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Abstract

This paper develops robust inference methods for moment condition models

implemented with a n1/2-consistent auxiliary estimator of the nuisance param-

eters. When applied to models subject to weak identification and boundary

parameter problems, they simultaneously overcome both irregularities and are

asymptotically pivotal with minimal assumptions on the parameter space. If

these problems are not present in the data, they are asymptotically equivalent to

standard statistics for nonlinear models. They also have similar computational

requirements.

We apply our tests to the differentiated products demand model, which may

suffer from both problems: the variance of the random coefficients is often close to

zero, causing the boundary parameter problem, and the strength of the available

instruments is often put in doubt, which may cause weak identification. We

evaluate the performance of the proposed tests by simulations.
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1 Introduction

Models subject to multiple irregularities at once are frequently encountered in empirical

economic work. For instance, weak identification is often combined with boundary

parameters, persistence or instrument selection problems.1 With statistical procedures

addressing a single issue, practitioners often wrongly rule out any other irregularities

by assumption, potentially leading to inference failure.

We develop identification- and boundary-robust generalized method of moments

(GMM) test statistics for parameter subvector, implemented with a n1/2-consistent

auxiliary estimator of the nuisance parameters (n denotes the sample size). When

applied to models with possible identification failure and boundary parameter prob-

lems, they enjoy the double robustness property: i.e., their null asymptotic distribution

does not depend on unknown parameters, irrespective of identification strength or of

the distance of any parameter to the boundary of the parameter space. The proposed

statistics are an Anderson-Rubin (AR)-type statistic, a C(α)-type statistic, and a Con-

ditional Likelihood Ratio (CLR)-type statistic. They have computational costs similar

to standard weak identification-robust versions of these statistics and have equivalent

asymptotic properties in the absence of the boundary parameter problem.

The literature on weak identification and weak instruments is substantial and

mainly aims at devising statistical procedures that are both “honest” and efficient.2

The former property means that the procedures correctly indicate whether the data are

1 Weak identification occurs when objective functions are relatively flat in parts of the parameter

space or the data do not provide sufficient information. The boundary parameter problem may

arise from any model with parameters subject to inequality constraints, such as those describing

the curvature of utility or production functions, weights and probabilities constrained to the unit

interval, or from the variance of random parameters which cannot be negative. The random

coefficients demand model introduced by Berry, Levinsohn, and Pakes (1995) is a prominent

example combining weak instruments and boundary parameters; other cases are discussed by

Andrews (2002). Dynamic models such as GARCH or SVAR are subject to persistence and

identification problems at the same time. Chernozhukov, Hansen, and Spindler (2015) develop

inference methods about low-dimensional structural parameters when high-dimensional nuisance

parameters are estimated using selection or regularization methods.
2 See Stock, Wright, and Yogo (2002) and Dufour (2003) for literature surveys on weak IV.
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informative by producing a wide (or infinite) confidence interval when identification

is weak. The latter means that when identification is strong, the procedures should

perform on par with usual test statistics based on t-ratios.

In the GMM context, identification-robust tests have been proposed by Stock and

Wright (2000), Kleibergen (2005), Chaudhuri and Zivot (2011), Andrews and Cheng

(2014), Andrews and Guggenberger (2015a), Andrews (2016) and Andrews and Miku-

sheva (2016). Of these papers, Stock and Wright (2000), Kleibergen (2005), Chaudhuri

and Zivot (2011), and Andrews and Cheng (2014) consider tests for restrictions on a

parameter subvector as we do in this paper. However, none of the identification-robust

test statistics proposed in the literature is robust to the nuisance parameters lying on

the boundary of the parameter space.

The boundary parameter problem has also received attention, notably by Andrews

(1999, 2001) who studies the general properties of estimators and tests in extremum

estimation setups. He shows that, in the presence of boundary effects, the usual es-

timators and tests such as Wald, LM, and LR statistics do not have the usual nor-

mal and chi-square distributions asymptotically. Additionally, Ketz (2018) proposes a

boundary-robust LR-type statistic for extremum estimation.

While the literature addresses either weak identification or the boundary parameter

problem separately, the extra challenge posed by their common occurrence has not been

explored systematically. This gap in the literature is significant since both problems can

occur simultaneously in many models with inequality restrictions on the parameters.

