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Introduction

Recap on Functional Data

The observation unit (entity), the datum, could be one or several curves, image(s),
or several such objects

Related fields: Signal Processing, Longitudinal Data...

Data are (in)dependent realizations of some variable

X : (Ω,A)→ (X ,F)

When X is a space of curves/images/signals
▶ Functional Data problem

Functional Data Analysis (FDA) deals with the statistical description and modeling
of samples of random variable taking values in spaces of functions
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Introduction Regularity in FD

Regularity in the univariate case (1/2)

For BH a fBm with Hurst index H ∈ (0, 1),

E
[{

BH(t)−BH(s)
}2
]
= |t− s|2H , s, t ∈ R+

Estimating equation for the Hurst parameter :

H =
log
(
E
[{

BH(t)−BH(s)
}2])

2 log |t− s|
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Introduction Regularity in FD

Regularity in the univariate case (2/2)

Let X be a process defined on a subset of R, with non-differentiable sample paths

GKP (2022) : H(t0) ∈ (0, 1) and L(t0) > 0 exist such that

E
[
{X(t)−X(s)}2

]
≈ L(t0)

2|t− s|2H(t0), ∀s ≤ t0 ≤ t

for t and s close to t0

Estimating equation :

H(t0) ≈
log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
, t0 ∈ [t1, t2] ⊂ [t1, t3]

where
θ(t, s) = E

[
{X(t)−X(s)}2

]
and |t1 − t2| = 2|t1 − t3|.
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Introduction Regularity in FD

Multivariate functional data

The realizations of the stochastic process X are surfaces

▶ Satellite images
▶ Measurements of temperature or salinity in oceanology
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Introduction Motivation

Detour to non-parametric regression

Let (Xi, Yi), i = 1, . . . , n be data pairs observed under the model

Yi = f(Xi) + εi, i = 1, . . . , n,

where f : [0, 1]d → R and the Xi’s are i.i.d uniformly distributed on the hypercube

If f belongs to the anisotropic Hölder class, the minimax rate of estimation is
n−β/(2β+1), where β is the effective smoothness:

β−1 =

d∑
i=1

β−1
i ,

with βi is the regularity along dimension ei
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Introduction Motivation

Are you really isotropic?

Anisotropy / isotropy is often determined within the confines of the canonical basis
as it is a notion of smoothness along a dimension

But this is not the full story!

Let T be an open subset of R2, and f : R2 → R, and {u1, u2} be an orthonormal
basis, where the function f is βi-Hölder continuous along ui, for i = 1, 2

Let v ∈ S such that v = α1u1 + α2u2. Then we have

|f(t)− f(t−∆v)| ≤ L1|α1∆|β1 + L2|α2∆|β2
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Introduction Motivation

Let’s define things

Directional Regularity
Let X be a continuous & non-differentiable stochastic process, u ∈ S a unit vector and
Hu : T → (0, 1). X has local regularity Hu at t ∈ T along the direction u if
Lu : T → R+ exist such that :

θu(t,∆) := E

[{
X

(
t− ∆

2
u

)
−X

(
t+

∆

2
u

)}2
]
= Lu(t)∆

2Hu(t) +G(t,∆),

where G(t,∆) =
∆→0

o
(
∆2Hu(t)

)
. We call the map u 7→ Hu directional regularity.

If Hu does not depend on the direction u, we say X is isotropic

Otherwise, we call X anisotropic

Anisotropy is not just a notion of smoothness along a dimension, but also along a
direction
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Introduction Motivation

Example 1: Sum of fBms (1/2)

Let u1,u2 be two unit vectors that spans R2, and H1 < H2 ∈ (0, 1).

Consider
X(t) = BH1(t1) +BH2(t2), ∀t ∈ T ,

where (t1, t2) are the coordinates of t in the (u1,u2)

Independence of B1 and B2 implies:

E
[
{X(t− (∆/2)ui)−X(t+ (∆/2)ui)}2

]
= ∆2Hi .
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Introduction Motivation

Example 1: Sum of fBms (2/2)

Take again the sum of two independent fBms, where ei = a1,iu1 + a2,iu2

In the canonical basis, we have instead

E
[
{X(t− (∆/2)ei)−X(t+ (∆/2)ei)}2

]
= |a1,i∆|2H1 + |a2,i∆|2H2 .

