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Introduction



e New types of data

e financial data

e energy data

e sensors (cars, airplanes,...)

e medical devices (cardiograms, fMRI, blood pressure, oxygen or
glucose devices,...)

e environmental devices (daily temperature, wind speed, solar
radiation, pollution levels,...)

e sports data

e The observation unit (entity), the datum, could be one or
several curves, image(s), or several such objects

e Related fields : Signal Processing, Longitudinal Data...



Ideally, one would keep the observation unit as it was collected

e model data as random realizations in a suitable space
Data are (in)dependent realizations of some variable
X (QA) = (X, F)
When X is a space of curves/images/signals
e Functional Data problem

Functional Data Analysis (FDA) deals with the statistical
description and modeling of samples of random variable taking

values in spaces of functions



Multivariate functional data

e The realizations of the stochastic process X are surfaces

e Satellite images
e Measurements of temperature or salinity in oceanology




Data

e l|deally, data represent the continuous time measurements of
sample paths of same stochastic process
e Real data are
e discretely observed, possibly at random points, which may be

sparsely distributed
e noisy measurements

Functional Surface.
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e 7 : open, bounded bi-dimensional rectangle, 7 C (0, c0)?
o XU . X0 .. X(N) gre independent realizations of X

e The data associated to a sample path XU) consist of the pairs
(Y,g,J),t(,{,))ERXT,WhereforlgjgNand 1<m< M

Y9 = xW(9)+ 9, with ) = ot XD (£9)))el)
e My, ..., My be an independent sample of an integer-valued
random variable M, E[M] = m

e The <tg,), 1<m< MJ-) represent the observation points
for the sample path X().



Methodology



First steps : univariate case (1/2)

e For B" a fBm with Hurst index H € (0, 1),

E [{BH(t) - BH(S)}Q} =|t—s]?", steR,

e Estimating equation for the Hurst parameter :

g (E [{BH(t) - BH(s)}2D

2log |t — s|




First steps : univariate case (2/2)

e Let X be a process defined on a subset of R, with

non-differentiable sample paths
e GKP (2022) : H(tp) € (0,1) and L(tg) > 0 exist such that
E [{X(t) — X(s)}?| = L(to)?|t — s]?H(0) vs <ty <t
for t and s close to tg

e Estimating equation :

Ww%J%wmmﬁ;gﬁ“““»

to € [t1, to] C [t1, t3]

where
O(t,s) = E [{X(t) — X(s)}?| and |ty —to| = 2|ty — t3].
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Multivariate case : notation

e Hi,H>: T — (0,1) are continuously differentiable functions.
Let

H = max{Hy, H»}
° L(ll), Lgl), L(12)7 ng) : Non negative Lipschitz continuous
functions defined on 7T such that

W) +1P) >0, vVteTcR, k=12

e For X € £?, we denote for sufficiently small scalars A

{x(e+5e)-x(e-30)} ], 122

where (e1, €2) is canonical basis of R?

0{)(A) =E
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A class of multivariate processes

Definition

We say X € HMH2(L, T) if three constants Ag, C, 3 > 0 exist
such that for any t € 7 and 0 < A < Ay,

QEI)(A) B L(li)(t)AQHl(t) _ Lg)(t)A2H2(t) < C‘AZF('-”)"’B7 i=1,2.

Let
I = [ JHM (L T),
L

where L= (L), 1V 1P 1Y),

The functions Hy, H, define the local regularity of the process,
while L represent the local Holder constants.
12



Example : Sum of two fractional Brownian motion

e Let Bfll and B;b be two independent fBm with Hurst index
H1 and H2.
o Let

Xi(t) = B (t1) + By2(t2), Vt = (t1,t) € R%

Then X; € HMH2 where L = (1,0,0,1).
e Let § > 0 and define

B cosf sinf 5
Xz(t) =Xi ((_ sin cosﬁ> t) , Vt € R°.

Then Xp € HMH2 with
L = (| cos B|*, | sin 8|22, | sin B|2M, | cos BI?2).

13



Example : multifractional Brownian sheet

e Let n = (1,m2) : [0,00)2 — (0,1)? be a deterministic map
e The multifractional Brownian (MfB) sheet W with Hurst
functional parameter 7 is defined as :

ek — 1 = 5
<H C(nk(u ) /Rz H |G| B(d¢), u€(0,0),

where
e B is the FT of the white noise in R2

)= [r(zx ¥ ?)Tsin(ﬁx)} -
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e The process W is a centered Gaussian process

e The covariance function

EW()W(v)] = [T D(ni(u), ni(v))

i=1,2

« [u?mu)m(v) o) Vl.‘m(U)er(V)] 7

where

D(x,y) = C2((x +y)/2) - (2C(x)C(y)) Y,

e With respect to our Definition, W € HH1:H2 with
(H1, H2) = (m1,m2) and

(1170, 17(0), L2 (), 1(2)) = (55", 0,0, 2
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Identification issues

