent fBms, where $e_i = a_{1,i}u_1 + a_{2,i}u_2$
- In the canonical basis, we have instead

$$\mathbb{E}\left[\left\{X(\mathbf{t}-(\Delta/2)\mathbf{e_i})-X(\mathbf{t}+(\Delta/2)\mathbf{e_i})\right\}^2\right]=|a_{1,i}\Delta|^{2H_1}+|a_{2,i}\Delta|^{2H_2}.$$

Example 1: Sum of fBms (2/2)

- Take again the sum of two independent fBms, where $e_i = a_{1,i}u_1 + a_{2,i}u_2$
- In the canonical basis, we have instead

$$\mathbb{E}\left[\left\{X(\mathbf{t} - (\Delta/2)\mathbf{e_i}) - X(\mathbf{t} + (\Delta/2)\mathbf{e_i})\right\}^2\right] = |a_{1,i}\Delta|^{2H_1} + |a_{2,i}\Delta|^{2H_2}.$$

• In the "bad" basis (which in fact is almost all of them), the effective smoothness of X is instead given by $\beta^{-1}=2H_1^{-1}< H_1^{-1}+H_2^{-1}$

Example 2: Product of fBms

 \bullet Define the product of two independent fBms, where $\{{\bf u_1},{\bf u_2}\}$ is the orthonormal basis containing the maximising regularity:

$$X(\mathbf{t}) = B^{H_1}(t_1)B^{H_2}(t_2), \quad \forall \mathbf{t} \in \mathcal{T}.$$

Example 2: Product of fBms

 \bullet Define the product of two independent fBms, where $\{\mathbf{u_1},\mathbf{u_2}\}$ is the orthonormal basis containing the maximising regularity:

$$X(\mathbf{t}) = B^{H_1}(t_1)B^{H_2}(t_2), \quad \forall \mathbf{t} \in \mathcal{T}.$$

 \bullet Independence implies that along the $(\mathbf{u_1},\mathbf{u_2})$ basis, we have

$$\mathbb{E}\left[\left\{X(\mathbf{t}-(\Delta/2)\mathbf{u_i})-X(\mathbf{t}+(\Delta/2)\mathbf{u_i})\right\}^2\right]=t_j^{2H_j}\Delta^{2H_i}, \qquad j\neq i.$$

Example 2: Product of fBms

 \bullet Define the product of two independent fBms, where $\{{\bf u_1},{\bf u_2}\}$ is the orthonormal basis containing the maximising regularity:

$$X(\mathbf{t}) = B^{H_1}(t_1)B^{H_2}(t_2), \quad \forall \mathbf{t} \in \mathcal{T}.$$

 \bullet Independence implies that along the $(\mathbf{u_1},\mathbf{u_2})$ basis, we have

$$\mathbb{E}\left[\left\{X(\mathbf{t}-(\Delta/2)\mathbf{u_i})-X(\mathbf{t}+(\Delta/2)\mathbf{u_i})\right\}^2\right]=t_j^{2H_j}\Delta^{2H_i}, \qquad j\neq i.$$

In contrast, along the canonical basis we have instead

$$\theta_{\mathbf{e_i}}(\mathbf{t}, \Delta) \approx t_j^{2H_j} |a_{1,i}\Delta|^{2H_i} + t_i^{2H_i} |a_{1,j}\Delta|^{2H_j}, \quad j \neq i.$$

Anisotropy of X is not invariant to the choice of basis!

The key lemma

Lemma

Let $(\mathbf{u_1}, \mathbf{u_2}) \in \mathbb{S}$ span \mathbb{R}^2 such that $H_{\mathbf{u_1}} < H_{\mathbf{u_2}}$. Suppose $L_{\mathbf{u_1}}$ and $L_{\mathbf{u_2}}$ are continuously differentiable. For any $\mathbf{v} \in \mathbb{S}$, we have the following dichotomy:

- If $v \neq \pm u_2$, then the regularity of X along v is H_{u_1} .
- Otherwise, the local regularity along v is H_{u_2} .

The key lemma

Lemma

Let $(\mathbf{u_1}, \mathbf{u_2}) \in \mathbb{S}$ span \mathbb{R}^2 such that $H_{\mathbf{u_1}} < H_{\mathbf{u_2}}$. Suppose $L_{\mathbf{u_1}}$ and $L_{\mathbf{u_2}}$ are continuously differentiable. For any $\mathbf{v} \in \mathbb{S}$, we have the following dichotomy:

- If $v \neq \pm u_2$, then the regularity of X along v is H_{u_1} .
- \bullet Otherwise, the local regularity along ${\bf v}$ is $H_{{\bf u_2}}.$
- ullet Map ${f v}\mapsto H_{f v}$ can only take at most two possible values

The key lemma

Lemma

Let $(\mathbf{u_1}, \mathbf{u_2}) \in \mathbb{S}$ span \mathbb{R}^2 such that $H_{\mathbf{u_1}} < H_{\mathbf{u_2}}$. Suppose $L_{\mathbf{u_1}}$ and $L_{\mathbf{u_2}}$ are continuously differentiable. For any $\mathbf{v} \in \mathbb{S}$, we have the following dichotomy:

- If $v \neq \pm u_2$, then the regularity of X along v is H_{u_1} .
- Otherwise, the local regularity along v is H_{u_2} .
- ullet Map ${f v}\mapsto H_{f v}$ can only take at most two possible values
- ullet Maximisation problem $rg \max_{v \in \mathbb{S}} H_{\mathbf{v}}$ admits two solutions $\mathbf{u_2}$ and $-\mathbf{u_2}$

The key lemma

Lemma

Let $(\mathbf{u_1}, \mathbf{u_2}) \in \mathbb{S}$ span \mathbb{R}^2 such that $H_{\mathbf{u_1}} < H_{\mathbf{u_2}}$. Suppose $L_{\mathbf{u_1}}$ and $L_{\mathbf{u_2}}$ are continuously differentiable. For any $\mathbf{v} \in \mathbb{S}$, we have the following dichotomy:

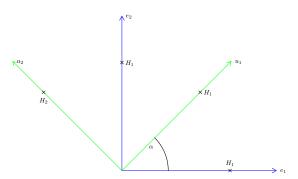
- If $\mathbf{v} \neq \pm \mathbf{u_2}$, then the regularity of X along \mathbf{v} is $H_{\mathbf{u_1}}$.
- Otherwise, the local regularity along v is H_{u_2} .
- Map $\mathbf{v} \mapsto H_{\mathbf{v}}$ can only take at most two possible values
- ullet Maximisation problem $rg \max_{v \in \mathbb{S}} H_{\mathbf{v}}$ admits two solutions $\mathbf{u_2}$ and $-\mathbf{u_2}$
- Finding the maximising direction $\mathbf{u_2}$ is equivalent to finding the angle $\alpha \in [0, \pi)$ between the two basis vectors $\mathbf{e_1}$ and $\mathbf{u_1}$:

$$\arg\max_{\mathbf{v}\in\mathbb{S}}H_{\mathbf{v}}=\arg\max_{\alpha\in[0,\pi)}H_{\mathbf{u}(\alpha)},$$

where $\mathbf{u}(\alpha) = \cos(\alpha)\mathbf{e_1} + \sin(\alpha)\mathbf{e_2}$.

The picture that says it all

Illustration of directional regularity



How to estimate α ?

• Let H_1, H_2 denote the regularity of X along $\mathbf{u_1}$ and $\mathbf{u_2}$ respectively, where $\langle \mathbf{e_1}, \mathbf{u_1} \rangle = \cos(\alpha)$

Proposition

Suppose that $\mathbf{u}_1 \neq \pm \mathbf{e}_i$, for i = 1, 2. Then for a process X satisfying (8) and any fixed point $\mathbf{t} \in \mathcal{T}$, we have

$$|g(\alpha)| = \left(\frac{\theta_{\mathbf{e}_{2}}(\mathbf{t}, \Delta)}{\theta_{\mathbf{e}_{1}}(\mathbf{t}, \Delta)}\right)^{\frac{1}{2H}} + O\left(\Delta^{\widetilde{\beta} \wedge |2H_{1} - 2H_{2}|}\right),$$

where $g = \tan \mathbf{1}\{H_1 < H_2\} + \cot \mathbf{1}\{H_1 > H_2\}$, and $\underline{H} = \min\{H_1, H_2\}$.

 Angles can be computed, up to a reflection, by taking the ratios of mean-squared variations along the canonical basis

Data setting

- Observe an independent sample of random functions $X^{(1)},\dots,X^{(N)}$ defined on \mathcal{T} , where \mathcal{T} is an open subset of \mathbb{R}^d_+ .
- ullet Suppose that observations come in the form of $(Y^{(j)}(\mathbf{t}_m),\mathbf{t}_m)$, generated from

$$Y^{(j)}(\mathbf{t}_m) = X^{(j)}(\mathbf{t}_m) + \varepsilon_m^{(j)}, \qquad 1 \le j \le N, 1 \le m \le M_0, \mathbf{t}_m \in \mathcal{T},$$

where the homoscedastic errors are independent, centered random variables.

Plug-in estimators

Natural plug-in estimator is

$$\widehat{\theta}_{e_i}(\mathbf{t}, \Delta) = \frac{1}{N} \sum_{j=1}^{N} \left\{ \widetilde{X}^{(j)} \left(\mathbf{t} - (\Delta/2) \mathbf{e_i} \right) - \widetilde{X}^{(j)} \left(\mathbf{t} + (\Delta/2) \mathbf{e_i} \right) \right\}^2, \qquad i = 1, 2, \tag{1}$$

where $\widetilde{X}^{(j)}$ denotes the interpolation of $X^{(j)}$.

Plug-in estimators

Natural plug-in estimator is

$$\widehat{\theta}_{e_i}(\mathbf{t}, \Delta) = \frac{1}{N} \sum_{j=1}^{N} \left\{ \widetilde{X}^{(j)} \left(\mathbf{t} - (\Delta/2) \mathbf{e_i} \right) - \widetilde{X}^{(j)} \left(\mathbf{t} + (\Delta/2) \mathbf{e_i} \right) \right\}^2, \qquad i = 1, 2, \tag{1}$$

where $\widetilde{X}^{(j)}$ denotes the interpolation of $X^{(j)}$.

ullet Regularity \underline{H} can be estimated with

$$\frac{\widehat{H}}{\widehat{H}} = \begin{cases}
\min_{i=1,2} \frac{\log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, 2\Delta)) - \log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta))}{2\log(2)} & \text{if} & \widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, 2\Delta), \widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta) > 0, \\
1 & \text{otherwise}.
\end{cases}$$

ロト 4回ト 4 恵 ト 4 恵 ト ・ 夏 ・ 夕久で

Plug-in estimators

Natural plug-in estimator is

$$\widehat{\theta}_{e_i}(\mathbf{t}, \Delta) = \frac{1}{N} \sum_{j=1}^{N} \left\{ \widetilde{X}^{(j)} \left(\mathbf{t} - (\Delta/2) \mathbf{e_i} \right) - \widetilde{X}^{(j)} \left(\mathbf{t} + (\Delta/2) \mathbf{e_i} \right) \right\}^2, \quad i = 1, 2, \quad (1)$$

where $\widetilde{X}^{(j)}$ denotes the interpolation of $X^{(j)}$.