In practice, they are sometimes ignored or addressed in unsatisfactory ways.3

3 When boundary parameters or weak identification are suspected, a practical solution sometimes

considered is pretesting to assess whether standard inference methods may be used. In general,

however, such procedures suffer from the so-called pretest bias. Using the data twice in such a

manner – first the pretesting and then using the standard t-statistic based confidence interval –

creates a distortion in the null rejection probability of the test statistic used in the second stage

because the two test statistics depend on one another in a complicated fashion.

An alternative strategy would be to use projection methods by including the parameters that are

potentially at the boundary within the subvector under test. However, in addition to the standard

drawbacks, these methods can be prohibitively slow and suffer from the curse of dimensionality

for a model such as the BLP since the whole variance vector is potentially at the boundary.
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We shall now describe our test statistics, which can be viewed as more general

versions of their usual identification-robust counterparts. They merely require n1/2-

consistent estimator for the nuisance parameters. The usual restricted GMM estimator,

which may have a non-normal asymptotic distribution, can serve as this auxiliary

estimate in all of the proposed test statistics.

The first statistic is an Anderson-Rubin (AR)-type statistic that generalizes the

GMM AR statistic of Stock and Wright (2000). It is a quadratic form of a moment

function orthogonalized against the GMM score-type function associated with the nui-

sance parameters. It is asymptotically pivotal, even if the nuisance parameter is on

the boundary of the parameter space. We also define a second doubly robust AR-type

statistic which uses a one-step estimator of the nuisance parameters based on the initial

n1/2-consistent estimate.4

The next statistic is a Neyman’s C(α)-type statistic5 implemented with a n1/2-

consistent auxiliary estimator of the nuisance parameters. It is comparable to the LM

statistic of Kleibergen (2005) but employs a different Jacobian estimator constructed

as follows. The Jacobian with respect to the parameters of interest and the sample

moment functions are first orthogonalized against the nuisance parameters scores. This

removes the effect of the estimation error asymptotically. The residual Jacobian is then

orthogonalized against the residual sample moment functions, making the resulting

Jacobian estimator asymptotically independent of the orthogonalized sample moment

functions.

4 The asymptotic properties of this second version of the AR statistic are equivalent to the first.

However, it has a notable limitation in that the one-step estimator requires a non-restricted

parameter space. Of course, restrictions on the parameter space are often the actual cause of the

boundary parameter problem. The variance parameter of the BLP is a good example, since it is

restricted to non-negative values.
5 The C(α) statistic (non-identification-robust) is proposed by Neyman (1959). Dufour and Tu-

vaandorj (2018) develop identification-robust C(α)-type statistics in likelihood and minimum

distance models that can be reparameterized by identifiable parameters, and establish their boot-

strap validity. For further references on the C(α) test and for the asymptotic distribution of a

general C(α) statistic in the strongly identified GMM and estimating functions framework, see

Dufour, Trognon, and Tuvaandorj (2016).
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In a related paper, Chaudhuri and Zivot (2011) propose a projection-based C(α)-

type test in GMM with weakly identified nuisance parameters. The difference between

their statistic and the one we propose are as follows. The procedure of Chaudhuri and

Zivot (2011) employs Kleibergen (2005)’s Jacobian estimator. Their statistic is com-

putationally expensive because it is projection-based, i.e., the auxiliary estimate of the

nuisance parameters is determined by minimizing the test statistic over a confidence set

obtained in the first stage. It is also conservative because of the use of the Bonferroni

correction. However, it is sufficiently general to accommodate weakly identified nui-

sance parameters. In contrast, since our statistic assumes strongly identified nuisance

parameters and uses the plug-in estimate, it is asymptotically chi-square distributed

and is not conservative.

Furthermore, we do not need to specify the source from which the estimate is ob-

tained for the general GMM result. As long as the auxiliary estimate can be computed

easily, our statistic should be more straightforward to implement. Chaudhuri and Zivot

(2011) present distributional results when the parameters are fixed as opposed to being

estimated, which is the case considered in this paper. A final difference is that our C(α)

statistic is based on a general GMM objective in contrast to the efficient GMM used by

Chaudhuri and Zivot (2011). Andrews (2017) recently proposed a C(α)-type procedure

that has correct asymptotic size building on Chaudhuri and Zivot (2011). The afore-

mentioned differences (except the conservativeness) between our test and Chaudhuri

and Zivot (2011) apply there as well.

