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Multivariate functional data
e The realizations of the stochastic process X are surfaces

® Satellite images
® Measurements of temperature or salinity in oceanology
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Data

® T : open, bounded bi-dimensional rectangle, 7 C (0, c0)?
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Data

T : open, bounded bi-dimensional rectangle, T C (0, 00)?

o X . xW_  X(N) are independent realizations of X

The data associated to a sample path XU) consist of the pairs
(Y,g,J),t(,,Jq))6R><T,wherefor1§j§Nand 1<m< M

Y9 = x0(9)+9, with 9 = o(e%), X0 (£9)))el)
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Data

® T : open, bounded bi-dimensional rectangle, 7 C (0, c0)?
o X . xW_  X(N) are independent realizations of X

® The data associated to a sample path XU) consist of the pairs
(Y,E,J),t%))ERXT,whereforlgjgNand 1<m< M

Y9 = X0y + 9, with 9) = o(£9), X0 (£9)))el)

e My,..., My be an independent sample of an integer-valued
random variable M, E[M] =
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Data

® T : open, bounded bi-dimensional rectangle, 7 C (0, c0)?

o X . xW_  X(N) are independent realizations of X

® The data associated to a sample path XU) consist of the pairs
(Y,E,J),t%))ERXT,whereforlgjgNand 1<m< M

Y9 = x0(9)+9, with 9 = o(e%), X0 (£9)))el)
e My,..., My be an independent sample of an integer-valued
random variable M, E[M] =m

® The (t(,{,), 1<m< Mj) represent the observation points
for the sample path XU),
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First steps : univariate case (1/2)

e For BH a fBm with Hurst index H € (0,1),

E [{BH(t) - BH(s)}Q} —lt—sPH s teR.
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First steps : univariate case (1/2)

e For BH a fBm with Hurst index H € (0,1),

E [{BH(t) - BH(s)}z} —lt—sPH s teR.

e Estimating equation for the Hurst parameter :

e <E [{BH(t) - BH(S)}2D

2log |t — s|

00000
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First steps : univariate case (2/2)

® et X be a process defined on a subset of R, with
non-differentiable sample paths

1. Golovkine, S., Klutchnikoff, N., and Patilea, V. (2022). Learning the
smoothness of noisy curves with application to online curve estimation.
Electronic Journal of Statistics, 16(1) :1485-1560
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First steps : univariate case (2/2)

® et X be a process defined on a subset of R, with
non-differentiable sample paths

® GKP (2022)1: H(tp) € (0,1) and L(tp) > 0 exist such that
E |[{X(t) — X(s)}?| ~ L(to)?|t — s]?"(0) vs <ty <t

for t and s close to tg

1. Golovkine, S., Klutchnikoff, N., and Patilea, V. (2022). Learning the
smoothness of noisy curves with application to online curve estimation.
Electronic Journal of Statistics, 16(1) :1485-1560
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First steps : univariate case (2/2)

Let X be a process defined on a subset of R, with
non-differentiable sample paths

GKP (2022) ! : H(to) € (0,1) and L(tp) > O exist such that
E |[{X(t) — X(s)}?| ~ L(to)?|t — s]?"(0) vs <ty <t
for t and s close to tg

Estimating equation :

H(to) ~ 2801 tz)fo;(';)g(e(tl’ ©) el lh el

where

o(t.s) = E [{X(t) ~X(s)¥?]  and |6 — | = 2|t — ts].

1. Golovkine, S., Klutchnikoff, N., and Patilea, V. (2022). Learning the
smoothness of noisy curves with application to online curve estimation.
Electronic Journal of Statistics, 16(1) :1485-1560
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Multivariate case : notation

® Hy,H>: T — (0,1) are continuously differentiable functions.
Let
ﬁ = max{Hl, Hg}
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Multivariate case : notation

® Hy,H>: T — (0,1) are continuously differentiable functions.
Let
ﬁ = max{Hl, H2}

° L(ll), Lgl), L(12), ng) : Non negative Lipschitz continuous
functions defined on 7 such that

W)+ 1D)>0, VeeTcR k=12
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Multivariate case : notation

Hi, Ho : T — (0,1) are continuously differentiable functions.
Let
ﬁ = max{Hl, H2}

L(ll), Lgl), L(12), ng) : Non negative Lipschitz continuous
functions defined on 7 such that

W)+ 1D)>0, VeeTcR k=12

For X € £?, we denote for sufficiently small scalars A

{x (t+§e;> X <t§e/>}2], =12,

where (er, ) is canonical basis of R?
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A class of multivariate processes

Definition
We say X € H/:M2(L T) if three constants Ag, C, 3 > 0 exist
such that for any t € 7 and 0 < A < Ay,

0 (a) — L (5) 2@ — (D) a2H0] < caAHO =12,

Let
HHe = | JHMr(L,T),

where L= (L9 18V () (D)

The functions Hy, H, define the local regularity of the process,
while L represent the local Holder constants.
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Example : Sum of two fractional Brownian motion

® |et B{'Il and B;z be two independent fBm with Hurst index
Hi and H>.

