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Context

• Let BH be a fractional Brownian motion of Hurst index
H ∈ (0, 1)

• We have for s, t ∈ R+

E

[{
BH(t)− BH(s)

}2
]
= |t − s|2H .

• We have

H =
log
(

E
[{

BH(t)− BH(s)
}2
])

2 log |t − s|
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• Let X be a non differentiable stochastic process defined on a
subset of R.

• GKP (2021) Considered the local regularity of X as a function
H(t0) ∈ (0, 1) at some given point t0 such that :

E
[
{X (t)− X (s)}2

]
≈ L(t0)

2|t − s|2H(t0),

for any t and s in a neighbourhood of t0

•
H(t0) ≈

log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
,

where

θ(t, s) = E
[
{X (t)− X (s)}2

]
and |t1 − t2| = 2|t1 − t3|.
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Data

• T : An open, bounded bi-dimensional rectangle, T ⊂ (0,∞)2

• X (1), . . . ,X (i), . . . ,X (N) are independent realizations of X

• The data associated to a sample path X (i) consist of the pairs
(Y

(i)
m , t(i)m ) ∈ R × T where Y

(i)
m is defined as

Y
(i)
m = X (i)(t(i)m ) + ε

(i)
m , with ε

(i)
m = σ(t(i)m ,X (t(i)m ))e

(i)
m

• M1, . . . ,MN be an independent sample of an integer-valued
random variable M, E[M] = m

• The
(
t(i)m , 1 ≤ m ≤ Mi

)
represent the observation points for

the sample path X (i).
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Notation

• H1,H2 : T → (0, 1) are continuously differentiable functions.
Let

H = max{H1,H2}

• L
(1)
1 , L

(1)
2 , L

(2)
1 , L

(2)
2 : Non negative Lipschitz continuous

functions defined on T such that

L
(1)
j (t) + L

(2)
j (t) > 0, ∀t ∈ T , j = 1, 2.

• For X ∈ L2, we denote for sufficiently small scalars ∆

θ
(i)
t (∆) = E

[{
X

(
t − ∆

2
ei

)
− X

(
t +

∆

2
ei

)}2
]
, i = 1, 2,

where (e1, e2) is canonical basis of R2
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A class of multivariate processes

Definition
X ∈ HH1,H2(L, T ) if three constants ∆0,C , β > 0 exist such that
for any t ∈ T and 0 < ∆ ≤ ∆0,∣∣∣θ(i)t (∆)− L

(i)
1 (t)∆2H1(t) − L

(i)
2 (t)∆2H2(t)

∣∣∣ ≤ C∆2H(t)+β, i = 1, 2.

Let
HH1,H2 = HH1,H2(T ) =

⋃
L

HH1,H2(L, T ),

where L = (L
(1)
1 , L

(1)
2 , L

(2)
1 , L

(2)
2 ). The functions H1,H2 define the

local regularity of the process, while L represent the local Hölder
constants.
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Identification
• Let H1,H2, H̃1 and H̃2 be some continuously differentiable

functions taking values in (0, 1).

• Assume X ∈ HH1,H2 and X ∈ HH̃1,H̃2

• We then necessarily have

min{H1(t),H2(t)} = min{H̃1(t), H̃2(t)},

and
max{H1(t),H2(t)} = max{H̃1(t), H̃2(t)}.

• Notation :

H(t) = min{H1(t),H2(t)}, H(t) = max{H1(t),H2(t)}.
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Estimating equations for H and H

Denote for any t ∈ T

γt(∆) = θ
(1)
t (∆) + θ

(2)
t (∆)

H(t) ≈ log(γt(2∆))− log(γt(∆))

2 log(2)
.

Let

αt(∆) =

∣∣∣∣ γt(2∆)

(2∆)2H(t) −
γt(∆)

∆2H(t)

∣∣∣∣ .
H(t)− H(t) ≈ log(αt(2∆))− log(αt(∆))

2 log(2)
.
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• In general, the sheets X (j), j ∈ {1, . . . ,N}, are not available

• Let X̃ (j) be an observable approximation of X (j).

• If X is observed everywhere and without noise, then

X̃ (j)(t) = X (j)(t), ∀t ∈ T

• If X is observed with noise or/and on a discrete grid,
then X̃ (j) is an estimator of X (j) (local polynomial, splines,
interpolation...)
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• For i = 1, 2. θ(i)t (∆) can be estimated by :

θ̂
(i)
t (∆) =

1
N

N∑
j=1

{
X̃ (j)(t − (∆/2)ei )− X̃ (j)(t + (∆/2)ei )

}2
,

γ̂t(∆) = θ̂
(1)
t (∆) + θ̂

(2)
t (∆).
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Since
H(t) ≈ log(γt(2∆))− log(γt(∆))

2 log(2)
,

we obtain an estimator of H(t) :

Ĥ(t) =

{
log(γ̂t(2∆))−log(γ̂t(∆))

2 log(2) if γ̂t(2∆), γ̂t(∆) > 0
1 otherwise

.
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Moreover

α̂t(∆) =

{ ∣∣∣ γ̂t(2∆)

(2∆)2Ĥ(t)
− γ̂t(∆)

∆2Ĥ(t)

∣∣∣ if γ̂t(2∆)

(2∆)2Ĥ(t)
̸= γ̂t(∆)

∆2Ĥ(t)

1 otherwise.
.