The last statistic is a boundary-robust CLR-type statistic which extends the identification-

robust statistic of Andrews and Guggenberger (2015a). It is a function of the doubly

robust AR and C(α) statistics and a rank statistic, and, like the others, it is imple-

mented with a n1/2-consistent auxiliary estimator.

We apply our statistics to the differentiated products demand model of Berry, Levin-

sohn, and Pakes (1995) (BLP). This model accounts for unobserved taste heterogeneity

in a flexible way and only requires data on market shares, prices and product charac-

teristics. The model and its variants have been used in numerous and various economic

applications, including predicting the demand for a new product, evaluating its welfare

effect, measuring the impact of mergers and exclusive dealing on prices, and measuring
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the impact of advertising and brand switching costs.6

There is also a substantial literature investigating the properties of estimators and

tests in the BLP model. Berry, Linton, and Pakes (2004) derive the consistency and

asymptotic normality of the GMM estimators when the number of products is large.

Freyberger (2015) studies the properties of the GMM estimators when the number of

markets is large. Reynaert and Verboven (2014) study the behavior of the optimal

instruments in the BLP model and find that the efficiency gain from using them can

be substantial.

Despite the model’s popularity, inference in the BLP may be complicated by weak

instruments and boundary parameters. To identify the impact of prices on product

demand, commonly used instruments include cost shifters related to production in-

puts7, and linear transformations of products characteristics which may affect a firm’s

market power, referred to as BLP instruments. Both types of instruments may be

marginally relevant, causing weak identification. Often, variations in input prices are

small and affect firms in similar ways, providing limited explanatory power for price

differences between individual firms or individual products. As for BLP instruments,

Armstrong (2016a) points out how instruments that depend on imperfect competition

can be weak in large markets, where firms’ market power tends to be small. The weak

identification sequence of Armstrong (2016a) does not directly correspond to the drift-

ing Jacobian assumption used in the literature. However, we demonstrate that it does

upon reparameterization. Under the reparameterized model, we show the asymptotic

pivotality of the doubly robust statistics by verifying the invariance properties of the

test statistics.

Further complication arises from the need to estimate the heterogeneity of con-

sumer tastes for characteristics. If tastes are in fact relatively homogeneous for some

characteristics, their distribution can be clustered around a single parameter value.

6 Knittel and Metaxoglou (2014) list 22 articles in leading journals using the main components of

the BLP methodology. Recent examples include Dubois, Griffith, and O’Connell (2018), Miller

and Weinberg (2017), Shcherbakov (2016), Nurski and Verboven (2016) and Eizenberg (2014).
7 Common instruments include the cost of materials, components and transportation, or product

prices in other regions, implying common cost shocks.
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As a result, the variance parameter capturing this heterogeneity can be close to zero

in empirical applications, causing a boundary parameter problem. Ketz (2018) shows

how this distorts the size of standard t-ratio inference. He addresses the issue by devel-

oping a pivotal likelihood ratio-type test. In practice, since both weak instruments and

the boundary parameter problem can be real features of the data in the BLP model,

inference must be robust to both sources of irregularity.

The rest of the paper is organized as follows. The doubly robust statistics in a gen-

eral GMM setup are described in detail in Section 2. The specific inference problems

associated with the BLP are discussed in Section 3. Section 4 shows simulations ex-

ploring the finite sample properties of our test statistics applied to the BLP in a variety

of parameter configurations. In particular, we consider cost shifters and simulations

with BLP instruments in imperfect competition in the spirit of Armstrong (2016a).

Finally, Section 5 concludes.

Notations

For variables with double indices e.g., yjt with j = 1, . . . , J and t = 1, . . . , T , define

y·t = [y1t, . . . , yJt]
′ and yj· = [yj1, . . . , yjT ]′. When it is clear from the context, we

simplify the notations and write yt = [y1t, . . . , yJt]
′ and yj = [yj1, . . . , yjT ]′. For a

random or nonrandom function f that depends on a vector θ = (θ′1, θ
′
2)′, we write

f(θ) = f(θ1, θ2). The minimum eigenvalue of a matrix is denoted λmin(.). 0r×c denotes

r × c matrix of zeros, and Ik denotes the unit matrix of dimension k. For a n × k

matrix X, let PX = X(X ′X)−1X ′ and MX = In −X(X ′X)−1X ′. ‖X‖ = (tr(X ′X))1/2

denotes the matrix norm.
p−→ and

d−→ stand for the convergence in probability and in

distribution, respectively. LLN abbreviates “Law of Large Numbers”, CLT abbreviates

“Central Limit Theorem”, and CMT stands for “Continuous Mapping Theorem”.