 \bullet Regularity \underline{H} can be estimated with

$$\frac{\widehat{H}}{\widehat{H}} = \begin{cases} \min_{i=1,2} \frac{\log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, 2\Delta)) - \log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta))}{2\log(2)} & \text{if} & \widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, 2\Delta), \widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta) > 0, \\ 1 & \text{otherwise.} \end{cases}$$

• Putting (1) and (2) together:

$$g^{-1}\widehat{|g(\alpha)|} = g^{-1}\left(\frac{\widehat{\theta}_{\mathbf{e_2}}(\mathbf{t},\Delta)}{\widehat{\theta}_{\mathbf{e_1}}(\mathbf{t},\Delta)}\right)^{\frac{1}{2\widehat{H}}}.$$

Estimation Algorithm I

• Define mean $(A) := (\#\mathcal{T}_o)^{-1} \sum_{\mathbf{t} \in \mathcal{T}_o} A(\mathbf{t}).$ **Require:** Data $Y_i(\mathbf{t})$, Evaluation points $\mathcal{T}_o = \{\mathbf{t_1}, \dots, \mathbf{t_k}\}$ Initialise $\widehat{\theta}_{e_1}(\mathcal{T}_o) \leftarrow \emptyset$, $\widehat{\theta}_{e_2}(\mathcal{T}_o) \leftarrow \emptyset$, $\widehat{H}(\mathcal{T}_o) \leftarrow \emptyset$ for t in \mathcal{T}_o do $\widehat{\theta}_{\mathbf{e_1}}(\mathbf{t}, \Delta) \leftarrow N^{-1} \sum_{j=1}^{N} \left\{ \widetilde{X}^{(j)} \left(\mathbf{t} - (\Delta/2) \mathbf{e_1} \right) - \widetilde{X}^{(j)} \left(\mathbf{t} + (\Delta/2) \mathbf{e_1} \right) \right\}^2$ $\widehat{\theta}_{\mathbf{e_2}}(\mathbf{t}, \Delta) \leftarrow N^{-1} \sum_{j=1}^{N} \left\{ \widetilde{X}^{(j)} \left(\mathbf{t} - (\Delta/2) \mathbf{e_2} \right) - \widetilde{X}^{(j)} \left(\mathbf{t} + (\Delta/2) \mathbf{e_2} \right) \right\}^2$ if $\widehat{\theta}_{e_i}(\mathbf{t}, \Delta) > 0$ and $\widehat{\theta}_{e_i}(\mathbf{t}, \Delta) > 0$ then $\underline{\widehat{H}}(\mathbf{t}, \Delta) \leftarrow \min_{i=1,2} \left\{ \left(\log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta)) - \log(\widehat{\theta}_{\mathbf{e_i}}(\mathbf{t}, \Delta)) \right) / (2\log(2)) \right\}$ else $\widehat{H}(\mathbf{t}, \Delta) \leftarrow 1$

end if

Estimation Algorithm II

$$\begin{split} &\widehat{\theta}_{\mathbf{e}_{1}}(\mathcal{T}_{o}) \leftarrow \widehat{\theta}_{\mathbf{e}_{1}}(\mathcal{T}_{o}) \cup \widehat{\theta}_{\mathbf{e}_{1}}(\mathbf{t}, \boldsymbol{\Delta}) \\ &\widehat{\theta}_{\mathbf{e}_{2}}(\mathcal{T}_{o}) \leftarrow \widehat{\theta}_{\mathbf{e}_{2}}(\mathcal{T}_{o}) \cup \widehat{\theta}_{\mathbf{e}_{2}}(\mathbf{t}, \boldsymbol{\Delta}) \\ &\widehat{\underline{H}}(\mathcal{T}_{o}) \leftarrow \widehat{\underline{H}}(\mathcal{T}_{o}) \cup \widehat{\underline{H}}(\mathbf{t}, \boldsymbol{\Delta}) \\ &\mathbf{end for} \\ &\widehat{g(\alpha)} \leftarrow \left(\text{mean}(\widehat{\theta}_{\mathbf{e}_{1}}(\mathcal{T}_{o})) / \text{mean}(\widehat{\theta}_{\mathbf{e}_{2}}(\mathcal{T}_{o})) \right)^{1/(2*\text{mean}(\widehat{\underline{H}})(\mathcal{T}_{o}))} \\ &\widehat{\alpha}^{tan} \leftarrow \arctan \widehat{g(\alpha)} \\ &\widehat{\alpha}^{cot} \leftarrow \operatorname{arccot} g(\alpha) \\ &\mathbf{return} \ \widehat{\alpha}^{tan}, \ \widehat{\alpha}^{cot} \end{split}$$

Identification issues

- Two identification issues are present in (16)
- First is associated to g:

$$g = \tan \mathbf{1}\{H_1 < H_2\} + \cot \mathbf{1}\{H_1 > H_2\}.$$

Identification issues

- Two identification issues are present in (16)
- First is associated to g:

$$g = \tan \mathbf{1}\{H_1 < H_2\} + \cot \mathbf{1}\{H_1 > H_2\}.$$

• Second arises from the absolute value: we either have $tan(\alpha)$ or $tan(\pi - \alpha)$ if g = tan, and similarly for the cot case

Identification issues

- Two identification issues are present in (16)
- First is associated to g:

$$g = \tan \mathbf{1}\{H_1 < H_2\} + \cot \mathbf{1}\{H_1 > H_2\}.$$

- Second arises from the absolute value: we either have $tan(\alpha)$ or $tan(\pi \alpha)$ if g = tan, and similarly for the cot case
- Basically we need to identify a unique angle amongst the four possible options

Resolving the identification problem

Let's not forget what the angle gives us: the direction of the maximising regularity!

