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Introduction Methodology Non-asymptotic results Applications

Multivariate functional data

• The realizations of the stochastic process X are surfaces

• Satellite images
• Measurements of temperature or salinity in oceanology
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Data

• T : open, bounded bi-dimensional rectangle, T ⊂ (0,∞)2

• X (1), . . . ,X (j), . . . ,X (N) are independent realizations of X

• The data associated to a sample path X (j) consist of the pairs
(Y

(j)
m , t(j)m ) ∈ R × T , where for 1 ≤ j ≤ N and 1 ≤ m ≤ Mj

Y
(j)
m = X (j)(t(j)m ) + ε

(j)
m , with ε

(j)
m = σ(t(j)m ,X (j)(t(j)m ))e

(j)
m

• M1, . . . ,MN be an independent sample of an integer-valued
random variable M, E[M] = m

• The
(
t(j)m , 1 ≤ m ≤ Mj

)
represent the observation points

for the sample path X (j).
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First steps : univariate case (1/2)

• For BH a fBm with Hurst index H ∈ (0, 1),

E

[{
BH(t)− BH(s)

}2
]
= |t − s|2H , s, t ∈ R+

• Estimating equation for the Hurst parameter :

H =
log

(
E
[{

BH(t)− BH(s)
}2

])
2 log |t − s|
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First steps : univariate case (2/2)
• Let X be a process defined on a subset of R, with

non-differentiable sample paths

• GKP (2022) 1 : H(t0) ∈ (0, 1) and L(t0) > 0 exist such that

E
[
{X (t)− X (s)}2

]
≈ L(t0)

2|t − s|2H(t0), ∀s ≤ t0 ≤ t

for t and s close to t0

• Estimating equation :

H(t0) ≈
log(θ(t1, t2))− log(θ(t1, t3))

2 log(2)
, t0 ∈ [t1, t2] ⊂ [t1, t3]

where

θ(t, s) = E
[
{X (t)− X (s)}2

]
and |t1 − t2| = 2|t1 − t3|.

1. Golovkine, S., Klutchnikoff, N., and Patilea, V. (2022). Learning the
smoothness of noisy curves with application to online curve estimation.
Electronic Journal of Statistics, 16(1) :1485–1560
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Multivariate case : notation
• H1,H2 : T → (0, 1) are continuously differentiable functions.

Let
H = max{H1,H2}

• L
(1)
1 , L

(1)
2 , L

(2)
1 , L

(2)
2 : Non negative Lipschitz continuous

functions defined on T such that

L
(1)
k (t) + L

(2)
k (t) > 0, ∀t ∈ T ⊂ R2, k = 1, 2.

• For X ∈ L2, we denote for sufficiently small scalars ∆

θ
(i)
t (∆) = E

[{
X

(
t +

∆

2
ei

)
− X

(
t − ∆

2
ei

)}2
]
, i = 1, 2,

where (e1, e2) is canonical basis of R2
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A class of multivariate processes

Definition
We say X ∈ HH1,H2(L, T ) if three constants ∆0,C , β > 0 exist
such that for any t ∈ T and 0 < ∆ ≤ ∆0,∣∣∣θ(i)t (∆)− L

(i)
1 (t)∆2H1(t) − L

(i)
2 (t)∆2H2(t)

∣∣∣ ≤ C∆2H(t)+β, i = 1, 2.

Let
HH1,H2 =

⋃
L

HH1,H2(L, T ),

where L = (L
(1)
1 , L

(1)
2 , L

(2)
1 , L

(2)
2 ).

The functions H1,H2 define the local regularity of the process,
while L represent the local Hölder constants.
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Example : Sum of two fractional Brownian motion

• Let BH1
1 and BH2

2 be two independent fBm with Hurst index
H1 and H2.

• Let

X1(t) = BH1
1 (t1) + BH2

2 (t2), ∀t = (t1, t2) ∈ R2.

Then X1 ∈ HH1,H2 where L = (1, 0, 0, 1).
• Let β > 0 and define

X2(t) = X1

((
cosβ sinβ
− sinβ cosβ

)
t
)
, ∀t ∈ R2.

Then X2 ∈ HH1,H2 with

L = (| cosβ|2H1 , | sinβ|2H2 , | sinβ|2H1 , | cosβ|2H2).
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Identification issues

• Let H1,H2, H̃1 and H̃2 be some continuously differentiable
functions taking values in (0, 1)

• Assume X ∈ HH1,H2 and X ∈ HH̃1,H̃2

• We then necessarily have

min{H1(t),H2(t)} = min{H̃1(t), H̃2(t)}

and
max{H1(t),H2(t)} = max{H̃1(t), H̃2(t)}

• Notation :

H(t) = min{H1(t),H2(t)}, H(t) = max{H1(t),H2(t)}.
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Estimating equations for H and H
• Recall

θ
(i)
t (∆) = E

[
{X (t −∆ei/2)− X (t +∆ei/2)}2

]
, i = 1, 2,

• Denote for any t ∈ T

γt(∆) = θ
(1)
t (∆) + θ

(2)
t (∆)

• Then
H(t) ≈ log(γt(2∆))− log(γt(∆))

2 log(2)
.