2 Doubly robust inference

In Subsection 2.1, we describe the testing problem and define the robust Jacobian

estimator. In Subsection 2.2, we develop doubly robust test statistics and establish
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their asymptotic properties.

2.1 GMM setup

Let mi(θ) ≡ m(yi; θ) be a L× 1 moment function of a vector of observations yi and a

d× 1 parameter vector θ ∈ Rd satisfying the restriction:

E[mi(θ0)] = 0, i = 1, . . . , n,

where θ0 denotes the true parameter value. The sample moment function and the

GMM objective function are

m̂n(θ) = n−1

n∑
i=1

mi(θ), Qn(θ) = m̂n(θ)′Wnm̂n(θ),

respectively, where Wn is a L × L weighting matrix. The efficient weight matrix is

Wn = Σ̂−1
n (θ), where Σ̂n(θ) is a consistent estimate of the asymptotic variance Σ(θ) of

n1/2m̂n(θ). Under standard regularity conditions,

n1/2m̂n(θ0)
d−→ N [0,Σ],

with Σ ≡ Σ(θ0). To describe the testing problem, partition θ = (θ′1, θ
′
2)′, where θ1 ∈

Θ1 ⊆ Rd1 and θ2 ∈ Θ2 ⊆ Rd2 with d = d1 + d2. The corresponding partition of the

true parameter value is θ0 = [θ′01, θ
′
02]′. Denote the Jacobian of the sample moment

functions as

Ĝn(θ) ≡ ∂m̂n(θ)

∂θ′
= n−1

n∑
i=1

Gi(θ) = [Ĝ1n(θ), . . . , Ĝdn(θ)], (2.1)

where Gi(θ) = [Gi1(θ), . . . , Gid(θ)]. It can be partitioned as Ĝn(θ) =
[
Ĝn,1(θ), Ĝn,2(θ)

]
,

conformably to θ = (θ′1, θ
′
2)′.

We develop tests for hypotheses on the subvector θ1 (typically the coefficients on
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endogenous variables), treating θ2 as nuisance parameters:

H0 : θ1 = θ01, θ2 ∈ Θ2.

We allow two nonstandard features for this testing problem: (i) The rank of plim
n→∞

Ĝn(θ0)

may be less than d, or close to being so, because θ1 may not be identified or may be

weakly identified.8 In contrast, the nuisance parameter θ2 is assumed to be strongly

identified, with rank

[
plim
n→∞

Ĝn,2(θ0)

]
= d2.9 (ii) The nuisance parameter vector θ2 (or

some of its components) may be near the boundary of the parameter space Θ2, causing

the boundary parameter problem.

A confidence region for the parameters of interest θ1 can then be built by collecting

the parameter values that are not rejected by the tests of the null hypothesis.

It is well known in the weak identification literature that test statistics based on the

Jacobian in (2.1) are not asymptotically pivotal. As shown by Kleibergen (2005), the

asymptotic independence of the Jacobian estimator and the sample moment function

is the key property allowing the construction of asymptotically pivotal test statistics;

the robust Jacobian estimator of Kleibergen (2005) is defined as the residuals from the

regression of the column vector Ĝjn(θ) on m̂n(θ): for j = 1, . . . , d,

Ĝ⊥jn(θ) = Ĝjn(θ)− Ĉjn(θ)Σ̂n(θ)−1m̂n(θ). (2.2)

Our test statistics are based on the robust Jacobian estimator defined by

Ĥn(θ) = [Ĥ1n(θ), . . . , Ĥdn(θ)], (2.3)