Resolving the identification problem

- Let's not forget what the angle gives us: the direction of the maximising regularity!
- Any unit vector $\mathbf{u} \in \mathbb{S}$ can be represented in the canonical basis:

$$\mathbf{u}(\beta) = \cos(\beta)\mathbf{e_1} + \sin(\beta)\mathbf{e_2}.$$

• Correct α between $\mathbf{u_1}$ and $\mathbf{e_1}$ is thus given by

$$\alpha = \arg \max_{\beta \in \{\gamma, \pi - \gamma, \pi/2 - \gamma, \pi/2 + \gamma\}} H_{\mathbf{u}(\beta)},$$

where
$$\gamma \approx \mathrm{arccot} \left((\theta_{\mathbf{e_1}}(t,\Delta)/\theta_{\mathbf{e_2}}(t,\Delta))^{1/(2\underline{H})} \right)\!.$$

Regularity estimator

Use the following noise-adapted estimator:

$$\widehat{H}_{\mathbf{v}} = \begin{cases} \frac{\log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta) - 2\widehat{\sigma}^2) - \log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) - 2\widehat{\sigma}^2)}{2\log(2)} & \text{if} & \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta), \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) > 2\widehat{\sigma}^2, \\ 1 & \text{otherwise}. \end{cases}$$

Regularity estimator

Use the following noise-adapted estimator:

$$\widehat{H}_{\mathbf{v}} = \begin{cases} \frac{\log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta) - 2\widehat{\sigma}^2) - \log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) - 2\widehat{\sigma}^2)}{2\log(2)} & \text{if} & \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta), \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) > 2\widehat{\sigma}^2, \\ 1 & \text{otherwise}. \end{cases}$$

Noise estimator is given by

$$\hat{\sigma}_m^2 = \frac{1}{2N} \sum_{j=1}^N \left(Y^{(j)}(\mathbf{t}_m) - Y^{(j)}(\mathbf{t}_{m,1}) \right)^2,$$

with $\mathbf{t}_{m,1}$ denoting the closest observed point to $\mathbf{t_m}$.

Regularity estimator

Use the following noise-adapted estimator:

$$\widehat{H}_{\mathbf{v}} = \begin{cases} \frac{\log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta) - 2\widehat{\sigma}^2) - \log(\widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) - 2\widehat{\sigma}^2)}{2\log(2)} & \text{if} & \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, 2\Delta), \widehat{\theta}_{\mathbf{v}}(\mathbf{t}, \Delta) > 2\widehat{\sigma}^2, \\ 1 & \text{otherwise}. \end{cases}$$

Noise estimator is given by

$$\hat{\sigma}_m^2 = \frac{1}{2N} \sum_{j=1}^N \left(Y^{(j)}(\mathbf{t}_m) - Y^{(j)}(\mathbf{t}_{m,1}) \right)^2,$$

with $\mathbf{t}_{m,1}$ denoting the closest observed point to $\mathbf{t_m}$.

• Compute $\hat{H}_{\mathbf{v}}$ on a grid of spacings Δ :

$$\widehat{\alpha} = \arg\max_{\beta \in \{\widehat{\gamma}, \pi - \widehat{\gamma}, \pi/2 - \widehat{\gamma}, \pi/2 + \widehat{\gamma}\}} \sum_{i=1}^{p} \widehat{H}_{\mathbf{u}(\beta)}(\Delta_i),$$

where
$$\widehat{\gamma} = \operatorname{arccot} \Big((\widehat{\theta}_{\mathbf{e_1}}(t, \Delta) / \widehat{\theta}_{\mathbf{e_2}}(t, \Delta))^{1/(2\widehat{\underline{H}}(\Delta))} \Big).$$

Identification Algorithm

Require: $\widehat{\alpha}^{tan}$, $\widehat{\alpha}^{cot}$, $Y_i(\mathbf{t})$, Δ , \mathcal{T}_o , $\widehat{\sigma}^2$

Identification Algorithm

Require: $\widehat{\alpha}^{tan}$, $\widehat{\alpha}^{cot}$, $Y_i(\mathbf{t})$, Δ , \mathcal{T}_o , $\widehat{\sigma}^2$

Initialise
$$\widehat{H}_{\mathbf{v}(\beta)}(\Delta) \leftarrow \emptyset$$
, $\widehat{H}_{\mathbf{v}(\beta)} \leftarrow \emptyset$

$$\triangleright \, \beta \in \{\widehat{\alpha}^{tan}, \widehat{\alpha}^{cot}, \pi - \widehat{\alpha}^{tan}, \pi - \widehat{\alpha}^{cot}\}$$

Identification Algorithm

```
Require: \widehat{\alpha}^{tan}. \widehat{\alpha}^{cot}. Y_i(\mathbf{t}). \Delta. \mathcal{T}_o. \widehat{\sigma}^2
      Initialise \widehat{H}_{\mathbf{v}(\beta)}(\Delta) \leftarrow \emptyset, \widehat{H}_{\mathbf{v}(\beta)} \leftarrow \emptyset
                                                                                                                                                           \triangleright \beta \in \{\widehat{\alpha}^{tan}, \widehat{\alpha}^{cot}, \pi - \widehat{\alpha}^{tan}, \pi - \widehat{\alpha}^{cot}\}\
      \mathbf{v}(\beta) \leftarrow (\cos(\beta), \sin(\beta))^{\top}
      for \wedge in \Delta do
                 for t in \mathcal{T}_o do
                           if \widehat{\theta}_{\mathbf{v}(\beta)}(\mathbf{t}, 2\Delta) > 2\widehat{\sigma}^2 and \widehat{\theta}_{\mathbf{v}(\beta)}(\mathbf{t}, \Delta) > 2\widehat{\sigma}^2 then
      \widehat{H}_{\mathbf{v}(\beta)}(\mathbf{t}, \Delta) \leftarrow \left(\log(\widehat{\theta}_{\mathbf{v}(\beta)}(\mathbf{t}, 2\Delta) - 2\widehat{\sigma}^2) - \log(\widehat{\theta}_{\mathbf{v}(\beta)}(\mathbf{t}, \Delta) - 2\widehat{\sigma}^2)\right) / (2\log(2))
                           else
                                      H_{\mathbf{v}(\beta)}(\mathbf{t}, \Delta) \leftarrow 1
                           end if
                           \widehat{H}_{\mathbf{v}(\beta)}(\Delta) \leftarrow \widehat{H}_{\mathbf{v}(\beta)}(\Delta) \cup \widehat{H}_{\mathbf{v}(\beta)}(\mathbf{t}, \Delta)
                                                                                                                                                                                                           \triangleright \widehat{H} now on grid of t's
                 end for
                 \widehat{H}_{\mathbf{v}(\beta)} \leftarrow \widehat{H}_{\mathbf{v}(\beta)} \cup \operatorname{mean}(\widehat{H}_{\mathbf{v}(\beta)}(\Delta))
      end for
       \widehat{\alpha} \leftarrow \arg \max_{\beta} \sum_{\Lambda \in \Lambda} \widehat{H}_{\mathbf{v}(\beta)}
       return \widehat{\alpha}
```

Theory - Assumptions

Assumptions.

