Story Our approach Non-asymptotic results Applications Conclusion
00000 000000 0000 [e]e]

[e]e]e}

Regularity estimation in multivariate functional
data analysis

Omar KASSI & Valentin PATILEA & Nicolas KLUTCHNIKOFF

3 july 2023

1

A ’I,’

g ,ts,
&

A
A
N \\
/ \
< ; |
Wi C E S
N
W



Story Our approach Non-asymptotic results Applications Conclusion
@0000 000000 0000 [e]e] 000

Context

e Let B" be a fractional Brownian motion of Hurst index
He (0,1)



Story Our approach Non-asymptotic results Applications Conclusion
@0000 000000 0000 [e]e] 000

Context

e Let B" be a fractional Brownian motion of Hurst index
He (0,1)

® We have for s, t € R

E [{BH(t) - BH(s)}z] |t sPH.



Story
©0000

Context

e Let B" be a fractional Brownian motion of Hurst index
He (0,1)

® We have for s, t € R

E [{BH(t) - BH(s)}Z] |t sPH.

® \We have

e (E [{BH(t) . BH(s)}2D

2log |t — s|
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® Let X be a non differentiable stochastic process defined on a
subset of R.
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subset of R.

® GKP (2021) Considered the local regularity of X as a function
H(to) € (0,1) at some given point tp such that :

E [{X(2) = X(s)}?| ~ L(t)?|t — s|"(*),

for any t and s in a neighbourhood of ty
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® Let X be a non differentiable stochastic process defined on a
subset of R.

® GKP (2021) Considered the local regularity of X as a function
H(to) € (0,1) at some given point tp such that :

E [{X(2) = X(s)}?| ~ L(t)?|t — s|"(*),

for any t and s in a neighbourhood of ty

H(to) ~ log(0(t1, tzz)?og(lg)g(e(tl, t3))7

where

0(t,s) =E [{X(t) — X(s)}*| and |t; — to| =2|t; — t3].
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® T : An open, bounded bi-dimensional rectangle, T C (0, 00)?
o XM . XD X(N) are independent realizations of X

® The data associated to a sample path X() consist of the pairs
(Y,g,'), tg,',)) € R x T where Y,g,') is defined as

Y9 = XDy + 0, with Q) = o(eh). x(£5)))el)

® My, ..., My be an independent sample of an integer-valued
random variable M, E[M] =m
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Data

® T : An open, bounded bi-dimensional rectangle, T C (0, 00)?
o XM . XD X(N) are independent realizations of X

® The data associated to a sample path X() consist of the pairs
(Y,g,'), tg,',)) € R x T where Y,g,') is defined as

Y9 = XDy + 0, with Q) = o(eh). x(£5)))el)

® My, ..., My be an independent sample of an integer-valued
random variable M, E[M] =m

® The (tg,';), 1<m< I\/I,-) represent the observation points for
the sample path X().



Notation

O B =

«E»

Q>
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Notation

® Hi,Hy: T — (0,1) are continuously differentiable functions.
Let B
H = max{H1, H»}
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Notation

® Hi,H>: T — (0,1) are continuously differentiable functions.
Let B
H = max{H1, H»}

° L(ll), Lgl), L(12), L§2) : Non negative Lipschitz continuous
functions defined on T such that

1) () P
Li7(t) + L7 (t) > O, VeeT, j=1,2.
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Notation

® Hi,Hy: T — (0,1) are continuously differentiable functions.
Let B
H = max{H1, H»}

° L(ll), Lgl), L(12), L§2) : Non negative Lipschitz continuous
functions defined on T such that

W)+ P)>0,  veeT,j=1.2
® For X € L2, we denote for sufficiently small scalars A

{x(e-5a) x(es5a)f ], -2

where (er, ) is canonical basis of R?

0 (n) =E
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A class of multivariate processes

Definition
X € HMP2(L T) if three constants Ag, C, 3 > 0 exist such that
forany t € 7 and 0 < A < Ay,

QEI)(A) B L(li)(t)AQHl(t) _ Lg)(t)A2H2(t) < C‘A2ﬁ(t)"'ﬁ7 i=1,2.

