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e 7, is said to converge in distribution to a limiting random
variable Z if

limp_soo P(Zy < 1) =P(Z < 1)

® Equivalent to saying that for all bounded continuous functions
g:R—=R,
lim, o0 E[g(Zn)] = E[g(2)]-

® |t is not necessary to consider all bounded continuous g, but
only g belonging to a smaller class such as g(x) = "™ with
t € R is arbitrary
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theorems

® The method of characteristic functions, one simply has to
show that for each t € R

lim, oo E€™%n = eiHt=0"t%/2,



Introduction
0000

There are three classical approaches to proving central limit
theorems

® The method of characteristic functions, one simply has to
show that for each t € R

lim,,_yoo Ee/Zn = eint=0%t2/2,

® The method of moments, which involves showing that Vk € N

limp_ye0 EZX = EZ¥.



Introduction
0000

There are three classical approaches to proving central limit
theorems

® The method of characteristic functions, one simply has to
show that for each t € R

lim,,_yoo Ee/Zn = eint=0%t2/2,

® The method of moments, which involves showing that Vk € N

limp_ye0 EZX = EZ¥.

® There is an old technique of Lindeberg
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® Ross, N. (2011). Fundamentals of Stein's method. Probab.
Surv., 8 :210-293

e Chatterjee, S. (2014). A short survey of Stein's method.
International Congress of Mathematicians (ICM), pages 1-24.

e A D. Barbour and L. H. Y. Chen, An introduction to Stein's
method. World Scientific, 2005, vol. 4.

e L. H. Y. Chen, L. Goldstein and Q.-M. Shao (2011), Normal
approximation by Stein's method, Probability and its
Applications (New York), Springer, Heidelberg.
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Probability metrics

For two probability measures 1 and v, the probability metrics we
use have the form

dy(p,v) = sup
heH

)

/ h(x)dp(x) — / h(x)dv(x)

where H is some family of test function
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Probability metrics

For two probability measures 1 and v, the probability metrics we
use have the form

dy(p,v) = sup
heH

)

/ h(x)dp(x) — / h(x)dv(x)

where H is some family of test function
o If H ={I{- <x},x € R}, we obtain the Kolmogorov metric

dk
o If H={I{- € A}; A € Borel(R)}, we obtain the total variation
metric d1v

e If H={h:R—R;|h(x) — h(y)| < |x—y|}, we obtain the
Wasserstein metric dyy



Introduction Key Lemmas Exchangeable pairs Size-bias coupling Zero bias Coupling Some refs
0000 ©00000 0000 o o fole)

Stein's lemma

The standard normal distribution is the only probability distribution
that satisfies the equation

E[2f(2)] = E[F(2)] (1)

for all continuous f with derivative f’ such that E[f'(Z)] < cc.
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The basic idea

® Let Z ~ N(0,1). Take any bounded measurable function g
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The basic idea

® Let Z ~ N(0,1). Take any bounded measurable function g
® Let f be a bounded solution of the ODE

F'(x) — xf(x) = g(x) — Elg(Z)]

Stein showed that a bounded solution always exists
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The basic idea

® Let Z ~ N(0,1). Take any bounded measurable function g
® Let f be a bounded solution of the ODE

f'(x) — xf(x) = g(x) — E[g(Z)]

Stein showed that a bounded solution always exists

® \We have for any random variable W :

Elg(W)] - Elg(2)] =E[f'(W) - WF(W)].  (2)



® letacRand g(-) =I{- <a}

«cOr < Fr <=

«E>»

Q>



Introduction Key Lemmas Exchangeable pairs Size-bias coupling Zero-bias Coupling Some refs
0000 00e000 0000 000000 000 000

¢ letacRand g(-)=1I{ <a}
® The unique bounded solution f, of the ODE
f(x) — xfa(x) = {x < a} — ®(a)

a

is given by

fo(x) = /2 /OO e 2(d(a) — I{t < a})dt
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¢ letacRand g(-)=1I{ <a}
® The unique bounded solution f, of the ODE
f(x) — xfa(x) = {x < a} — ®(a)

a

is given by

fo(x) = /2 /OO e 2(d(a) — I{t < a})dt

® As a result we have for any random variable W

IP(W < a) — d(a)| = |E [A(W) — WhH(W)]|
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The general setup