Let Hi, H», H1 and H> be some continuously differentiable

functions taking values in (0, 1)

Assume X € HMH2 and X e 7—[’:’17’:’2

We then necessarily have

min{H1(t), Ha(t)} = min{Hy(t), Aa(t)}

and
max{Hy(t), Ha(t)} = max{Hi(t), Ho(t)}

Notation :

H(t) = min{Hi(t), Ha(t)}, F(t) = max{Hi(t), Ha(t)}. 16



Estimating equations for H and H

o Recall
6 (n)=E [{x (t— Der/2) — X (t+ Ae,-/z)ﬂ . i=1,2,
Denote for any t € T

7e(8) =0V (8) + 6 (8)

® Then log(7¢(24)) — log(7:(A))
H(t) = 2l0g(2) '
o Let
ar(B) = (;;()22?20 - ZZ(E'A(B) '
e Then
Fi(t) — H(t) ~ log(ae(24)) — log(ae(A))

2log(2)
17



Estimators for H and H : presmoothing

e In general, the sheets XU), j € {1,..., N}, are not available

e Let XU) be an observable approximation of X{).

e If X is observed everywhere and without noise, then

XO(t) = XU(t), VteT

e If X is observed with noise or/and on a discrete grid,
then XU) is an estimator of XU) (local polynomial, splines,
interpolation...)
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Estimators for H and H  (1/2)

e The observable approximation allows to build estimates :

99() = LE_: [X0(e — (a/2)e) - XO(E +(8/2)e)
Te(8) = 80(8) + 7 (2).

e The first estimator follows :

{Iogﬁm»_bgm”  F(2A),3:(8) > 0

2log(2)
1 otherwise
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Estimators for H and H  (2/2)

e Moreover
7:(24) 7:(A) if e(28) £ 7:(A)
at(A) — (2A)2ﬁ(t) A2ﬁ(t) (2A 2H(t A2H(t
1 otherwise
e Hence

—_— b log(@e(2A)) — log(ae(A))
2log(2)

and define
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Estimating equations for Lgi)(t) and Lg)(t)

e Recall

0 (a) ~ L) (6)a2m® 4 1 P()a2He®) j =12

e Assume
Hi(t) = H(t) < A(t) = Ha(t)
e Fori=1,2,
(i)
(i) 0" (A)
Ll (t) ~ A2H1(t)
and
j 1 0 2n)  6(a
Lg)(t)% ¢ (24) i (D)

(4D(8) — 1)A2D(1) [ (2A)2Ha(D) -~ A2Hi(t)
with D(t) = Ha(t) — Hi(t)
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Estimators for L(li)(t) and Lg)(t)

e Plug into the estimating equations for LJ(.i)(t) the estimators of
the unknown quantities, as defined above

e Special attention requires the case H(t) = H(t)

e A diagnostic tool is provided

22



Non-asymptotic results




Non-asymptotic results

o Let

Rp(m) = fgfr;ﬂlé‘“(ﬂ!”L (t) = XV(2) - XU (¢)

e Assumptions
1. X € HM:H2 | and the realizations of X are independent

2. Constants a, 2 and r exist such that, for any t € T,
2p

E[x0)(e) — xV)(s)|” < %!amp—2||t—s||2pﬂ<t>, Vs € B(t:r), ¥p > 1

3. Constants ¢ and ©, and a function p(m) < 1, exist such that
Rop(m) < %!c:opfzp(m)@, Vp>1, Vm > 1

4. Two positive constants £ and v exist such that

Ro(m) < €m™7", Vm > 1
23



Non-asymptotic results

e \We denote

R(H)(t) = H(t) - '°g(%(2A2>|3)g—(;)>g(%(A)>’

R(F — H)(e) = (7 - H)(x) - 2] = sl 2)

and 0
0’ (A)

RO = 15(8) = Saegey

i=1,2
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Non-asymptotic results

Proposition 1 : Constants Cy, ..., G5 exist such that,

Ve,7 € (0,1)  max{|log(A)[|[R(H)(t)], [R(H-H)(t)[} <& < 27,

P |IA() — H(®)| 2 <] < p,
and N
P [[H(e) - ()| 2 ] < Golpr + P2+ pa),
with
e p1 = Crexp (—GN x £2 x A*H(B) g(A,m))

4H(t)
® po =exp [—C4’V x &% WND“)] L <rey
2, AW (Am) A4D(t)}

e p3 = exp [—C5N><T (D)

where o(A,m) = max{A%H®) p(m)} 1. 25



Non-asymptotic results

Proposition 2 : Constants €y, ..., &4 exists such that, for i = 1,2,
and for any ¢ € (0, 1) such that

max { |R(L)(8)], [1og(A)|IR(H)()], [R(A-H)(£)|} <,

—

1) = Lgi)(t)‘ > z—:) < Crexp <—¢2’V x €2 x

A o(A m)
log?(8) )