Let
() — (L),
L

where L = (Lgl), Lgl), ng), ng)). The functions Hy, H> define the
local regularity of the process, while L represent the local Holder
constants.
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e Let Hi, Ho, 1 and H, be some continuously differentiable
functions taking values in (0,1).
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Identification

e Let Hi, Ho, 1 and H, be some continuously differentiable
functions taking values in (0,1).

e Assume X € HMH2 and X e yHH2
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Identification

e Let Hi, Ho, 1 and H, be some continuously differentiable
functions taking values in (0,1).

e Assume X € HMuM2 and X € HHuH:
® \We then necessarily have

min{H1(t), Ho(£)} = min{ Ay (¢), Fa(t)},

and
max{H1(t), H2(t)} = max{/fll(t), I:IQ(t)}.
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Identification

Let Hi, H», H1 and H> be some continuously differentiable
functions taking values in (0,1).

Assume X € HHH2 and X e ot

We then necessarily have
min{Hy(t), Ho(t)} = min{Fy(t), A2(t)},

and
max{H1(t), H2(t)} = max{Fll(t), HQ(t)}.

Notation :

H(E) = min{Hy(£), Ha(t)}, F(E) = max{Hh(t), Ha(t)}.
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Denote for any t € T

() =69 (8) + 62 ()
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() =69 (8) + 62 ()

__ log(7¢(24)) — log(7¢(A))
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Estimating equations for H and H

Denote for any t € T

() =69 (8) + 62 ()

__ log(7¢(24)) — log(7¢(A))
H(t) ~ 2l0g(2) '

Let
7:(24) _ 7e(A)
(2A)2H(t)  A2H(t) |

i) - H(e) ~ CECER el )

ar(A) =

Conclusion
000
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® In general, the sheets XU) j € {1,..., N}, are not available
e Let XU) be an observable approximation of X{).
® |f X is observed everywhere and without noise, then
XO(t)=XU(t), VteT
® If X is observed with noise or/and on a discrete grid,

then XU is an estimator of X (local polynomial, splines,
interpolation...)
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® Fori=1,2. Hgi)(A) can be estimated by :

/\

N 2
Z{xw (£ = (8/2)e) = XO(e+(8/2)e)}
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® Fori=1,2. Hgi)(A) can be estimated by :

/\

N 2
Z{xw (£ = (8/2)e) = XO(e+(8/2)e)}

(8) = 00(A) + 62 (n).
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® Fori=1,2. Hgi)(A) can be estimated by :

/\

N 2
Z{xw (£ = (8/2)e) = XO(e+(8/2)e)}

(8) = 00(A) + 62 (n).
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Since

_log(7¢(2A)) — log(7:(A))
H(t) ~ 2log(2) ’
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Since

__ log(7¢(24)) — log(7¢(A))
H(t) ~ 2log(2) ’

we obtain an estimator of H(t) :

2log(2)

log(7e(28)—log(e(A) if  7,(2A),7:(A) > 0
1 otherwise ‘
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Moreover

Fe(24)  Ae(A) i e(28) F(A)
Gr(A) = { @ayEn ~ aw a)2E@ 7 A2h(0)

1 otherwise.
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Moreover
Fe(24)  Ae(A) i e(28) F(A)
ar(A) = (2A)2H(0 A2 (2a)2H(0 7 A2A(D)
1 otherwise.

Hence
ﬁ/\ b= log(a¢(24)) — |0g(at(A))_

(H = H)(t) = 2log(2)
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Moreover
:Y\t(2é) _ /'Y\t(AA) if ﬁt(2é) %(A)
at(A) = (2A)2H(1) A2H(t) (2A)2H(t) A2H(t)
1 otherwise.
Hence - on(A (2 (A
(F— H)(t) = 28(0:(28)) — log(a:+(4))
2log(2)

We set
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Moreover
Fe(24)  Ae(A) i e(28) F(A)
ar(A) = (2A)2H(0 A2 (2a)2H(0 7 A2A(D)
1 otherwise.

R oa(5(20)) ()
We set

()= {F=)0) > 7}
and define



Our approach Non-asymptotic results Applications
000000 €000 00

Assumption

® The observable approximation of XU) is such that

P (0@ (8)-6() = s) < exp (—ule®o(A))

P (0) - 0(2) < =) < exp (-unto(a)).