• Let

αt(∆) =

∣∣∣∣ γt(2∆)

(2∆)2H(t) −
γt(∆)

∆2H(t)

∣∣∣∣ .
• Then

H(t)− H(t) ≈ log(αt(2∆))− log(αt(∆))

2 log(2)
.
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Estimators for H and H : presmoothing

• In general, the sheets X (j), j ∈ {1, . . . ,N}, are not available

• Let X̃ (j) be an observable approximation of X (j).

• If X is observed everywhere and without noise, then

X̃ (j)(t) = X (j)(t), ∀t ∈ T

• If X is observed with noise or/and on a discrete grid,
then X̃ (j) is an estimator of X (j) (local polynomial, splines,
interpolation...)

•
sup
s∈T

E
[
(X (s)− X̃ (s))2p

]
≤ Cpρ(m)2p
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Estimators for H and H (1/2)

• The observable approximation allows to build estimates :

θ̂
(i)
t (∆) =

1
N

N∑
j=1

{
X̃ (j)(t − (∆/2)ei )− X̃ (j)(t + (∆/2)ei )

}2
,

γ̂t(∆) = θ̂
(1)
t (∆) + θ̂

(2)
t (∆).

• The first estimator follows :

Ĥ(t) =

{
log(γ̂t(2∆))−log(γ̂t(∆))

2 log(2) if γ̂t(2∆), γ̂t(∆) > 0
1 otherwise

.
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Estimators for H and H (2/2)
• Moreover

α̂t(∆) =

{ ∣∣∣ γ̂t(2∆)

(2∆)2Ĥ(t)
− γ̂t(∆)

∆2Ĥ(t)

∣∣∣ if γ̂t(2∆)

(2∆)2Ĥ(t)
̸= γ̂t(∆)

∆2Ĥ(t)

1 otherwise
.

• Hence

̂(H − H)(t) =
log(α̂t(2∆))− log(α̂t(∆))

2 log(2)

• We then set

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
,

and define

Ĥ(t) = Ĥ(t) + ̂(H − H)(t)1AN(τ).
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̸= γ̂t(∆)

∆2Ĥ(t)
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Estimating equations for L(i)1 (t) and L
(i)
2 (t)

• Recall

θ
(i)
t (∆) ≈ L

(i)
1 (t)∆2H1(t) + L

(i)
2 (t)∆2H2(t), i = 1, 2

• Assume
H1(t) = H(t) < H(t) = H2(t)

• For i = 1, 2,

L
(i)
1 (t) ≈ θ

(i)
t (∆)

∆2H1(t)

and

L
(i)
2 (t) ≈ 1

(4D(t) − 1)∆2D(t)

∣∣∣∣∣ θ
(i)
t (2∆)

(2∆)2H1(t)
− θ

(i)
t (∆)

∆2H1(t)

∣∣∣∣∣
with D(t) = H2(t)− H1(t)
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Estimators for L(i)1 (t) and L
(i)
2 (t)

• Plug into the estimating equations for L(i)j (t) the estimators of
the unknown quantities, as defined above

• Special attention requires the case H(t) = H(t)
• A diagnostic tool is provided
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Non-asymptotic results
Proposition 1 : Constants C1, . . . ,C5 exist such that,

∀ε, τ ∈ (0, 1) max{| log(∆)||R(H)(t)|, |R(H−H)(t)|} ≤ ε ≤ 2τ,

P
[
|Ĥ(t)− H(t)| ≥ ε

]
≤ p1,

and
P
[∣∣∣Ĥ(t)− H(t)

∣∣∣ ≥ ε
]
≤ C3{p1 + p2 + p3},

with
• p1 = C1 exp

(
−C2N × ε2 ×∆4H(t)ϱ(∆,m)

)
,

• p2 = exp

[
−C4N × ε2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
1{H(t)<H(t)},

• p3 = exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where ϱ(∆,m) = max{∆2H(t), ρ(m)2}−1.
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[∣∣∣Ĥ(t)− H(t)

∣∣∣ ≥ ε
]
≤ C3{p1 + p2 + p3},

with
• p1 = C1 exp

(
−C2N × ε2 ×∆4H(t)ϱ(∆,m)

)
,

• p2 = exp

[
−C4N × ε2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
1{H(t)<H(t)},

• p3 = exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where ϱ(∆,m) = max{∆2H(t), ρ(m)2}−1.