8 Suppose that Ĝn(θ0)
p−→ G(θ0), where G(θ0) is a L× d matrix. It is well known that the model

parameters θ0 are not identified when G(θ0) is not full rank, i.e., rank(G(θ0)) < d (see Newey

and McFadden (1994) for example). We use a drifting Jacobian assumption to model the weak

identification, see Assumption A.4.
9 If some elements of θ2 were also weakly identified, it could not be estimated consistently and

statistics based on the plug-in estimator would not be pivotal.
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where

Ĥjn(θ) = Ĝjn(θ)− Ĉjn(θ)Σ̂n(θ)−1m̂n(θ) +
(
Ĉjn(θ)Σ̂n(θ)−1Ĝn,2(θ)− D̂jn(θ)

)
(Ĝn,2(θ)′Σ̂n(θ)−1Ĝn,2(θ))−1Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ), (2.4)

Ĉjn(θ) = n−1

n∑
i=1

[
Gij(θ)− Ĝjn(θ)

]
mi(θ)

′, (2.5)

D̂jn(θ) =
∂Ĝjn(θ)

∂θ′2
, j = 1, . . . , d. (2.6)

In contrast to (2.2), the Jacobian estimator in (2.3)-(2.6) is obtained by first orthogo-

nalizing the Jacobian Ĝjn(θ) and the sample moment function m̂n(θ) against the score-

type function Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ) with respect to the nuisance parameter vector θ2

which yields

m̄n(θ) = m̂n(θ)− Ĝn,2(θ)(Ĝn,2(θ)′Σ̂n(θ)−1Ĝn,2(θ))−1Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ), (2.7)

Ḡjn(θ) = Ĝjn(θ)− D̂jn(θ)(Ĝn,2(θ)′Σ̂n(θ)−1Ĝn,2(θ))−1Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ), (2.8)

and then orthogonalizing Ḡjn(θ) against m̄n(θ). Thus, we may rewrite

Ĥjn(θ) = Ḡjn(θ)− Ĉjn(θ)Σ̂n(θ)−1m̄n(θ). (2.9)

The intuition behind (2.7)-(2.8) is simple. Consider the efficient CU-GMM objective

function Qn(θ) = m̂n(θ)′Σ̂n(θ)−1m̂n(θ). In the absence of parameters at the bound-

ary, the first order conditions of the constrained minimization of Qn(θ) are met and

Ĝn,2(θ̃)′Σ̂n(θ̃)−1m̂n(θ) = 0. However, a parameter at the boundary imposes an addi-

tional constraint on θ2 which distorts the distributions of the estimators and tests. The

test statistics based on the transformations (2.7)-(2.8) are immune to such distortions.

Obviously, if no parameters are at the boundary, they are asymptotically equivalent to

their non-boundary-robust counterparts.

As before, we partition Ĥn(θ) =
[
Ĥn,1(θ), Ĥn,2(θ)

]
conformably to θ = (θ′1, θ

′
2)′.

For an estimator θ̃∗ = (θ′01, θ̃
∗′
2 )′ where θ̃∗2 is any n1/2-consistent estimator of θ02, we
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analogously set

H̃n = Ĥn(θ̃∗) = [H̃n,1, H̃n,2] and Σ̃n = Σ̂n(θ̃∗). (2.10)

Since the parameter θ2 is strongly identified by assumption, we use the non-robust

Jacobian Ĝn,2(θ̃∗) instead of the robust Jacobian H̃n,2, and set H̃n,2 = Ĝn,2(θ̃∗) unless

any confusion arises. We do not make any assumption regarding the location of the true

parameters in the parameter space; we only assume that there exists a n1/2-consistent

estimate of the the subvector θ2 under the null hypothesis H0 : θ1 = θ01. The vector

of strongly identified nuisance parameters is n1/2-consistently estimable under mild

regularity conditions (see for example Stock and Wright (2000)).

2.2 Doubly robust statistics

Our doubly robust statistics generalize the identification-robust statistics proposed

in the framework of the efficient GMM and/or the continuous updating generalized

method of moments (CU-GMM) of Hansen, Heaton, and Yaron (1996). We start by

describing them to facilitate comparison with our statistics. Let θ̃ = (θ′01, θ̃
′
2)′ where

θ̃2 is the restricted GMM estimator for the strongly identified nuisance parameter θ2

under the constraint θ1 = θ01:

θ̃2 = arg min
θ2∈Θ2,θ1=θ01

m̂n(θ)′Σ̂n(θ)−1m̂n(θ).