Let X be anisotropic process with the two regularities (H_1, H_2) , and let $X^{(j)}$, $1 \le j \le N$, be independent realizations of X.

Theory - Assumptions

Assumptions.

- Let X be anisotropic process with the two regularities (H_1, H_2) , and let $X^{(j)}$, $1 \le j \le N$, be independent realizations of X.
- $oldsymbol{\mathfrak{g}}$ Three positive constants $\mathfrak{a},\,\mathfrak{A}$ and r exist such that, for any $\mathbf{t}\in\mathcal{T},$

$$\mathbb{E}\left|X^{(j)}\left(\mathbf{t}\right) - X^{(j)}\left(\mathbf{s}\right)\right|^{2p} \leq \frac{p!}{2}\mathfrak{a}\mathfrak{A}^{p-2}\|\mathbf{t} - \mathbf{s}\|^{2p\underline{H}(\mathbf{t})} \qquad \forall \mathbf{s} \in B(\mathbf{t};r), \ \forall p \geq 1.$$

Theory - Assumptions

Assumptions.

- Let X be anisotropic process with the two regularities (H_1, H_2) , and let $X^{(j)}$, 1 < j < N, be independent realizations of X.
- $ext{@}$ Three positive constants $\mathfrak{a},\mathfrak{A}$ and r exist such that, for any $\mathbf{t}\in\mathcal{T},$

$$\mathbb{E}\left|X^{(j)}\left(\mathbf{t}\right) - X^{(j)}\left(\mathbf{s}\right)\right|^{2p} \leq \frac{p!}{2}\mathfrak{a}\mathfrak{A}^{p-2}\|\mathbf{t} - \mathbf{s}\|^{2p\underline{H}(\mathbf{t})} \qquad \forall \mathbf{s} \in B(\mathbf{t};r), \ \forall p \geq 1.$$

A constant & exists such that

$$\mathbb{E}(\varepsilon^{2p}) \le \frac{p!}{2} \mathfrak{G}^{p-2} \sigma^2, \qquad \forall p \ge 1.$$
 (3)

Theoretical Properties

Theorem

Suppose that assumptions H1-H3 are satisfied. Then, three positive constants C_1 , C_2 and $\mathfrak u$ exist such that for any

$$1 \ge \varepsilon \ge \mathfrak{u} \max\{\mathfrak{m}^{-2\underline{H}}, \Delta^{\widetilde{\beta} \wedge |2H_1 - 2H_2|}\},\,$$

$$\mathbb{P}\left(|\widehat{g(\alpha,\Delta)} - g(\alpha,\Delta)| \ge \varepsilon\right) \le C_1 \exp\left(-C_2 \varepsilon^2 N \frac{\Delta^{6H}}{\log^2(\Delta)}\right).$$

where g is defined in Proposition 14.

Theoretical Properties

Theorem

Suppose that assumptions H1-H3 are satisfied. Then, three positive constants C_1 , C_2 and u exist such that for any

$$1 \ge \varepsilon \ge \mathfrak{u} \max\{\mathfrak{m}^{-2\underline{H}}, \Delta^{\overline{\beta} \wedge |2H_1 - 2H_2|}\},$$

$$\mathbb{P}\left(|\widehat{g(\alpha,\Delta)} - g(\alpha,\Delta)| \ge \varepsilon\right) \le C_1 \exp\left(-C_2 \varepsilon^2 N \frac{\Delta^{6H}}{\log^2(\Delta)}\right).$$

where q is defined in Proposition 14.

Corollary

The following rates of convergence hold for $\hat{\alpha}$:

$$|\widehat{\alpha}(\Delta) - \alpha| = O_{\mathbb{P}}\left(\max\left\{\frac{\#\mathbf{\Delta}}{\min\{\sqrt{N}, \mathfrak{m}^{\underline{H}}\}}, \frac{|\log\Delta|}{\sqrt{N}\Delta^{3\underline{H}}}, \mathfrak{m}^{-\underline{H}}\right\}\right).$$

4 □ > 4 圖 > 4 필 > 4 厘 > □

Computational aspects of directional regularity

- ullet Computational cost of identification dominates, due to the extra estimation of H's on a grid of spacings $oldsymbol{\Delta}$
- Can restrict our analysis to the identification algorithm
- $O(M_0\#\mathcal{T}_d)$ for interpolation in each surface, resulting in $O(NM_0\#\mathcal{T}_d)$ for all surfaces, and thus $O(\#\Delta NM_0\#\mathcal{T}_d)$ on a grid of spacings

Simulation of Anisotropic Processes

- Need a fast way to simulate anisotropic processes to test our algorithms
- While many algorithms exist for simulation of processes such as fBm, they do not take into account anisotropy
- Based on circulant embedding method of Wood and Chan (1994), and exploiting the self-similarity and stationary increments of fBms

• Using basic trigonometry, can represent basis vectors as $\{u_1, u_2\}$ in the canonical basis:

$$\mathbf{u_1} = \cos(\alpha)\mathbf{e_1} + \sin(\alpha)\mathbf{e_2},$$

$$\mathbf{u_2} = -\sin(\alpha)\mathbf{e_1} + \cos(\alpha)\mathbf{e_2}.$$
(4)