® For two random variables X and Y and some family of
functions H, recall the metric

dn(X,Y) = sup [E[A(X)] — E[A(Y)]]
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The general setup

® For two random variables X and Y and some family of
functions H, recall the metric

dn(X,Y) = sup [E[A(X)] — E[A(Y)]]

® For h € H, let f, solve

fr(x) — xfp(x) = h(x) — w

=E[h(2)]
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The general setup

For two random variables X and Y and some family of
functions H, recall the metric

dn(X,Y) = sup [E[A(X)] — E[A(Y)]]

For h € H, let f, solve

fi(x) — xfp(x) = h(x) — ®(h)

We have Therefore

(X, Z) = sup |E [f(W) — Wh(W)]|
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Let f, be the solution of the differential equation
fr(x) — xfp(x) = h(x) — ®(h)

which is given by

i) = 2 [ e 2 (0(h) — Al
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which is given by

i) = 2 [ e 2 (0(h) — Al

1. If his bounded, then

1falloo < \/leh(')—q’(h)lloo, and [[fylloo < 2[[A(-)=®(h)]/oo-
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Let f, be the solution of the differential equation
fr(x) — xfp(x) = h(x) — ®(h)

which is given by

i) = 2 [ e 2 (0(h) — Al

1. If his bounded, then

1falloo < \/leh(')—q’(h)lloo, and [[fylloo < 2[[A(-)=®(h)]/oo-

2. If his differentiable, then

2
Ifall < 201A oo, [If5]l < \/;Hh’Hom and [[£]| < 2[|A oo
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® Herein, the main focus will be on the Wasserstein metric dy
e If Z~ N(0,1) and X is a random variable, we have

dk (X, Z) < (2/m)Y*\/dw (X, 2)

® The class H used for the Wasserstein distance is the set of
functions with Lipschitz constant equal to one. If h € H, then
||h |lco < 1 so the ltem 2 in the previous statement is true.
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® Herein, the main focus will be on the Wasserstein metric dy
e If Z~ N(0,1) and X is a random variable, we have

dk (X, Z) < (2/m)Y*\/dw (X, 2)

® The class H used for the Wasserstein distance is the set of
functions with Lipschitz constant equal to one. If h € H, then
||h |lco < 1 so the ltem 2 in the previous statement is true.

Theorem
If W is a random variable and Z has the standard normal
distribution, and we define the family of functions

F={ENF1IF" < 2,1 < v/2]7}, then

dw (W, 2Z) < sup [E[f'(W) — WF(W)]|.
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The ordered pair (W, W’) of random variables is called an
exchangeable pair if (W, W) g (W', W). if for some 0 < A <1,
the echangeable pair (W, W') satisfies the relation

E[W | W] = (1-\W,

the we call (W, W’) an A\-Stein pair.



Exchangeable pairs
0®00

Easy facts : Let (W, W’) an exchangeable pair.
1. If F:R? — R is anti-symmetric function ; that is
F(x,y) = —F(y, x), then E[F(W, W")] = 0.
2. If (W, W') is an A-Stein pair with Var(W) = o2, then
E[W] =0 and E[(W — W')?] = 2)\0?
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Theorem

If (W, W') is a A\-Stein pair with EW? = 1 and Z has the standard
normal distribution, then

1 — 1
dw(W, Z) < mA\/Var(E[(W — WP [ W)+ S EIW - WP,
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Theorem

If (W, W') is a A\-Stein pair with EW? = 1 and Z has the standard
normal distribution, then

1

dw(W, Z) <

VVarE[(W — W)2 | W) + B%\E]W’ —wp.

Example : Let Xj,..., X, independent with
EX# < 00, EX; = 0,Var(X;) =1and W = n~¥/237 | X;. Then

2B o &
W.Z)< /% E|X;[3.
dw (W )_\/; 2n +3n3/2; Xl




Introduction Key Lemmas Exchangeable pairs Size-bias coupling Zero-bias Coupling Some refs
0000 000000 oooe 000000 000 000

Proof.
Let f be bounded with bounded first and second derivative and let
F(w) = jbw f(t)dt

0= E[F(W') - F(W)]

=E [(W = W)f(W) + %(W’ — W) (W) + %(W’ — W) (W) .
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Proof.
Let f be bounded with bounded first and second derivative and let

= [y f(t)dt
0= E[F(W') — F(W)]

=E [(W — W)f(W) + o - W) (W) + %(W’ — W) (W) .