The GMM-AR statistic (also called the S statistic) of Stock and Wright (2000) and the

GMM-LM statistic of Kleibergen (2005) for testing the hypothesis H0(θ01) : θ1 = θ01

are given by

AR(θ01) = n m̂n(θ̃)′Σ̂n(θ̃)−1m̂n(θ̃), (2.11)

LM(θ01) = n m̂n(θ̃)′Σ̃−1
n G̃⊥n,1

(
G̃⊥′n,1Σ̃−1/2

n M
Σ̃
−1/2
n G̃⊥n,2

Σ̃−1/2
n G̃⊥n,1

)−1
G̃⊥′n,1Σ̃−1

n m̂n(θ̃). (2.12)

These GMM-AR and GMM-LM statistics are robust to identification failure of θ01

having chi-square asymptotic distributions. However, they are not pivotal when the
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nuisance parameter θ02 is on the boundary of the parameter space Θ2 because the

restricted GMM estimator θ̃2 has non normal asymptotic distribution that depends on

unknown parameters.

We shall now describe our doubly robust statistics for the hypothesis H0 : θ = θ01.

The doubly robust C(α) statistic is defined by

Cα(θ01) = n m̂n(θ̃∗)′B̃′n
[
B̃nΣ̃nB̃

′
n

]−1
B̃nm̂n(θ̃∗), (2.13)

where B̃n = H̃ ′n,1WnΣ̃nWn−H̃ ′n,1WnΣ̃nWnH̃n,2(H̃ ′n,2WnΣ̃nWnH̃n,2)−1H̃ ′n,2WnΣ̃nWn. For

the efficient GMM, Wn = Σ̃−1
n and the C(α) statistic above simplifies to

Cα(θ01) = n m̂n(θ̃∗)′Σ̃−1/2
n P

Σ̃
−1/2
n H̃n

Σ̃−1/2
n m̂n(θ̃∗)− n m̂n(θ̃∗)′Σ̃−1/2

n P
Σ̃
−1/2
n H̃n,2

Σ̃−1/2
n m̂n(θ̃∗),

= n m̂n(θ̃∗)′Σ̃−1/2
n P

M
Σ̃
−1/2
n H̃n,2

Σ̃
−1/2
n H̃n,1

Σ̃−1/2
n m̂n(θ̃∗). (2.14)

When θ̃∗ = θ̃, that is, the auxiliary estimator is the restricted GMM estimator,

G̃′n,2Σ̃−1
n m̂n(θ̃) = 0 which holds if there is no boundary problem, the statistic (2.14)

collapses to the subvector LM statistic of Kleibergen (2005) in (2.12). The statistic

(2.14) differs from the projection-based C(α)-type test procedure proposed by Chaud-

huri and Zivot (2011) because we employ the Jacobian estimator (2.3) that is different

from the Jacobian estimator of Kleibergen (2005) used by these authors. See Section 1

for further differences between our statistic and the Chaudhuri and Zivot (2011) pro-

cedure. The following proposition establishes the asymptotic distribution of the C(α)

statistic in (2.13) under the assumptions stated in Appendix A.

Proposition 2.1. Let Assumptions A.1-A.7 hold. For the C(α) statistic defined in

(2.13), we have, under H0 : θ1 = θ01, that

Cα(θ01)
d−→ χ2

d1
.

The C(α) statistic is doubly robust under the sole requirement that the nuisance param-

eter estimate be n1/2-consistent, a useful feature given the asymptotic non-normality of

the restricted GMM estimator. In addition, it allows for a general weighting matrix Wn
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as opposed to the existing identification-robust statistics based on the efficient GMM

objective function.10

Next we construct two different doubly robust AR-type statistics. The first is de-

fined as a C(α)-type AR statistic based on an orthogonalized sample moment function

(2.7):

ARα(θ01) = n m̄n(θ̃∗)′Σ̂n(θ̃∗)−1m̄n(θ̃∗). (2.15)

The sample moment function in (2.7) is the residual vector from the projection of the

sample moment function m̂n(θ) onto the space spanned by the nuisance parameter

score vector Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ) evaluated at the restricted GMM estimator θ̃. In

fact, the way the effect of the estimated nuisance parameters is removed from the

moment in (2.7) underlies the mechanics behind all C(α)-type statistics, hence the

AR-type statistic in (2.15) may as well be called the C(α)-type AR statistic.

