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• Zn is said to converge in distribution to a limiting random
variable Z if

limn→∞ P(Zn ≤ t) = P(Z ≤ t)

• Equivalent to saying that for all bounded continuous functions
g : R → R,

limn→∞ E[g(Zn)] = E[g(Z )].

• It is not necessary to consider all bounded continuous g , but
only g belonging to a smaller class such as g(x) = e itx with
t ∈ R is arbitrary
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There are three classical approaches to proving central limit
theorems

• The method of characteristic functions, one simply has to
show that for each t ∈ R

limn→∞ Ee itZn = e iµt−σ2t2/2.

• The method of moments, which involves showing that ∀k ∈ N

limn→∞ EZ k
n = EZ k .

• There is an old technique of Lindeberg
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Probability metrics

For two probability measures µ and ν, the probability metrics we
use have the form

dH(µ, ν) = sup
h∈H

∣∣∣∣∫ h(x)dµ(x)−
∫

h(x)dν(x)
∣∣∣∣ ,

where H is some family of test function

• If H = {I{· ≤ x}; x ∈ R}, we obtain the Kolmogorov metric
dK

• If H = {I{· ∈ A};A ∈ Borel(R)}, we obtain the total variation
metric dTV

• If H = {h : R → R; |h(x)− h(y)| ≤ |x − y |}, we obtain the
Wasserstein metric dW
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Stein’s lemma

The standard normal distribution is the only probability distribution
that satisfies the equation

E[Zf (Z )] = E[f ′(Z )] (1)

for all continuous f with derivative f ′ such that E[f ′(Z )] < ∞.
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The basic idea

• Let Z ∼ N (0, 1). Take any bounded measurable function g

• Let f be a bounded solution of the ODE

f ′(x)− xf (x) = g(x)− E[g(Z )]

Stein showed that a bounded solution always exists
• We have for any random variable W :

E[g(W )]− E[g(Z )] = E
[
f ′(W )−Wf (W )

]
. (2)
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• Let a ∈ R and g(·) = I{· ≤ a}

• The unique bounded solution fa of the ODE

f ′a(x)− xfa(x) = I{x ≤ a} − Φ(a)

is given by

fa(x) = ex
2/2

∫ ∞

x
e−t2/2(Φ(a)− I{t ≤ a})dt

• As a result we have for any random variable W

|P(W ≤ a)− Φ(a)| =
∣∣E [

f ′a(W )−Wfa(W )
]∣∣
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The general setup

• For two random variables X and Y and some family of
functions H, recall the metric

dH(X ,Y ) = sup
h∈H

|E[h(X )]− E[h(Y )]|

• For h ∈ H, let fh solve

f ′h(x)− xfh(x) = h(x)− Φ(h)︸︷︷︸
=E[h(Z)]

• We have Therefore

dH(X ,Z ) = sup
h∈H

∣∣E [
f ′h(W )−Wfh(W )
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Let fh be the solution of the differential equation

f ′h(x)− xfh(x) = h(x)− Φ(h)

which is given by

fh(x) = ex
2/2

∫ ∞

x
e−t2/2(Φ(h)− h(t))dt.

1. If h is bounded, then

∥fh∥∞ ≤
√

π

2
∥h(·)−Φ(h)∥∞, and ∥f ′h∥∞ ≤ 2∥h(·)−Φ(h)∥∞.

2. If h is differentiable, then

∥fh∥ ≤ 2∥h′∥∞, ∥f ′h∥ ≤
√

2
π
∥h′∥∞, and ∥f ′′h ∥ ≤ 2∥h′∥∞.
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• Herein, the main focus will be on the Wasserstein metric dW
• If Z ∼ N (0, 1) and X is a random variable, we have

dK (X ,Z ) ≤ (2/π)1/4
√
dW (X ,Z )

• The class H used for the Wasserstein distance is the set of
functions with Lipschitz constant equal to one. If h ∈ H, then
∥h′∥∞ ≤ 1 so the Item 2 in the previous statement is true.

Theorem
If W is a random variable and Z has the standard normal
distribution, and we define the family of functions
F =

{
f ; ∥f ∥, ∥f ′′∥ ≤ 2, ∥f ′∥ ≤

√
2/π

}
, then

dW (W ,Z ) ≤ sup
f ∈F

∣∣E [
f ′(W )−Wf (W )

]∣∣ .
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Definition
The ordered pair (W ,W ′) of random variables is called an
exchangeable pair if (W ,W ′)

d
= (W ′,W ). if for some 0 < λ ≤ 1,

the echangeable pair (W ,W ′) satisfies the relation

E[W ′ | W ] = (1 − λ)W ,

the we call (W ,W ′) an λ-Stein pair.



Introduction Key Lemmas Exchangeable pairs Size-bias coupling Zero-bias Coupling Some refs

Easy facts : Let (W ,W ′) an exchangeable pair.
1. If F : R2 → R is anti-symmetric function ; that is

F (x , y) = −F (y , x), then E[F (W ,W ′)] = 0.
2. If (W ,W ′) is an λ-Stein pair with Var(W ) = σ2, then

E[W ] = 0 and E[(W −W ′)2] = 2λσ2
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Theorem
If (W ,W ′) is a λ-Stein pair with EW 2 = 1 and Z has the standard
normal distribution, then

dW (W ,Z ) ≤ 1√
2πλ

√
Var(E[(W ′ −W )2 | W ]) +

1
3λ

E|W ′ −W |3.