In the “bad” basis (which in fact is almost all of them), the effective smoothness of
X is instead given by β−1 = 2H−1

1 < H−1
1 +H−1

2
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Introduction Motivation

Example 2: Product of fBms

Define the product of two independent fBms, where {u1,u2} is the orthonormal
basis containing the maximising regularity:

X(t) = BH1(t1)B
H2(t2), ∀t ∈ T .

Independence implies that along the (u1,u2) basis, we have

E
[
{X(t− (∆/2)ui)−X(t+ (∆/2)ui)}2

]
= t

2Hj

j ∆2Hi , j ̸= i.

In contrast, along the canonical basis we have instead

θei(t,∆) ≈ t
2Hj

j |a1,i∆|2Hi + t2Hi
i |a1,j∆|2Hj , j ̸= i.

Anisotropy of X is not invariant to the choice of basis!

Omar Kassi, Sunny Wang Directional Regularity 21st March, 2024 11 / 43
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Introduction Setup

The key lemma

Lemma

Let (u1,u2) ∈ S span R2 such that Hu1 < Hu2 . Suppose Lu1 and Lu2 are
continuously differentiable. For any v ∈ S, we have the following dichotomy:

If v ̸= ±u2, then the regularity of X along v is Hu1 .

Otherwise, the local regularity along v is Hu2 .

Map v 7→ Hv can only take at most two possible values

Maximisation problem argmaxv∈S Hv admits two solutions u2 and −u2

Finding the maximising direction u2 is equivalent to finding the angle α ∈ [0, π)
between the two basis vectors e1 and u1:

argmax
v∈S

Hv = arg max
α∈[0,π)

Hu(α),

where u(α) = cos(α)e1 + sin(α)e2.

Omar Kassi, Sunny Wang Directional Regularity 21st March, 2024 12 / 43
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Introduction Setup

The picture that says it all

Illustration of directional regularity

e1

e2

u1u2

α

H1

H2

H1

H1
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Methodology Estimator

How to estimate α?

Let H1, H2 denote the regularity of X along u1 and u2 respectively, where
⟨e1,u1⟩ = cos(α)

Proposition

Suppose that u1 ̸= ±ei, for i = 1, 2. Then for a process X satisfying (8) and any fixed
point t ∈ T , we have

|g(α)| =
(
θe2(t,∆)

θe1(t,∆)

) 1
2H

+O
(
∆β̃∧|2H1−2H2|

)
,

where g = tan1{H1 < H2}+ cot1{H1 > H2}, and H = min{H1, H2}.

Angles can be computed, up to a reflection, by taking the ratios of mean-squared
variations along the canonical basis
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Methodology Estimator

Data setting

Observe an independent sample of random functions X(1), . . . , X(N) defined on
T , where T is an open subset of Rd

+.

Suppose that observations come in the form of (Y (j)(tm), tm), generated from

Y (j)(tm) = X(j)(tm) + ε(j)m , 1 ≤ j ≤ N, 1 ≤ m ≤M0, tm ∈ T ,

where the homoscedastic errors are independent, centered random variables.
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Methodology Estimator

Plug-in estimators

Natural plug-in estimator is

θ̂ei(t,∆) =
1

N

N∑
j=1

{
X̃(j) (t− (∆/2)ei)− X̃(j) (t+ (∆/2)ei)

}2

, i = 1, 2, (1)

where X̃(j) denotes the interpolation of X(j).

Regularity H can be estimated with

Ĥ =

{
mini=1,2

log(θ̂ei (t,2∆))−log(θ̂ei (t,∆))

2 log(2)
if θ̂ei(t, 2∆), θ̂ei(t,∆) > 0,

1 otherwise.
(2)
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Ĥ =

{
mini=1,2

log(θ̂ei (t,2∆))−log(θ̂ei (t,∆))

2 log(2)
if θ̂ei(t, 2∆), θ̂ei(t,∆) > 0,

1 otherwise.
(2)

Putting (1) and (2) together:

g−1 |̂g(α)| = g−1

(
θ̂e2(t,∆)

θ̂e1(t,∆)

) 1

2Ĥ
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Methodology Estimator

Estimation Algorithm I

Define mean(A) := (#To)−1∑
t∈To

A(t).