The second is an AR-type statistic that uses the one-step estimator. Given an initial

n1/2-consistent estimator θ̃2 (possibly nonnormal asymptotically), a one-step Newton-

Raphson iteration based on the GMM criterion function produces an asymptotically

normal estimator (see Subsection 3.4 of Newey and McFadden (1994)). Ketz (2018)

effectively uses the one-step estimator in boundary parameter testing problem with the

goal of constructing a boundary-robust LR-type statistic (not necessarily identification-

robust).

Let θ̃ = (θ′01, θ̃
′
2)′ where θ̃2 is a n1/2-consistent estimator of θ02 under the null

hypothesis H0 : θ1 = θ01 e.g. the restricted GMM estimator of θ2. Given θ̃, the

one-step estimator of θ02 may be defined as

θ̃∗2 = θ̃2 − (Ĝn,2(θ̃)′Σ̂n(θ̃)−1Ĝn,2(θ̃))−1Ĝn,2(θ̃)′Σ̂n(θ̃)−1m̂n(θ̃). (2.16)

10 Moran (1973) and Chant (1974) examined the properties of the C(α) test the tested parameters

are on the boundary of the maintained hypothesis. For results about the asymptotic distribution

of the GMM C(α)-type statistic in a weakly identified model when all parameters are fixed at

their true values, see Chaudhuri and Zivot (2011). For general results in strongly identified

models and further references about the C(α) statistic, see Dufour, Trognon, and Tuvaandorj

(2016).
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It is not difficult to see that the one-step estimator above is asymptotically normally

distributed. In the following lemma, we present a mild extension of the asymptotic

normality of the one-step estimator for a general nonlinear parameter transformation

ψ(θ).

Lemma 2.2. Let Assumptions A.1-A.5 hold. Let ψ(θ) be a q × 1 (q ≤ d2) nonlinear

transformation of the parameter that is continuously differentiable in a neighborhood

of θ0 with

P

[
rank

(
∂ψ(θ)

∂θ′2

)
= q

]
= 1.

For θ̃ = (θ′01, θ̃
′
2)′ such that n1/2(θ̃2 − θ02) = Op(1), the one-step estimator defined as

ψ̃∗ = ψ(θ̃)− ∂ψ(θ̃)

∂θ′2
(Ĝn,2(θ̃)′Σ̂n(θ̃)−1Ĝn,2(θ̃))−1Ĝn,2(θ̃)′Σ̂n(θ̃)−1m̂n(θ̃) (2.17)

satisfies

n1/2(ψ̃∗ − ψ(θ0))
d−→ N

[
0,
∂ψ(θ0)

∂θ′2
(H2(θ0)′Σ−1H2(θ0))−1∂ψ(θ0)′

∂θ2

]
,

where Ĝn,2(θ0)
p−→ H2(θ0).11

Letting θ̃∗ = (θ′01, θ̃
∗′
2 )′, where θ̃∗2 is as defined above in (2.16), define the doubly

robust AR-type statistic as follows:

AR0
α(θ01) = n m̂n(θ̃∗)′Σ̂n(θ̃∗)−1m̂n(θ̃∗). (2.18)

An advantage of the ARα over the AR0
α statistic is that it does not require the estimator

to be defined in the neighborhood of the true parameter. The AR0
α is applicable when

an inequality constraint imposed on the nuisance parameter may be relaxed if the one-

step estimator θ̃∗2 falls outside the constraint. This is not the case for the BLP model

since it cannot be evaluated for negative values of the variance. Therefore, the AR0
α

and other statistics based on it cannot be applied to the BLP model.

An alternative interpretation can be given to the orthogonalized sample moment

11 We use the notation H2(θ) to make it consistent with the robust Jacobian estimator Ĥn,1(θ).
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function (or the effective score-type sample moment function) in (2.7). Replacing ψ(θ)

by m̂n(θ) in the formula (2.17), we can see that the orthogonalized sample moment

function (2.7) can be viewed as the one-step estimator of the sample moment function

given the initial n1/2-consistent estimate θ̃. The following proposition establishes the

asymptotic distribution of the doubly robust AR statistics.