5
The condition on the Stein pair yields

E[(W — W)f(W)] = E[E(W' — W) | W]f(W)] = —XE[WF(W)].
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Proof.

Let f be bounded with bounded first and second derivative and let
F(w) = _jbw f(t)dt

0 =E[F(W') = F(W)]
—E (W - W)F(W) + %(W’ — WRF(W) + %(W’ — W)
The condition on the Stein pair yields

E[(W — W)f(W)] = E[E(W' — W) | W]f(W)] = —XE[WF(W)].

Gathering facts

E[WF(W)] = E %(W’ — WPF(W) + %(W’ — W)

O
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Definition

For a random variable X > 0 with E[X] = 1 < 00, we say that the
random variable X* has the size-bias distribution with respect to X
if for all f such that E[|Xf(X)]|] < co we have

E[XF(X)] = pE[f(X?)]-
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Definition

For a random variable X > 0 with E[X] = 1 < 00, we say that the
random variable X* has the size-bias distribution with respect to X
if for all f such that E[|Xf(X)]|] < co we have

E[XF(X)] = pE[f(X?)]-

Fact : If X > 0 is a random variable with E[X] = ;1 < co and
distribution function F, then the size-bias distribution of X is
absolutely continuous with respect to the measure of X with
density read form

dFs(x) = idF(X).
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Theorem

Let X > 0 be a random variable with E[X] = u < oo and

Var(X) = o2. Let X be defined on the same space as X and have
the size-bias distribution with respect to X. If W = (X — u)/o and
Z ~ N(0,1), then

dw(W, Z) < :2\/3\/Var(E[X5 —X X))+ %E[(Xs ~X)2.
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Proof.

Taylor expansion Yields

E[WF(W)] = gE [XS — X <X “) + (x 7X)2f” (X* — “)] .

o o 252 o
We obtain
ELF(w) - wrw)ll < [E [F(w) (1= L0x7 - X)) ]|
+2’2‘7 E{f”(f*a_u> (XS—X)2] . (3)
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Coupling Construction

We have the following recipe to construct a size-bias version of X
in the case that X = "% ; X;, where X; > 0 and E[Xj] = p; :
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We have the following recipe to construct a size-bias version of X
in the case that X = "% ; X;, where X; > 0 and E[Xj] = p; :

1. Foreach i=1,...,n, let X7 have the size-bias distribution of
Xi independent of (Xj);; and (X7);.;.Given X7 = x, define
the vector ()(j(i))j?g; to have the distribution of (Xj);.;
conditional on X; = x.
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Coupling Construction

We have the following recipe to construct a size-bias version of X
in the case that X = "% ; X;, where X; > 0 and E[Xj] = p; :

1. Foreach i=1,...,n, let X7 have the size-bias distribution of
Xi independent of (Xj);; and (X7);.;.Given X7 = x, define
the vector ()(j(i))j?g; to have the distribution of (Xj);.;

conditional on X; = x.

2. Choose a random summand X, where the index I has
P(/ = i) = u;j/EX. and independent of all else.
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Coupling Construction

We have the following recipe to construct a size-bias version of X
in the case that X = "% ; X;, where X; > 0 and E[Xj] = p; :

1. Foreach i=1,...,n, let X7 have the size-bias distribution of
Xi |ndependent of( )i and (X7)ji-Given X7 = x, define
the vector (X( ))Hg, to have the dlstr|but|on of (Xj)j-i
conditional on X; = x.

2. Choose a random summand X, where the index I has
P(/ = i) = u;j/EX. and independent of all else.

3. Define X° = ZHHX(I) + XJ.
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Proposition : Let X = >"7 ; Xj, with X; > 0 and E[X;] = ; and
also 1 =) ; pj. If X* is constructed by Items 1-3, then X* has the
size-bias distribution of X.
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Corollary

Let Xi,...X, be non-negative independent random variables with
E[Xi] = wi, and for each i =1,...,n, let X? have the size-bias
distribution of X; independent of (X;).; and (X7 ). If

X =311 Xi,E[X] = p, and I independent of all else with

P(I = i) = pi/p, then X* = X — X; + X} has the size-bias
distribution of X.
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Corollary

Let Xi,...X, be non-negative independent random variables with
E[Xi] = wi, and for each i =1,...,n, let X? have the size-bias
distribution of X; independent of (X;).; and (X7 ). If

X =311 Xi,E[X] = p, and I independent of all else with

P(I = i) = pi/p, then X* = X — X; + X} has the size-bias
distribution of X.