Require: Data Yi(t), Evaluation points To = {t1, . . . , tk}

Initialise θ̂e1(To)← ∅, θ̂e2(To)← ∅, Ĥ(To)← ∅

for t in To do
θ̂e1(t,∆)← N−1∑N

j=1

{
X̃(j) (t− (∆/2)e1)− X̃(j) (t+ (∆/2)e1)

}2

▷ fixed ∆

θ̂e2(t,∆)← N−1∑N
j=1

{
X̃(j) (t− (∆/2)e2)− X̃(j) (t+ (∆/2)e2)

}2

if θ̂ei(t,∆) > 0 and θ̂ei(t,∆) > 0 then
Ĥ(t,∆)← mini=1,2

{(
log(θ̂ei(t,∆))− log(θ̂ei(t,∆))

)
/(2 log(2))

}
else

Ĥ(t,∆)← 1
end if
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Methodology Estimator

Estimation Algorithm II

θ̂e1(To)← θ̂e1(To) ∪ θ̂e1(t,∆)

θ̂e2(To)← θ̂e2(To) ∪ θ̂e2(t,∆)

Ĥ(To)← Ĥ(To) ∪ Ĥ(t,∆)
end for

ĝ(α)←
(
mean(θ̂e1(To))/mean(θ̂e2(To))

)1/(2∗mean(Ĥ)(To))

α̂tan ← arctan ĝ(α)

α̂cot ← arccotĝ(α)
return α̂tan, α̂cot
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Methodology Estimator

Identification issues

Two identification issues are present in (16)

First is associated to g:

g = tan1{H1 < H2}+ cot1{H1 > H2}.

Second arises from the absolute value: we either have tan(α) or tan(π − α) if
g = tan, and similarly for the cot case

Basically we need to identify a unique angle amongst the four possible options
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Methodology Estimator

Resolving the identification problem

Let’s not forget what the angle gives us: the direction of the maximising regularity!

Any unit vector u ∈ S can be represented in the canonical basis:

u(β) = cos(β)e1 + sin(β)e2.

Correct α between u1 and e1 is thus given by

α = argmaxβ∈{γ,π−γ,π/2−γ,π/2+γ}Hu(β),

where γ ≈ arccot
(
(θe1(t,∆)/θe2(t,∆))1/(2H)

)
.
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Methodology Estimator

Regularity estimator

Use the following noise-adapted estimator:

Ĥv =

{
log(θ̂v(t,2∆)−2σ̂2)−log(θ̂v(t,∆)−2σ̂2)

2 log(2)
if θ̂v(t, 2∆), θ̂v(t,∆) > 2σ̂2,

1 otherwise.

Noise estimator is given by

σ̂2
m =

1

2N

N∑
j=1

(
Y (j)(tm)− Y (j)(tm,1)

)2
,

with tm,1 denoting the closest observed point to tm.

Compute Ĥv on a grid of spacings ∆:

α̂ = argmaxβ∈{γ̂,π−γ̂,π/2−γ̂,π/2+γ̂}

p∑
i=1

Ĥu(β)(∆i),

where γ̂ = arccot
(
(θ̂e1(t,∆)/θ̂e2(t,∆))1/(2Ĥ(∆))

)
.
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Methodology Estimator

Identification Algorithm

Require: α̂tan, α̂cot, Yi(t), ∆, To, σ̂2

Initialise Ĥv(β)(∆)← ∅, Ĥv(β) ← ∅ ▷ β ∈ {α̂tan, α̂cot, π − α̂tan, π − α̂cot}
v(β)← (cos(β), sin(β))⊤

for ∆ in ∆ do
for t in To do

if θ̂v(β)(t, 2∆) > 2σ̂2 and θ̂v(β)(t,∆) > 2σ̂2 then

Ĥv(β)(t,∆)←
(
log(θ̂v(β)(t,2∆)− 2σ̂2)− log(θ̂v(β)(t,∆)− 2σ̂2)

)
/(2 log(2))

else
Ĥv(β)(t,∆)← 1

end if
Ĥv(β)(∆)← Ĥv(β)(∆) ∪ Ĥv(β)(t,∆) ▷ Ĥ now on grid of t’s

end for
Ĥv(β) ← Ĥv(β)∪ mean(Ĥv(β)(∆))

end for
α̂← argmaxβ

∑
∆∈∆ Ĥv(β)

return α̂
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Theoretical Guarantees

Theory - Assumptions

Assumptions.
(H1) Let X be anisotropic process with the two regularities (H1, H2), and let X(j),

1 ≤ j ≤ N , be independent realizations of X.