• Using basic trigonometry, can represent basis vectors as $\{u_1, u_2\}$ in the canonical basis:

$$\mathbf{u_1} = \cos(\alpha)\mathbf{e_1} + \sin(\alpha)\mathbf{e_2},$$

$$\mathbf{u_2} = -\sin(\alpha)\mathbf{e_1} + \cos(\alpha)\mathbf{e_2}.$$
(4)

• Can try to take an equally spaced grid of points $\{\mathbf{u_{1k}}\}_{1 \leq k \leq n}, \{\mathbf{u_{2k}}\}_{1 \leq k \leq n}$ and simulate the fBms

• Using basic trigonometry, can represent basis vectors as $\{u_1, u_2\}$ in the canonical basis:

$$\mathbf{u_1} = \cos(\alpha)\mathbf{e_1} + \sin(\alpha)\mathbf{e_2},$$

$$\mathbf{u_2} = -\sin(\alpha)\mathbf{e_1} + \cos(\alpha)\mathbf{e_2}.$$
(4)

- Can try to take an equally spaced grid of points $\{\mathbf{u_{1k}}\}_{1 \leq k \leq n}, \{\mathbf{u_{2k}}\}_{1 \leq k \leq n}$ and simulate the fBms
- But this is not enough, since $-\sin(\alpha)$ can be negative, and $\cos(\alpha) < 0$ for $\alpha \in [\pi/2, 3\pi/2]$, while the fBm has a domain in $\mathbb{R}_+!$

• Using basic trigonometry, can represent basis vectors as $\{u_1, u_2\}$ in the canonical basis:

$$\mathbf{u_1} = \cos(\alpha)\mathbf{e_1} + \sin(\alpha)\mathbf{e_2},$$

$$\mathbf{u_2} = -\sin(\alpha)\mathbf{e_1} + \cos(\alpha)\mathbf{e_2}.$$
(4)

- Can try to take an equally spaced grid of points $\{\mathbf{u_{1k}}\}_{1 \leq k \leq n}, \{\mathbf{u_{2k}}\}_{1 \leq k \leq n}$ and simulate the fBms
- But this is not enough, since $-\sin(\alpha)$ can be negative, and $\cos(\alpha) < 0$ for $\alpha \in [\pi/2, 3\pi/2]$, while the fBm has a domain in $\mathbb{R}_+!$
- However, we can use the stationary increments to avoid the problem of negative values:

$$B(t) - B(s) \sim B(t - s),$$

and take for example t = 0.

Simulation Algorithm I

```
Require: \alpha \in [0, 2\pi], N \in \mathbb{N}, H_1, H_2 \in (0, 1), n \in \mathbb{N}, f, \mathbf{v} \in \{(i/n, j/n)\}_{0 \le i, j \le n}
    Initialise Y(\mathbf{v}) \leftarrow \emptyset
    if \alpha > \pi then
           \alpha \leftarrow \alpha - \pi
    end if
    \mathbf{u_1} \leftarrow (\cos(\alpha), \sin(\alpha))^{\perp}
    \mathbf{u_2} \leftarrow (-\sin(\alpha), \cos(\alpha))^{\top}
    \mathbf{t} \leftarrow \{n^{-1}(|\cos(\alpha)| + \sin(\alpha))k\}_{0 \le k \le n}
    for i from 1 to N do
           B_1 \leftarrow \text{fbm}(H_1, n, |\cos(\alpha)| + \sin(\alpha))
           B_2 \leftarrow \text{fbm}(H_2, n, |\cos(\alpha)| + \sin(\alpha))
           if \alpha < \pi/2 then
                  B_1 \leftarrow \widetilde{B}_1
                  \mathbf{s} \leftarrow \{-\sin(\alpha) + (k/n)(\cos(\alpha) + \sin(\alpha))\}_{0 \le k \le n}
           else
                  \mathbf{t}^{proj} \leftarrow \{\cos(\alpha) + (k/n)(\sin(\alpha) - \cos(\alpha))\}_{0 \le k \le n}
                  B_1^- \leftarrow -\widetilde{B}_1(-\mathbf{t}^{proj}\mathbf{1}\{\mathbf{t_k}^{proj} < 0\})
                  B_1^+ \leftarrow \widetilde{B}_1(\mathbf{t}^{proj}\mathbf{1}\{\mathbf{t}_{\mathbf{k}}^{proj} > 0\})
```

Simulation Algorithm II

```
B_1 \leftarrow B_1^- \cup B_1^+
                \mathbf{s} \leftarrow \{(\cos(\alpha) + \sin(\alpha)) + (k/n)(\sin(\alpha) - \cos(\alpha))\}_{0 \le k \le n}
        end if
        \underline{s}_k \leftarrow \arg\min_{x \in \mathbf{t}} |\mathbf{s}_k - x| \mathbf{1} \{\mathbf{s}_k < 0\}
        \overline{s}_k \leftarrow \arg\min_{x \in \mathbf{t}} |\mathbf{s}_k - x| \mathbf{1} \{\mathbf{s}_k \geq 0\}
        B_2^- \leftarrow -B_2(-s_k)
        B_2^+ \leftarrow \widetilde{B}_2(\overline{s}_k)
        B_2 \leftarrow B_2^- \cup B_2^+
        X^{(i)}(\mathbf{v}) \leftarrow f(B_1(\langle \mathbf{v}, \mathbf{u_1} \rangle), B_2(\langle \mathbf{v}, \mathbf{u_2} \rangle))
                                                                                                                          \triangleright f is some composition function
        Y^{(i)}(\mathbf{v}) \leftarrow X^{(i)}(\mathbf{v}) + \epsilon^{(i)}(\mathbf{v})
        Y(\mathbf{v}) \leftarrow Y(\mathbf{v}) \cup Y^{(i)}(\mathbf{v})
end for
return Y(\mathbf{v})
```