Exercise : Let us bound the Wasserstein distance between the
normalized sum of independent variables with finite third moment
and the normal distribution.
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Definition
For a centred random variable W with variance o¢, we say that the

random variable W? has the zero-bias distribution with respect to
W if for all f such that E[|Wf(W)]|] < oo we have

2

E[Wf(W)] = o°E[f(W?)].
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Theorem

Let W be a mean zero, variance one random variable and let W?*
be defined on the same space as W and have the zero-bias
distribution with respect to W. If Z ~ N(0,1), then

dw (W, Z) < 2E[|W? — W]].
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Coupling construction

Let X, ..., X, independent random variables having zero mean and
such that, Var(X;) = 0"-2, 1 02 =1, and define W = ST X

1
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Coupling construction

Let X, ..., X, independent random variables having zero mean and
such that, Var(X;) = 02, .7, 02 =1, and define W = Y7 X
1. Foreach i=1,...,n, let X? have the zero-bias distribution of
X; independent of( i)j+i and (X7)ji-
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Coupling construction

Let X, ..., X, independent random variables having zero mean and
such that, Var(X;) = 02, >0, 02 = 1, and define W = >7_| X;.
1. Foreachi=1,...,n, let X,-Z have the zero-bias distribution of

X; independent of (X;);; and (X7);x;.
2. Choose a random summand X;, where the index / has
P(/ = i) = o2, and independent of all else.
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Coupling construction

Let X, ..., X, independent random variables having zero mean and
such that, Var(X;) = 02, >0, 02 = 1, and define W = >7_| X;.
1. Foreachi=1,...,n, let X,-Z have the zero-bias distribution of

X; independent of (X;);; and (X7);x;.
2. Choose a random summand X;, where the index / has
P(/ = i) = o2, and independent of all else.

3. Define W?# = Z#,X,- + X7
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® For multivariate normal approximation : Reinert, G. and Rdllin,
A. (2009). Multivariate normal approximation with Stein's
method of exchangeable pairs under a general linearity
condition. Ann. Probab., 37(6) :2150- 2173.
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A. (2009). Multivariate normal approximation with Stein's
method of exchangeable pairs under a general linearity
condition. Ann. Probab., 37(6) :2150- 2173.

® For poisson approximation : A. D. Barbour, L. Holst, and S.
Janson. Poisson approximation, volume 2 of Oxford Studies in
Probability. The Clarendon Press Oxford Uni- versity Press,
New York, 1992. Oxford Science Publications.
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® For poisson approximation : A. D. Barbour, L. Holst, and S.
Janson. Poisson approximation, volume 2 of Oxford Studies in
Probability. The Clarendon Press Oxford Uni- versity Press,
New York, 1992. Oxford Science Publications.

® For exponential approximation : E. A. Pekdz and A. Réllin.
New rates for exponential approximation and the theorems of
Rényi and Yaglom. Ann. Probab., 39(2) :587-608, 2011.



Some refs
000

For multivariate normal approximation : Reinert, G. and Rdllin,
A. (2009). Multivariate normal approximation with Stein's
method of exchangeable pairs under a general linearity
condition. Ann. Probab., 37(6) :2150- 2173.

For poisson approximation : A. D. Barbour, L. Holst, and S.
Janson. Poisson approximation, volume 2 of Oxford Studies in
Probability. The Clarendon Press Oxford Uni- versity Press,
New York, 1992. Oxford Science Publications.

For exponential approximation : E. A. Pekdz and A. Rdllin.
New rates for exponential approximation and the theorems of
Rényi and Yaglom. Ann. Probab., 39(2) :587-608, 2011.

For geometric approximation : E. Pekoz, A. Réllin, and N.
Ross. Total variation and local limit error bounds for geometric
approximation. Bernoulli, 2010.
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e for concentration inequality : S. Ghosh and L. Goldstein.
Concentration of measures via size- biased couplings.
Probability Theory and Related Fields, 149 :271-278, 2011.
10.1007/s00440-009-0253-3.

e S. Chatterjee, “Stein's method for concentration inequalities,”
Probab. Theory Related Fields, vol. 138, pp. 305-321, 2007
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