(H2) Three positive constants a, A and r exist such that, for any t ∈ T ,

E
∣∣∣X(j) (t)−X(j) (s)

∣∣∣2p ≤ p!

2
aAp−2∥t− s∥2pH(t) ∀s ∈ B(t; r), ∀p ≥ 1.

(H3) A constant G exists such that

E(ε2p) ≤ p!

2
Gp−2σ2, ∀p ≥ 1. (3)
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Theoretical Guarantees

Theoretical Properties

Theorem

Suppose that assumptions H1-H3 are satisfied. Then, three positive constants C1, C2

and u exist such that for any

1 ≥ ε ≥ umax{m−2H ,∆β̃∧|2H1−2H2|},

P
(
| ̂g(α,∆)− g(α,∆)| ≥ ε

)
≤ C1 exp

(
−C2ε

2N
∆6H

log2(∆)

)
.

where g is defined in Proposition 14.

Corollary

The following rates of convergence hold for α̂:

|α̂(∆)− α| = OP

(
max

{
#∆

min{
√
N,mH}

,
| log∆|√
N∆3H

,m−H

})
.
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Theoretical Guarantees

Computational aspects of directional regularity

Computational cost of identification dominates, due to the extra estimation of H ’s
on a grid of spacings ∆

Can restrict our analysis to the identification algorithm

O(M0#Td) for interpolation in each surface, resulting in O(NM0#Td) for all
surfaces, and thus O(#∆NM0#Td) on a grid of spacings
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Numerical Properties

Simulation of Anisotropic Processes

Need a fast way to simulate anisotropic processes to test our algorithms

While many algorithms exist for simulation of processes such as fBm, they do not
take into account anisotropy

Based on circulant embedding method of Wood and Chan (1994), and exploiting
the self-similarity and stationary increments of fBms
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Numerical Properties

Simulator Idea

Using basic trigonometry, can represent basis vectors as {u1,u2} in the canonical
basis:

u1 = cos(α)e1 + sin(α)e2,

u2 = − sin(α)e1 + cos(α)e2.
(4)

Can try to take an equally spaced grid of points {u1k}1≤k≤n,{u2k}1≤k≤n and
simulate the fBms

But this is not enough, since − sin(α) can be negative, and cos(α) < 0 for
α ∈ [π/2, 3π/2], while the fBm has a domain in R+!

However, we can use the stationary increments to avoid the problem of negative
values:

B(t)−B(s) ∼ B(t− s),

and take for example t = 0.
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Numerical Properties

Simulation Algorithm I

Require: α ∈ [0, 2π], N ∈ N, H1, H2 ∈ (0, 1),n ∈ N, f , v ∈ {(i/n, j/n)}0≤i,j≤n

Initialise Y (v)← ∅
if α > π then

α← α− π
end if
u1 ← (cos(α), sin(α))⊤

u2 ← (− sin(α), cos(α))⊤

t← {n−1(| cos(α)|+ sin(α))k}0≤k≤n

for i from 1 to N do
B̃1 ← fbm(H1, n, | cos(α)|+ sin(α))

B̃2 ← fbm(H2, n, | cos(α)|+ sin(α))
if α ≤ π/2 then

B1 ← B̃1

s← {− sin(α) + (k/n)(cos(α) + sin(α))}0≤k≤n

else
tproj ← {cos(α) + (k/n)(sin(α)− cos(α)}0≤k≤n

B−
1 ← −B̃1(−tproj1{tkproj < 0})

B+
1 ← B̃1(t

proj1{tkproj ≥ 0})
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Numerical Properties

Simulation Algorithm II

B1 ← B−
1 ∪B+

1

s← {(cos(α) + sin(α)) + (k/n)(sin(α)− cos(α)}0≤k≤n

end if
sk ← argminx∈t |sk − x|1{sk < 0}
sk ← argminx∈t |sk − x|1{sk ≥ 0}
B−

2 ← −B̃2(−sk)
B+

2 ← B̃2(sk)
B2 ← B−

2 ∪B+
2

X(i)(v)← f (B1 (⟨v,u1⟩) , B2 (⟨v,u2⟩)) ▷ f is some composition function
Y (i)(v)← X(i)(v) + ϵ(i)(v)
Y (v)← Y (v) ∪ Y (i)(v)

end for
return Y (v)
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Numerical Properties

Computational aspects of simulator

fBm simulator on the canonical basis runs in O(n logn) for each sample path,
where n is the number of points of the grid