® |et
Xi(t) = B (t1) + By2(t2), Vt=(t1,t) € R%

Then X; € HMH2 where L= (1,0,0,1).
® Let 5> 0 and define

xa()=x (S50 S0)e). weere

Then Xo € HM:H2 with

L = (| cos 8?1, | sin 8|22, | sin B|*M, | cos BI*2).
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|dentification issues

e Let Hi, Ho, 4y and A, be some continuously differentiable
functions taking values in (0,1)
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|dentification issues

e Let Hi, Ho, 4y and A, be some continuously differentiable
functions taking values in (0,1)

o Assume X € HHMuH2 and X e #Fhfe
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|dentification issues

Let Hi, H», H1 and H> be some continuously differentiable
functions taking values in (0,1)

Assume X € HHuH2 and X € e

We then necessarily have
min{Hy(t), Ho(t)} = min{Ay(t), A2(t)}

and
max{Hy(t), Ha(t)} = max{Hi(t), Ho(t)}
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|dentification issues

Let Hi, H», Hi and H> be some continuously differentiable
functions taking values in (0,1)

Assume X € HHuH2 and X € e

We then necessarily have
min{Hy(t), Ho(t)} = min{Ay(t), A2(t)}

and
max{Hy(t), Ha(t)} = max{Hi(t), Ho(t)}

Notation :

H(t) = min{Hi(t), Ha(t)}, H(t) = max{Hi(t), Ha(t)}.
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Estimating equations for H and H
® Recall

09 (A) =E [{X (t — Dei/2) — X (t + Ae,-/2)}2] , i=12,
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Estimating equations for H and H

® Recall
6 (n)=E [{x (t— Dei/2) — X (t+ Ae,-/2)}2] L i=1,2,
e Denote forany t € T

7e(8) = 6(8) + 62 (n)
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Estimating equations for H and H

Recall

09 (A) =E [{X (t — Dei/2) — X (t + Ae,-/2)}2] , i=12,

Denote for any t € T
w(B) = 07(8) + 67(8)

Then

_ log(7¢(24)) — log(ve(A))
H(t) ~ 2log(2) ‘
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Estimating equations for H and H

Recall

e#RAy:E“X(L—Aap)—x(t+Aaﬁnﬂ, =12,

Denote for any t € T

7e(8) = 6(8) + 62 (n)

® Then
! () = 19E0E2D)) — log(r4()
- 2log(2)
® |et
Ozt(A) _ 7t(2A) - ’Yt(A)

(20)2H(E®) — A2H(b) |-
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Estimating equations for H and H

Denote for any t € T

Then

Let

Then

7e(8) = 6(8) + 62 (n)

_ log(7¢(24)) — log(ve(A))
H(t) ~ 2log(2) ‘

7e(24) _ V(D)
(2A)2H(t)  A2H(1) |

ar(A) =

_ _ log(ar(24)) — Iog(at(A))'

H(t) — H(t) ~

* 2log(2)

Applications
00000

1,2,
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Estimators for H and H : presmoothing

* In general, the sheets XU), j € {1,..., N}, are not available
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Estimators for H and H : presmoothing

® In general, the sheets XU), j € {1,..., N}, are not available

e Let XU) be an observable approximation of XU).
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Estimators for H and H : presmoothing

® In general, the sheets XU), j € {1,..., N}, are not available

e Let XU) be an observable approximation of XU).

® |f X is observed everywhere and without noise, then

X0(t) = xV(t), vteT
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Estimators for H and H : presmoothing

® In general, the sheets XU), j € {1,..., N}, are not available
e Let XU) be an observable approximation of XU).
® |f X is observed everywhere and without noise, then

X0(t) = xV(t), vteT

® |f X is observed with noise or/and on a discrete grid,

then XU) is an estimator of XU (local polynomial, splines,
interpolation...)
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Estimators for H and H : presmoothing

® In general, the sheets XU), j € {1,..., N}, are not available

e Let XU) be an observable approximation of XU).

® |f X is observed everywhere and without noise, then

X0(t) = xV(t), vteT

® |f X is observed with noise or/and on a discrete grid,

then XU) is an estimator of XU (local polynomial, splines,
interpolation...)
[ ]
sup E [ (X(5) = X(s))%°] < Cop(m)?*
seT
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Estimators for Hand H  (1/2)

® The observable approximation allows to build estimates :

N
Z{xw (£~ (8/2)e) ~ XV(E +(8/2)e)
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Estimators for Hand H  (1/2)

® The observable approximation allows to build estimates :

N
Z{xw (£~ (8/2)e) ~ XV(E +(8/2)e)

() =8 (2) + 8P (n).
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Estimators for Hand H  (1/2)

® The observable approximation allows to build estimates :

N
Z{x(ﬁ (t— (A/2)e) — >~<<f>(t+(A/2)e,-)}2,

() =8 (2) + 8P (n).