Computational aspects of simulator

- fBm simulator on the canonical basis runs in $O(n \log n)$ for each sample path, where n is the number of points of the grid
- For our anisotropic simulator, the complexity is thus $O(Nn\log n)$, where N is the number of surfaces
- Because the complexity of searching for the right coordinates is negligible (O(n))

Simulation setup

- Consider the sum and product of two fBms $f_1(B_1, B_2) = B_1 + B_2$, $f_2(B_1, B_2) = B_1B_2$
- surfaces $N \in \{100, 200\}$, $M_0 = 51 \times 51$ points, noise $\sigma \in \{0, 0.01, 0.05, 0.1\}$, Angles $\alpha \in \{\pi/3, \pi/6, 5\pi/6\}$, $H_1 = 0.8$, $H_2 = 0.5$
- $\Delta = M_0^{-1/4}(1+\Delta_c)$, where $\Delta_c = 0.25$ for estimation of α
- $\Delta=\{M_0^{-1/4},\Delta_1,\ldots,\Delta_{k-1},0.4\}$, where $\#\Delta=15$ for identification
- Risk measure

$$\mathcal{R}_{\alpha} = |\widehat{\alpha} - \alpha|$$

Simulation Results - Sum

Figure 1: Boxplots for M=51 (sum)

Simulation Results - Product

Figure 2: Boxplots for M=51 (product)

So... what's the point?

 Rates of convergence of various quantities in fda depend crucially on the regularity of the process

So... what's the point?

- Rates of convergence of various quantities in fda depend crucially on the regularity of the process
- By considering the directional regularity, one can exploit the inherent anisotropy of the process and possibly obtain faster rates

So... what's the point?

- Rates of convergence of various quantities in fda depend crucially on the regularity of the process
- By considering the directional regularity, one can exploit the inherent anisotropy of the process and possibly obtain faster rates
- Done by simply applying a transformation to the data, of the form

$$Z(\mathbf{t}) := X(\mathbf{R}_{\alpha}^{-1} \cdot \mathbf{t}), \quad \forall \mathbf{t} \in \mathcal{T},$$

where

$$\mathbf{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix},$$

and α can be estimated using our methodology

• Let $\{X(\mathbf{t}), \mathbf{t} \in \mathcal{T}\}$ be a bi-variate stochastic process with maximising direction $\mathbf{u_1}$

- \bullet Let $\{X(t), t \in \mathcal{T}\}$ be a bi-variate stochastic process with maximising direction $\mathbf{u_1}$
- Observations associated to $\{X(\mathbf{t}), \mathbf{t} \in \mathcal{T}\}$ come in the form of pairs $(Y_m^{(j)}, \mathbf{t}_m)$, such that

$$Y_m^{(j)} = X^{(j)}(\mathbf{t}_m) + \varepsilon_m^{(j)}, \qquad 1 \le m \le M_0, 1 \le j \le N,$$

where $(Y_m^{(j)}, \mathbf{t}_m)$ is the learning set.

- \bullet Let $\{X(t), t \in \mathcal{T}\}$ be a bi-variate stochastic process with maximising direction $\mathbf{u_1}$
- Observations associated to $\{X(\mathbf{t}), \mathbf{t} \in \mathcal{T}\}$ come in the form of pairs $(Y_m^{(j)}, \mathbf{t}_m)$, such that

$$Y_m^{(j)} = X^{(j)}(\mathbf{t}_m) + \varepsilon_m^{(j)}, \qquad 1 \le m \le M_0, 1 \le j \le N,$$

where $(Y_m^{(j)}, \mathbf{t}_m)$ is the learning set.

 \bullet Consider a new realisation X^{new} of X, where pairs $(Y_m^{new}, \mathbf{t}_m)$ are observed such that

$$Y_m^{new} = X^{new}(\mathbf{t}_m) + \varepsilon_m^{new}, \qquad 1 \le m \le M_1,$$

where $(Y_m^{new}, \mathbf{t}_m)$ is the online set.

- \bullet Let $\{X(t), t \in \mathcal{T}\}$ be a bi-variate stochastic process with maximising direction $\mathbf{u_1}$
- Observations associated to $\{X(\mathbf{t}), \mathbf{t} \in \mathcal{T}\}$ come in the form of pairs $(Y_m^{(j)}, \mathbf{t}_m)$, such that

$$Y_m^{(j)} = X^{(j)}(\mathbf{t}_m) + \varepsilon_m^{(j)}, \qquad 1 \le m \le M_0, 1 \le j \le N,$$

where $(Y_m^{(j)}, \mathbf{t}_m)$ is the learning set.

 \bullet Consider a new realisation X^{new} of X, where pairs $(Y_m^{new}, \mathbf{t}_m)$ are observed such that

$$Y_m^{new} = X^{new}(\mathbf{t}_m) + \varepsilon_m^{new}, \qquad 1 \le m \le M_1,$$

where $(Y_m^{new}, \mathbf{t}_m)$ is the online set.