Conclusion
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Assumption

® The observable approximation of XU) is such that
P (eﬁ")(A) — 0\ (A) > e) < exp (—uNeg(A)),

P (60(8) — 60(8) < ¢ ) < exp (—uN20(A))
( )

® Under mild conditions we have :
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Assumption

® The observable approximation of XU) is such that
P (eﬁ")(A) — 0\ (A) > e) < exp (—uNeg(A)),

P (60(8) — 60(8) < ¢ ) < exp (—uN20(A))
( )

e Under mild conditions we have :
® |f X is observed everywhere and without noise,

o(8) = A7
® |f X is observed in a random grid and with noise,

o(A) =1
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Concentration bounds (1/3)

There exist five constants Ly, ..., Ls such that Ve € (0, 1)

P [!H(t) — H(t)| = 6} < Liexp (—L2N€2A4ﬂ(t)@(A)>
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Concentration bounds (1/3)

There exist five constants Ly, ..., Ls such that Ve € (0, 1)

P [IH(t) — H(t)| > e| < Ly exp (~LaN=2A%(0p(A))
and

P [[H(e) = H(8)| = 2] < Ls (exp [~ LoN=2AMO o(A)] + py +p2)
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Concentration bounds (1/3)

There exist five constants Ly, ..., Ls such that Ve € (0, 1)
P [IH(t) — H(t)| > e| < Ly exp (~LaN=2A%(0p(A))
and

P [[H(e) = H(8)| = 2] < Ls (exp [~ LoN=2AMO o(A)] + py +p2)

where

4H(t)
p1 = exp —L4N72 . Q(A)A4D(t) :
og*(A)
4H(t)
_ 2 o(A) 4D(t) _
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Concentration bounds (2/3)

Constants Ci, ..., Cy exist such Ve € (0,1) and i = 1,2 :

— ) 4H(t)
P ( L(l')(t) — Lg')(t)’ > 5) < Crexp _C2N€2A27Q(A)
log™(A)
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Concentration bounds (2/3)

Constants Ci, ..., Cy exist such Ve € (0,1) and i = 1,2 :

— . 4H(t) o( A
(i) (i) o A o(A)
P(|L —L > < C —GNet ————2
(CCRCERE p( NS )
and
) 4H(t)
&) < Gyexp <—C4N£ min{e, A*P(£)1(22D(8) _ 1)2A|4(i()A)A4D(t)>
og

where

6l =p (’Lg)(t) - Lg")(t)‘ > a) .



Story Our approach Non-asymptotic results Applications
00000 000000 [e]e]e] ) [e]e]

Concentration bounds (3/3)

® |et _
T < {H(t) = H(t)} /2 + 10 Figeyy
and
A = exp(—log®(1/7)),

for some p € (0,1).

Conclusion
000
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Concentration bounds (3/3)

® Let —
7 < {H(t) = H(t)} /2 + Lipo—mieyy

and
A = exp(—log?(1/7)),

for some p € (0,1).

® Then

P (Lau(r) # Lguioyiicey) < o0 log

Conclusion
000

4H(t)
—1Ly NT2A279(A)A4DU) )
(A
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(MfBs) with time deformation.
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Applications (1/2)

e Example of of processes belong to 72 that is a general
Gaussian process, called multifractional Brownian sheet
(MfBs) with time deformation.

e Estimation of the nonparametric characteristics of the MfBs.
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e Adaptive optimal smoothing of random surfaces from noisy
observations at discrete points in the domain
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e Adaptive optimal smoothing of random surfaces from noisy
observations at discrete points in the domain

e Assume that X € HHH2(14,0,0, L)

® A new realisation is observed X"W.
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applications (2/2)

Adaptive optimal smoothing of random surfaces from noisy
observations at discrete points in the domain

Assume that X € HHH2(11,0,0, L)
A new realisation is observed X ™",

We propose a smoother that is optimal.
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® A notion of regularity for bi-variate processes is introduced.
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Take home message

® A notion of regularity for bi-variate processes is introduced.
® Nonparametric estimator for the regularity was introduced.

® The estimator proposed adapt to the isotropic case.
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Take home message

A notion of regularity for bi-variate processes is introduced.
Nonparametric estimator for the regularity was introduced.
The estimator proposed adapt to the isotropic case.

Knowing the regularity helps to construct optimal estimation
procedures.
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THANK YOU
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