® The first estimator follows :

2log(2)

N log(7e(24))—log(7¢(A)) if F:(24),7:(A) >0
H(t) = ’ :
H(t) 1 otherwise
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Estimators for Hand H  (2/2)
® Moreover
7e(24)  _ 3e(A) i _e(2B) 7e(A)
ar(A) = (2A)2H()  A2H(Y) (24)2H(t) A2H(t)

1 otherwise
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Estimators for Hand H  (2/2)

® Moreover

R 7e(24)  _ 3e(A) i _e(2B) 7e(A)
Oét(A) — (2A)2H(®) A2H(t) (2A_)2ﬁ(t) A2H(t)
1 otherwise

® Hence
(e — log(qt(24)) — log(as(A))
2log(2)
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Estimators for Hand H  (2/2)
® Moreover
7e(24)  _ 3e(A) i _e(2B) 7e(A)
at(A) — (2A)2H(®) A2H(t) (24)2H(t) A2H(t)
1 otherwise
® Hence
=T log(@¢(24)) — log(ae(A))
H— H)(t) =
( H)(t) 2log(2)

® \We then set

and define
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Estimating equations for L(li)(t) and Lgi)(t)

® Recall

09 (A) ~ LY (5) 22O 4 1P ()a2Pa0) =12
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Estimating equations for L(li)(t) and Lgi)(t)

® Recall

09 (A) ~ LY (5) 22O 4 1P ()a2Pa0) =12

® Assume
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Estimating equations for Lgi)(t) and Lgi)(t)
Recall

0 (a) ~ L) ()02 4 (D) a2He®) j =12

Assume
Hi(t) = H(t) < H(t) = Ha(t)
Fori=1,2,
(i
i) ~ 0’ (A)

Ll (t) ~ A2Hi(t)
and

1 02a)  0(a)

L(t) ~

(4D(8) — 1)A2D(t) | (2A)2Ha (D) ~ A2H(1)

with D(t) = Ha(t) — Hi(t)
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Estimators for L(l")(t) and Lg)(t)

® Plug into the estimating equations for LJ(-i)(t) the estimators of
the unknown quantities, as defined above
® Special attention requires the case H(t) = H(t)
® A diagnostic tool is provided
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,

P[IH(t) ~ H(t)| = ] < pn,
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,

P |IE(t) ~ H(8)| = ] < pr,

nd ~
° P Hﬁ(t) — F(t)’ > 5} < G{p1 + p2 + p3},
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,

P |IE(t) ~ H(8)| = ] < pr,

and

~

P [|H() ~ F(e)| = €] < Golpr + p2 + pa

with
® p = Crexp (—GN x €2 x A*H(B) o(A m)),
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,

P |IE(t) ~ H(8)| = ] < pr,

and

P Hﬁ(t) - H(t)’ > 8} < G{p1+p2 + p3},
with
® p = Crexp (—GN x €2 x A*H(B) o(A m)),

A4H(t) A,
o by = exp [— CaN x €2 x k,gf((m“‘)A“D“)] Lo <Fice)y
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Non-asymptotic results
Proposition 1 : Constants Cy, ..., C5 exist such that,

Ve, 7 €(0,1) max{|log(A)[[R(H)(t)], [R(H-H)(t)|} <e <2,

P |IE(t) ~ H(8)| = ] < pr,

and

P Hﬁ(t) - H(t)‘ > 8} < G{p1+p2 + p3},
with
® p = Crexp (—GN x €2 x A*H(B) o(A m)),

A4ﬁ(t) A7
° o —exp |:—C4N % 52 % Iogzg((A)m)AllD(t)] 1{ﬂ(t)<ﬁ(t)}’

Am(t)g(A,m) A4D(t):|

® p3 = exp [—C5N><7'2>< o?(0)

where o(A, m) = max{AZH(®) p(m)2}- L.



Introduction Methodology Non-asymptotic results Applications
[o]e] 000000000000 oe 00000

A risk bound for the anisotropy detection

Proposition 3 : Let
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A risk bound for the anisotropy detection

Proposition 3 : Let

antr) = { A= B)(0) = 7.

max{( log(A)||R(H)(t)], |R(H — H)(B)]} < .
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A risk bound for the anisotropy detection

Proposition 3 : Let

antr) = { A= B)(0) = 7.

max{( log(A)||R(H)(t)], |R(H — H)(B)]} < .

and o
27 < {H(t) = H(t)} + 11y y—ri(ey)-
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A risk bound for the anisotropy detection

Proposition 3 : Let

antr) = { A= B)(0) = 7.