For our anisotropic simulator, the complexity is thus O(Nn logn), where N is the
number of surfaces

Because the complexity of searching for the right coordinates is negligible (O(n))
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Numerical Properties

Simulation setup

Consider the sum and product of two fBms f1(B1, B2) = B1 +B2,
f2(B1, B2) = B1B2

surfaces N ∈ {100, 200}, M0 = 51× 51 points, noise σ ∈ {0, 0.01, 0.05, 0.1},
Angles α ∈ {π/3, π/6, 5π/6}, H1 = 0.8, H2 = 0.5

∆ = M
−1/4
0 (1 + ∆c), where ∆c = 0.25 for estimation of α

∆ = {M−1/4
0 ,∆1, . . . ,∆k−1, 0.4}, where #∆ = 15 for identification

Risk measure
Rα = |α̂− α|
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Numerical Properties

Simulation Results - Sum

Figure 1: Boxplots for M = 51 (sum)

N100_M51_sum.pdf N200_M51_sum.pdf
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Numerical Properties

Simulation Results - Product

Figure 2: Boxplots for M = 51 (product)

N100_M51_prod.pdf N200_M51_prod.pdf
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Smoothing

So... what’s the point?

Rates of convergence of various quantities in fda depend crucially on the
regularity of the process

By considering the directional regularity, one can exploit the inherent anisotropy of
the process and possibly obtain faster rates

Done by simply applying a transformation to the data, of the form

Z(t) := X(R−1
α · t), ∀t ∈ T ,

where

Rα =

(
cos(α) sin(α)
− sin(α) cos(α)

)
,

and α can be estimated using our methodology
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Smoothing

Smoothing Application: Setup

Let {X(t), t ∈ T } be a bi-variate stochastic process with maximising direction u1

Observations associated to {X(t), t ∈ T } come in the form of pairs (Y
(j)
m , tm),

such that
Y (j)
m = X(j)(tm) + ε(j)m , 1 ≤ m ≤M0, 1 ≤ j ≤ N,

where (Y
(j)
m , tm) is the learning set.

Consider a new realisation Xnew of X, where pairs (Y new
m , tm) are observed such

that
Y new
m = Xnew(tm) + εnew

m , 1 ≤ m ≤M1,

where (Y new
m , tm) is the online set.

Goal: recovery of the online set Xnew(tm) with the(Y new
m , tm) by using some

estimator X̂new(tm)
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Smoothing

Smoothing Application: Methodology

With the transformation, observed data is (Y new
m ,Rαtm), 1 ≤ m ≤M1, from

Y new
m = Znew(Rαtm) + εnew

m , 1 ≤ m ≤M1

Consider the Nadaraya-Watson estimator of the form

Ẑnew(t;B) =

M1∑
m=1

Y new
m

K (B(Rαtm − t))∑M0
m=1 K (B(Rαtm − t))

.

This is equivalent to

X̂new(t;B) =

M1∑
m=1

Y new
m

K (BRα(tm − t))∑M1
m=1 K (BRα(tm − t))

.
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Smoothing

Smoothing Application: Theory

Consider the risk
R (B,M1) = E

[
∥Ẑ(B,M1)− Z∥22

]
.

Effective smoothness is
ω = {H−1

1 +H−1
2 }

−1

Optimal bandwidth is given by

hi ≍M
− ω

(2ω+1)Hi
1 , i = 1, 2,

which gives us the following rate of convergence:

R (B,M1) ≲ M
− 2ω

2ω+1
1 .
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Smoothing

Simulation Setup

DGP: Sum of two fBms

Parameters for learning set:
α ∈ {π/3, 5π/6}, N = 150,M0 = 101, σ = 0.05, H1 = 0.8, H2 = 0.5 with the same
∆ settings as before

Parameters for online set: M true
1 = 201, M1 = 121, σ = 0.05

Risk measure for comparison:

Rrel =
Rani(B,M1)

Riso(B,M1)
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Simulation results
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Smoothing

Conclusion

Anisotropy depends not only on the dimension, but the direction

Taking into account the directional regularity can allow one to obtain faster rates of
convergence, even if isotropic on the canonical basis

Algorithms for the estimation and identification of the directional regularity that
works well in practice are constructed

One application is the improved rate in smoothing surfaces

But the consequences are not limited to smoothing! Thus recommend it as a
standard pre-processing step in multivariate fda
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THANK YOU!
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