Hence
̂(H − H)(t) =

log(α̂t(2∆))− log(α̂t(∆))

2 log(2)
.

We set

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
,

and define
Ĥ(t) = Ĥ(t) + ̂(H − H)(t)1AN(τ).
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Assumption
• The observable approximation of X (j) is such that

P

(
θ̂
(i)
t (∆)− θ

(i)
t (∆) ≥ ε

)
≤ exp

(
−uNε2ϱ(∆)

)
,

P

(
θ̂
(i)
t (∆)− θ

(i)
t (∆) ≤ −ε

)
≤ exp

(
−uNε2ϱ(∆)

)
.

• Under mild conditions we have :

• If X is observed everywhere and without noise,

ϱ(∆) = ∆−2H(t)

• If X is observed in a random grid and with noise,

ϱ(∆) = 1
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Concentration bounds (1/3)
There exist five constants L1, . . . , L5 such that ∀ε ∈ (0, 1)

P
[
|Ĥ(t)− H(t)| ≥ ε

]
≤ L1 exp

(
−L2Nε2∆4H(t)ϱ(∆)

)

and

P
[∣∣∣Ĥ(t)− H(t)

∣∣∣ ≥ ε
]
≤ L3

(
exp

[
−L2Nε2∆4H(t)ϱ(∆)

]
+ p1 + p2

)
,

where

p1 = exp

[
−L4Nτ2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
,

p2 = exp

[
−L5Nε2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
1H(t)<H(t).
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|Ĥ(t)− H(t)| ≥ ε

]
≤ L1 exp

(
−L2Nε2∆4H(t)ϱ(∆)

)
and

P
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P
[
|Ĥ(t)− H(t)| ≥ ε

]
≤ L1 exp

(
−L2Nε2∆4H(t)ϱ(∆)

)
and

P
[∣∣∣Ĥ(t)− H(t)

∣∣∣ ≥ ε
]
≤ L3

(
exp

[
−L2Nε2∆4H(t)ϱ(∆)

]
+ p1 + p2

)
,

where

p1 = exp

[
−L4Nτ2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
,

p2 = exp

[
−L5Nε2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
1H(t)<H(t).
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Concentration bounds (2/3)

Constants C1, . . . ,C4 exist such ∀ε ∈ (0, 1) and i = 1, 2 :

P

(∣∣∣∣L̂(i)1 (t)− L
(i)
1 (t)

∣∣∣∣ ≥ ε

)
≤ C1 exp

(
−C2Nε2∆

4H(t)ϱ(∆)

log2(∆)

)

and

G(i)
ε ≤ C3 exp

(
−C4Nεmin{ε,∆4D(t)}(22D(t) − 1)2

∆4H(t)ϱ(∆)

log4(∆)
∆4D(t)

)
,

where

G(i)
ε = P

(∣∣∣∣L̂(i)2 (t)− L
(i)
2 (t)

∣∣∣∣ ≥ ε

)
.
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Concentration bounds (3/3)

• Let
τ ≤

{
H(t)− H(t)

}
/2 + 1{H(t)=H(t)},

and
∆ = exp(− logϱ(1/τ)),

for some ϱ ∈ (0, 1).

• Then

P
(
1AN(τ) ̸= 1{H(t )̸=H(t)}

)
≤ exp

[
−L4Nτ2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
.
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Concentration bounds (3/3)
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∆ = exp(− logϱ(1/τ)),

for some ϱ ∈ (0, 1).

• Then

P
(
1AN(τ) ̸= 1{H(t )̸=H(t)}

)
≤ exp

[
−L4Nτ2∆

4H(t)ϱ(∆)

log2(∆)
∆4D(t)

]
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Applications (1/2)

• Example of of processes belong to HH1,H2 that is a general
Gaussian process, called multifractional Brownian sheet
(MfBs) with time deformation.

• Estimation of the nonparametric characteristics of the MfBs.
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applications (2/2)

• Adaptive optimal smoothing of random surfaces from noisy
observations at discrete points in the domain

• Assume that X ∈ HH1,H2(L1, 0, 0, L2)

• A new realisation is observed X new .

• We propose a smoother that is optimal.
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Take home message

• A notion of regularity for bi-variate processes is introduced.

• Nonparametric estimator for the regularity was introduced.

• The estimator proposed adapt to the isotropic case.

• Knowing the regularity helps to construct optimal estimation
procedures.
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THANK YOU
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