If
max{| log(A)||R(H)(t)|, [R(H — H)(t)[} < 2r,

and o

27 < {H(t) = H(t)} + 11y y—ri(ey)-
Then

A‘m(t)g(A m)
B _ 2 2 e, ) A 4D(t)
P (Lavtr) # Lo <ricyy ) < Coop [~ Gl x 72 x o) o]

where C3 and Cs are the positive constants from Proposition 1.
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MfB sheet with domain deformation (1/2)

® Let W be a MfB sheet with Hurst functional parameter n
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MfB sheet with domain deformation (1/2)

® Let W be a MfB sheet with Hurst functional parameter n

® Let A= (A1, Az) be a continuously differentiable deformation
of a domain in the plane, satisfying some mild conditions
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MfB sheet with domain deformation (1/2)

Let W be a MfB sheet with Hurst functional parameter n

Let A= (A1, Az) be a continuously differentiable deformation
of a domain in the plane, satisfying some mild conditions

® Let

X=WoA
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MfB sheet with domain deformation (1/2)

® Let W be a MfB sheet with Hurst functional parameter n

® Let A= (A1, Az) be a continuously differentiable deformation
of a domain in the plane, satisfying some mild conditions

® |et
X=WoA

® Then for t,s € T, we have
0(t.s) = E [{X(t) — X(s)}?]

~ [AL(E) P09 Ap () (1 — s1) + D2Ax(E)(12 — 52) 2D
+ |A2(t)]2H2 |01A1(t)(t1 — s1) + D2 A1(E) (12 _52)‘2H1(t)

where
Hi=moA and Hy=moA
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MfB sheet with domain deformation (2/2)
® Assume that there exist p € (0,1) such that

0 < H(t) - H(t) < 1"
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MfB sheet with domain deformation (2/2)
® Assume that there exist p € (0,1) such that

0 < H(t) - H(t) < 1"

® Then X = Wo Ac HMH2(L T), with L given by :
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MfB sheet with domain deformation (2/2)
® Assume that there exist p € (0,1) such that

0 < H(t) - H(t) < 1"

® Then X = Wo Ac HMH2(L T), with L given by :
137(8) = |Aa(£) PO 10 A (1) P00,
LD (£) = |AL(8) P00y Ay (1) [2Ha(),

L7(8) = [ Aa(£) P10 241 (1) PP,
LP(t) = |A1(£) PHaO|0, Ay () 2Ha(0)
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MfB sheet with domain deformation (2/2)
® Assume that there exist p € (0,1) such that

0 < H(t) - H(t) < 1"

® Then X = Wo Ac HMH2(L T), with L given by :
137(8) = |Aa(£) PO 10 A (1) P00,
LD (£) = |AL(8) P00y Ay (1) [2Ha(),

L7(8) = [ Aa(£) P10 241 (1) PP,
LP(t) = |A1(£) PHaO|0, Ay () 2Ha(0)

® Deduce estimating equations for the components of the
deformation, depending on Hy, H», L and the variance of X
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MfB sheet with domain deformation (2/2)
® Assume that there exist p € (0,1) such that

0 < H(t) - H(t) < 1"

® Then X = Wo Ac HMH2(L T), with L given by :

137(8) = |Aa(£) PO 10 A (1) P00,
150(2) = |AL() P10y Ao ) P1EC),
L7(8) = [ Aa(£) P10 241 (1) PP,
L5(8) = |Au(8) P10 |, Ax 1) 20

® Deduce estimating equations for the components of the
deformation, depending on Hy, H», L and the variance of X
e Estimates of A are easily obtained by plug-in



Introduction Methodology Non-asymptotic results Applications
[o]e] 000000000000 00 00e00

Take away

e Functional data are noisy, discretely observed realizations of a
stochastic process
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Take away

e Functional data are noisy, discretely observed realizations of a
stochastic process

e A general class of stochastic processes defined on the plane is
introduced ; the MfB sheet is an example

e The characteristics of the process are estimated
nonparametrically, exploiting the replication feature of the
functional data
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Take away

Functional data are noisy, discretely observed realizations of a
stochastic process

A general class of stochastic processes defined on the plane is
introduced ; the MfB sheet is an example

The characteristics of the process are estimated
nonparametrically, exploiting the replication feature of the
functional data

Non-asymptotic exponential bounds of the estimators are
derived
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Take away

Functional data are noisy, discretely observed realizations of a
stochastic process

A general class of stochastic processes defined on the plane is
introduced ; the MfB sheet is an example

The characteristics of the process are estimated
nonparametrically, exploiting the replication feature of the
functional data

Non-asymptotic exponential bounds of the estimators are
derived

Two applications are proposed
® Multifractional Brownian sheet with domain deformation
® Optimal smoothing for reconstructing the sheets
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