Introduction Methodology Non-asymptotic results Applications

Non-asymptotic results
Proposition 1 : Constants C1, . . . ,C5 exist such that,

∀ε, τ ∈ (0, 1) max{| log(∆)||R(H)(t)|, |R(H−H)(t)|} ≤ ε ≤ 2τ,

P
[
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A risk bound for the anisotropy detection

Proposition 3 : Let

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
.

If
max{| log(∆)||R(H)(t)|, |R(H − H)(t)|} ≤ 2τ,

and
2τ ≤

{
H(t)− H(t)

}
+ 1{H(t)=H(t)}.

Then

P
(
1AN(τ) ̸= 1{H(t)<H(t)}

)
≤ C3 exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where C3 and C5 are the positive constants from Proposition 1.



Introduction Methodology Non-asymptotic results Applications

A risk bound for the anisotropy detection

Proposition 3 : Let

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
.

If
max{| log(∆)||R(H)(t)|, |R(H − H)(t)|} ≤ 2τ,

and
2τ ≤

{
H(t)− H(t)

}
+ 1{H(t)=H(t)}.

Then

P
(
1AN(τ) ̸= 1{H(t)<H(t)}

)
≤ C3 exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where C3 and C5 are the positive constants from Proposition 1.



Introduction Methodology Non-asymptotic results Applications

A risk bound for the anisotropy detection

Proposition 3 : Let

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
.

If
max{| log(∆)||R(H)(t)|, |R(H − H)(t)|} ≤ 2τ,

and
2τ ≤

{
H(t)− H(t)

}
+ 1{H(t)=H(t)}.

Then

P
(
1AN(τ) ̸= 1{H(t)<H(t)}

)
≤ C3 exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where C3 and C5 are the positive constants from Proposition 1.



Introduction Methodology Non-asymptotic results Applications

A risk bound for the anisotropy detection

Proposition 3 : Let

AN(τ) =

{
̂(H − H)(t) ≥ τ

}
.

If
max{| log(∆)||R(H)(t)|, |R(H − H)(t)|} ≤ 2τ,

and
2τ ≤

{
H(t)− H(t)

}
+ 1{H(t)=H(t)}.

Then

P
(
1AN(τ) ̸= 1{H(t)<H(t)}

)
≤ C3 exp

[
−C5N × τ2 × ∆4H(t)ϱ(∆,m)

log2(∆)
∆4D(t)

]
,

where C3 and C5 are the positive constants from Proposition 1.



Introduction Methodology Non-asymptotic results Applications

MfB sheet with domain deformation (1/2)
• Let W be a MfB sheet with Hurst functional parameter η

• Let A = (A1,A2) be a continuously differentiable deformation
of a domain in the plane, satisfying some mild conditions

• Let
X = W ◦ A

• Then for t, s ∈ T , we have

θ(t, s) = E
[
{X (t)− X (s)}2]

≈ |A1(t)|2H1(t)|∂1A2(t)(t1 − s1) + ∂2A2(t)(t2 − s2)|2H2(t)

+ |A2(t)|2H2(t)|∂1A1(t)(t1 − s1) + ∂2A1(t)(t2 − s2)|2H1(t),

where
H1 = η1 ◦ A and H2 = η2 ◦ A.
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MfB sheet with domain deformation (2/2)
• Assume that there exist ρ ∈ (0, 1) such that

0 ≤ H(t)− H(t) ≤ 1 − ρ

2

• Then X = W ◦ A ∈ HH1,H2(L, T ), with L given by :

L
(1)
1 (t) = |A2(t)|2H2(t)|∂1A1(t)|2H1(t),

L
(1)
2 (t) = |A1(t)|2H1(t)|∂1A2(t)|2H2(t),

L
(2)
1 (t) = |A2(t)|2H2(t)|∂2A1(t)|2H1(t),

L
(2)
2 (t) = |A1(t)|2H1(t)|∂2A2(t)|2H2(t)

• Deduce estimating equations for the components of the
deformation, depending on H1,H2, L and the variance of X

• Estimates of A are easily obtained by plug-in
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Take away

• Functional data are noisy, discretely observed realizations of a
stochastic process

• A general class of stochastic processes defined on the plane is
introduced ; the MfB sheet is an example

• The characteristics of the process are estimated
nonparametrically, exploiting the replication feature of the
functional data

• Non-asymptotic exponential bounds of the estimators are
derived

• Two applications are proposed
• Multifractional Brownian sheet with domain deformation
• Optimal smoothing for reconstructing the sheets
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