• Goal: recovery of the online set $X^{new}(\mathbf{t}_m)$ with the $(Y_m^{new}, \mathbf{t}_m)$ by using some estimator $\widehat{X}^{new}(\mathbf{t}_m)$

Smoothing Application: Methodology

• With the transformation, observed data is $(Y_m^{new}, \mathbf{R}_{\alpha} \mathbf{t}_m), 1 \leq m \leq M_1$, from

$$Y_m^{new} = Z^{new}(\mathbf{R}_{\alpha}\mathbf{t}_m) + \varepsilon_m^{new}, \qquad 1 \le m \le M_1$$

Smoothing Application: Methodology

• With the transformation, observed data is $(Y_m^{new}, \mathbf{R}_{\alpha} \mathbf{t}_m), 1 \leq m \leq M_1$, from

$$Y_m^{new} = Z^{new}(\mathbf{R}_\alpha \mathbf{t}_m) + \varepsilon_m^{new}, \qquad 1 \le m \le M_1$$

Consider the Nadaraya-Watson estimator of the form

$$\widehat{Z}^{new}(\mathbf{t}; \mathbf{B}) = \sum_{m=1}^{M_1} Y_m^{new} \frac{K(\mathbf{B}(R_\alpha \mathbf{t}_m - \mathbf{t}))}{\sum_{m=1}^{M_0} K(\mathbf{B}(R_\alpha \mathbf{t}_m - \mathbf{t}))}.$$

Smoothing Application: Methodology

• With the transformation, observed data is $(Y_m^{new}, \mathbf{R}_{\alpha} \mathbf{t}_m), 1 \leq m \leq M_1$, from

$$Y_m^{new} = Z^{new}(\mathbf{R}_{\alpha}\mathbf{t}_m) + \varepsilon_m^{new}, \qquad 1 \le m \le M_1$$

Consider the Nadaraya-Watson estimator of the form

$$\widehat{Z}^{new}(\mathbf{t}; \mathbf{B}) = \sum_{m=1}^{M_1} Y_m^{new} \frac{K(\mathbf{B}(R_\alpha \mathbf{t}_m - \mathbf{t}))}{\sum_{m=1}^{M_0} K(\mathbf{B}(R_\alpha \mathbf{t}_m - \mathbf{t}))}.$$

This is equivalent to

$$\widehat{X}^{new}(\mathbf{t}; \mathbf{B}) = \sum_{m=1}^{M_1} Y_m^{new} \frac{K(\mathbf{B}R_\alpha(\mathbf{t}_m - \mathbf{t}))}{\sum_{m=1}^{M_1} K(\mathbf{B}R_\alpha(\mathbf{t}_m - \mathbf{t}))}.$$

Omar Kassi, Sunny Wang

Smoothing Application: Theory

Consider the risk

$$\mathcal{R}\left(\mathbf{B}, M_{1}\right) = \mathbb{E}\left[\left\|\widehat{Z}(\mathbf{B}, M_{1}) - Z\right\|_{2}^{2}\right].$$

Smoothing Application: Theory

Consider the risk

$$\mathcal{R}\left(\mathbf{B}, M_1\right) = \mathbb{E}\left[\|\widehat{Z}(\mathbf{B}, M_1) - Z\|_2^2\right].$$

Effective smoothness is

$$\omega = \{H_1^{-1} + H_2^{-1}\}^{-1}$$

Smoothing Application: Theory

Consider the risk

$$\mathcal{R}\left(\mathbf{B}, M_1\right) = \mathbb{E}\left[\|\widehat{Z}(\mathbf{B}, M_1) - Z\|_2^2\right].$$

Effective smoothness is

$$\omega = \{H_1^{-1} + H_2^{-1}\}^{-1}$$

Optimal bandwidth is given by

$$h_i \asymp M_1^{-\frac{\omega}{(2\omega+1)H_i}}, \qquad i = 1, 2,$$

which gives us the following rate of convergence:

$$\mathcal{R}\left(\mathbf{B}, M_1\right) \lesssim M_1^{-\frac{2\omega}{2\omega+1}}.$$

• DGP: Sum of two fBms

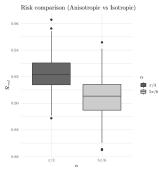
- DGP: Sum of two fBms
- Parameters for learning set: $\alpha \in \{\pi/3, 5\pi/6\}, N=150, M_0=101, \sigma=0.05, H_1=0.8, H_2=0.5$ with the same Δ settings as before

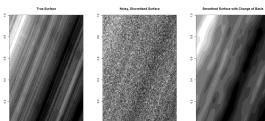
- DGP: Sum of two fBms
- Parameters for learning set: $\alpha \in \{\pi/3, 5\pi/6\}, N=150, M_0=101, \sigma=0.05, H_1=0.8, H_2=0.5$ with the same Δ settings as before
- Parameters for online set: $M_1^{true}=201,\,M_1=121,\sigma=0.05$

- DGP: Sum of two fBms
- Parameters for learning set: $\alpha \in \{\pi/3, 5\pi/6\}, N=150, M_0=101, \sigma=0.05, H_1=0.8, H_2=0.5$ with the same Δ settings as before
- Parameters for online set: $M_1^{true} = 201$, $M_1 = 121$, $\sigma = 0.05$
- Risk measure for comparison:

$$\mathcal{R}_{rel} = \frac{\mathcal{R}^{ani}(\mathbf{B}, M_1)}{\mathcal{R}^{iso}(\mathbf{B}, M_1)}$$

Simulation results





• Anisotropy depends not only on the dimension, but the direction

- Anisotropy depends not only on the dimension, but the direction
- Taking into account the directional regularity can allow one to obtain faster rates of convergence, even if isotropic on the canonical basis

- Anisotropy depends not only on the dimension, but the direction
- Taking into account the directional regularity can allow one to obtain faster rates of convergence, even if isotropic on the canonical basis
- Algorithms for the estimation and identification of the directional regularity that works well in practice are constructed

- Anisotropy depends not only on the dimension, but the direction
- Taking into account the directional regularity can allow one to obtain faster rates of convergence, even if isotropic on the canonical basis
- Algorithms for the estimation and identification of the directional regularity that works well in practice are constructed
- One application is the improved rate in smoothing surfaces

- Anisotropy depends not only on the dimension, but the direction
- Taking into account the directional regularity can allow one to obtain faster rates of convergence, even if isotropic on the canonical basis
- Algorithms for the estimation and identification of the directional regularity that works well in practice are constructed
- One application is the improved rate in smoothing surfaces
- But the consequences are not limited to smoothing! Thus recommend it as a standard pre-processing step in multivariate fda

THANK YOU!