°(

and

°(

o]
< Czexp (—€4N x e A*P(E) min{e, A*P(E)Y

AYH(E) o( A, m) (400 1)2> |

log*(A)
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A risk bound for the anisotropy detection

Proposition 3 : Let

If
max{|log(A)[|R(H)(t)l, |R(H — H)(t)[} < 2r,
and
21 < {H(t) = H(t)} + 1{1y0)=Fi(e)}-
Then

A (A, m) A4D(2)

—GsN x 72 x )
’ log?(A)

P <1AN(T> 7 1{ﬂ<t)<ﬁ<t>}> < Gexp

where C3 and (s are the positive constants from Proposition 1.
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Applications




MfB sheet with domain deformation (1/2)

e Let W be a MfB sheet with Hurst functional parameter n
e Let A= (A1, A2) be a continuously differentiable deformation
of a domain in the plane, satisfying some mild conditions
o Let
X=WoA

e Then for t,s € T, we have
0(t,s) = E [{X(t) — X(s)}?]
~ |AL(£) [P0, Ax(t) (11 — s1) + DoAs(t) (2 — 52)2H2(8)
+ [ Ao(£) P01 Ay (£) (11 — 51) + D2 A (2) (22 — 52)[ P (0)

where
Hi=moA and H,=moA.
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MfB sheet with domain deformation (2/2)
e Assume that there exist p € (0, 1) such that

0 < H(t) - H(t) < 1L

e Then X = Wo A e HMH(L T), with L given by :
L37(8) = 1Aa(£) PO 01 A (1) P10,

L5(8) = |AL(£) PO |y Ag() PO,

L (£) = | Ax(£) PO A () P,

L5 (£) = |As (1) PP O] Ao )00

e Deduce estimating equations for the components of the

deformation, depending on Hy, Ho, L and the variance of X

e Estimates of A are easily obtained by plug-in 29



Adaptive bivariate smoothing (1/4)

o X € HMHM2 with L = (L4,0,0, L)
_ log(8"(20)) — log(8"(A))

Hi(t oA?, i=1,2.
i(t) 2log(2) AU
e New observation
ynew _ xnew(gnewy 4 cnew 1< m< M.

e With B = diag(l/hl,l/hg)

Mo
. K (B(t"ew —
XHEW(t; B) = Yr;l]eW MO ( (tm t)) .
1 > ome1 K (B(tR™ — t))

e We consider the risk

R (t;B, M) = E [{)A(”ew(t; B) - X”eW(t)}2 ‘Mo] . "



Adaptive bivariate smoothing (2/4) :

e Two constants exist x,r > 0
K_l].B(O’r)(t) < K(t) < IQ].B(OJ)(t), Vte T,

and hy, ho € H with y/minfH{ — oo and supH — 0.
e Ic >0, f(t)>c, VteT.
e The ™" are iid and E[¢7¢"] = 0, E[(e7¢")?] = o2.
e The My, X", t7 and e/, 1 < m < My, are mutually

independent.
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e A constant & > 0 exists such that & < My/m < &, a.s.
e Hi(t) and L;(t) are independent of My, X%, tnew gnew

m

Moreover, two constants exists a > 0 and £; depending on a

P (|ﬁ,-(t) ~Hi(t)] > Iog_a(m)> <trexp(—m), i=1,2.

P (|Z,~(t) —Li(t)] > Iog_a(m)> <tpexp(—m), i=1,2.
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Adaptive bivariate smoothing (3/4)

Proposition 4

R(t; B, My) < C; M00h21h2 + 2Ly ()R o1, (£) 2D
8 egliziblerterms
Set, for i =1,2
ai(t) = 2w°(”f)t)+1 x Hil(t)7 A(E) = K20% [{acrHi(£) Li(£)},
e
w(t) = BB oy ok (6 Ha(e) + Hi(E) + Ha(t).

~ Hu(t) + Ha(t)’
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Adaptive bivariate smoothing (4/4)

Proposition 5

e With the choice

_ A (t)2H2(t)+1 zHl(:) _ ¢ /\z(t)2H1(t)+1 zvil(:)
= My | y = My | 2
P { Na(t) 2o Ai(t)

)

e We obtain :

2w(t)

R(t; B*, Mp) < M, *P7T(¢).

e Estimates of hj and h3 are easily obtained by plug-in

e We have
~ % __2w(t) —a
R(£:B, Mo) < Fa()My =07 2% s 1 4 o(log™2(m))},
with m = E[Mj)].
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e Functional data are noisy, discretely observed realizations of a

stochastic process

e A general class of stochastic processes defined on the plane is
introduced ; the MfB sheet is an example

e The characteristics of the process are estimated
nonparametrically, exploiting the replication feature of the
functional data

e Non-asymptotic exponential bounds of the estimators are
derived

e Two applications are proposed
e Multifractional Brownian sheet with domain deformation
e Optimal smoothing for reconstructing the sheets
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