Example : Let X1, . . . ,Xn independent with
EX 4

i < ∞,EXi = 0,Var(Xi ) = 1 and W = n−1/2 ∑n
i=1 Xi . Then

dW (W ,Z ) ≤
√

2
π

√∑n
i=1 E[X 4

i ]

2n
+

2
3n3/2

n∑
i=1

E|Xi |3.
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Proof.
Let f be bounded with bounded first and second derivative and let
F (w) =

∫ w
0 f (t)dt

0 = E[F (W ′)− F (W )]

= E

[
(W ′ −W )f (W ) +

1
2
(W ′ −W )2f ′(W ) +

1
6
(W ′ −W )3f ′′(W ∗)

]
.

The condition on the Stein pair yields

E[(W ′ −W )f (W )] = E[E(W ′ −W ) | W ]f (W )] = −λE[Wf (W )].

Gathering facts

E[Wf (W )] = E

[
1
2λ

(W ′ −W )2f ′(W ) +
1
6λ

(W ′ −W )3f ′′(W ∗)

]
.
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Definition
For a random variable X ≥ 0 with E[X ] = µ < ∞, we say that the
random variable X s has the size-bias distribution with respect to X
if for all f such that E[|Xf (X )|] < ∞ we have

E[Xf (X )] = µE[f (X s)].

Fact : If X ≥ 0 is a random variable with E[X ] = µ < ∞ and
distribution function F , then the size-bias distribution of X is
absolutely continuous with respect to the measure of X with
density read form

dF s(x) =
x

µ
dF (x).
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Theorem
Let X ≥ 0 be a random variable with E[X ] = µ < ∞ and
Var(X ) = σ2. Let X s be defined on the same space as X and have
the size-bias distribution with respect to X . If W = (X − µ)/σ and
Z ∼ N (0, 1), then

dW (W ,Z ) ≤ µ

σ2

√
2
π

√
Var(E[X s − X | X ]) +

µ

σ3 E[(X s − X )2].
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Proof.
Taylor expansion Yields

E[Wf (W )] =
µ

σ
E

[
X s − X

σ
f ′
(
X − µ

σ

)
+

(X s − X )2

2σ2 f ′′
(
X ∗ − µ

σ

)]
.

We obtain

|E[f ′(W )−Wf (W )]| ≤
∣∣∣E [

f ′(W )
(
1 − µ

σ2 (X
s − X )

)]∣∣∣
+

µ

2σ3

∣∣∣∣E [
f ′′

(
f ∗ − µ

σ

)
(X s − X )2

]∣∣∣∣ . (3)
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Coupling Construction

We have the following recipe to construct a size-bias version of X
in the case that X =

∑n
i=1 Xi , where Xi ≥ 0 and E[Xi ] = µi :

1. For each i = 1, . . . , n, let X s
i have the size-bias distribution of

Xi independent of (Xj)j ̸=i and (X s
j )j ̸=i .Given X s

i = x , define

the vector (X (i)
j )j ̸=i to have the distribution of (Xj)j ̸=i

conditional on Xi = x .

2. Choose a random summand XI , where the index I has
P(I = i) = µi/EX . and independent of all else.

3. Define X s =
∑

j ̸=I X
(I )
j + X s

I .
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2. Choose a random summand XI , where the index I has
P(I = i) = µi/EX . and independent of all else.

3. Define X s =
∑

j ̸=I X
(I )
j + X s

I .
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Proposition : Let X =
∑n

i=1 Xi , with Xi ≥ 0 and E[Xi ] = µi and
also µ =

∑
i µi . If X s is constructed by Items 1-3, then X s has the

size-bias distribution of X .
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Corollary
Let X1, . . .Xn be non-negative independent random variables with
E[Xi ] = µi , and for each i = 1, . . . , n, let X s

i have the size-bias
distribution of Xi independent of (Xj)j ̸=i and (X s

j )j ̸=i . If
X =

∑n
i=1 Xi ,E[X ] = µ, and I independent of all else with

P(I = i) = µi/µ, then X s = X − XI + X s
I has the size-bias

distribution of X .

Exercise : Let us bound the Wasserstein distance between the
normalized sum of independent variables with finite third moment
and the normal distribution.
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Definition
For a centred random variable W with variance σ2, we say that the
random variable W z has the zero-bias distribution with respect to
W if for all f such that E[|Wf (W )|] < ∞ we have

E[Wf (W )] = σ2E[f (W z)].
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Theorem
Let W be a mean zero, variance one random variable and let W z

be defined on the same space as W and have the zero-bias
distribution with respect to W . If Z ∼ N (0, 1), then

dW (W ,Z ) ≤ 2E[|W z −W |].
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Coupling construction

Let X1, . . . ,Xn independent random variables having zero mean and
such that, Var(Xi ) = σ2

i ,
∑n

i=1 σ
2
i = 1, and define W =

∑n
i=1 Xi .

1. For each i = 1, . . . , n, let XZ
i have the zero-bias distribution of

Xi independent of (Xj)j ̸=i and (X z
j )j ̸=i .

2. Choose a random summand XI , where the index I has
P(I = i) = σ2

i . and independent of all else.
3. Define W z =

∑
j ̸=I Xi + X z

I .
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