Proposition 2.3. Let Assumptions A.1-A.4, A.6 and A.7 hold. Then, under H0 :

θ1 = θ01, the AR-type statistics defined in (2.15) and (2.18) satisfy

ARα(θ01), AR0
α(θ01)

d−→ χ2
L−d2

.

By standard argument, the ARα(θ01) and AR0
α(θ01) statistics can be decomposed

as the sums of the Cα(θ01) statistic in (2.14) and statistics that test the overidentifying

restriction H0 : E[mi(θ0)] = 0 for some θ0 ∈ Θ:

ARα(θ01) =Cα(θ01) + n m̂n(θ̃∗)′Σ̃−1/2
n M

Σ̃
−1/2
n H̃n,2

M
M

Σ̃
−1/2
n H̃n,2

Σ̃
−1/2
n H̃n,1

M
Σ̃
−1/2
n H̃n,2

Σ̃−1/2
n m̂n(θ̃∗),

AR0
α(θ01) =Cα(θ01) + n m̂n(θ̃∗)′Σ̃−1/2

n M
M

Σ̃
−1/2
n H̃n,2

Σ̃
−1/2
n H̃n,1

Σ̃−1/2
n m̂n(θ̃∗).

The last statistic that we consider is a conditional LR-type statistic for H0 : θ1 = θ01

which builds on Andrews and Guggenberger (2015a) who in turn develop identification-

robust statistic for the full parameter vector θ. Given the one-step estimator θ̃∗ =

(θ′01, θ̃
∗′
2 )′, we define the doubly robust subvector conditional LR-statistic as follows:

CLRα(θ01) = S̃ ′nMΣ̃
−1/2
n H̃n,2

S̃n − λmin

[
(S̃n, T̃n)′M

Σ̃
−1/2
n H̃n,2

(S̃n, T̃n)
]
, (2.19)

where

S̃n = Σ̃−1/2
n n1/2m̂n(θ̃∗),

T̃n = Σ̃−1/2
n n1/2Ĥn,1(θ̃∗)Ûn(θ̃∗)1/2,

Ûn(θ) = [θ1, Id1 ](Ω̂ε
n(θ))−1[θ1, Id1 ]′. (2.20)

Ω̂ε
n(θ) is an eigenvalue adjusted version of a (d1 + 1) × (d1 + 1) matrix Ω̂n(θ) with
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(i, j), i, j = 1, . . . , d1 + 1, element given by

Ω̂ij,n(θ) = tr(K̂ij,n(θ)′Σ̂n(θ)−1)/L,

where the L× L matrix K̂ij,n(θ) is the (i, j) submatrix of K̂n(θ) defined as

K̂n(θ) = (B(θ)′ ⊗ IL)V̂n(θ)(B(θ)⊗ IL),

V̂n(θ) denotes a consistent estimator of the asymptotic variance V (θ0) of

n1/2

[
m̂n(θ0)′, vec

(
Ĝn,1(θ0)− E[Ĝn,1(θ0)]

)′]′
,

and

B(θ) =

 1 01×d1

−θ1 −Id1

 .
For details on the eigenvalue adjustment, see Appendix D.

The doubly robust CLR test rejects at significance level ζ ∈ (0, 1) when

CLRα(θ01) ≥ q1−ζ(T̃n),

where q1−ζ(T̃n) is the 1− ζ quantile of the distribution of the random variable

S ′∞MΣ̃
−1/2
n H̃n,2

S∞ − λmin

[
(S∞, T̃n)′M

Σ̃
−1/2
n H̃n,2

(S∞, T̃n)
]
.

where S∞ ∼ N [0, IL] is asymptotically independent of T̃n. The null asymptotic distri-

bution of the subvector CLR statistic is given in the following proposition.

Proposition 2.4. Let Assumptions A.1-A.4, A.6 and A.7 hold. Then, under H0 :

θ1 = θ01, the CLR statistic defined in (2.19) satisfies

CLRα(θ01)
d−→ S ′∞MΣ−1/2H2

S∞ − λmin

[
(S∞, T∞)′MΣ−1/2H2

(S∞, T∞)
]
, (2.21)
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where S∞ ∼ N [0, IL] is distributed independently of T∞ = Σ−1/2H∞,1(θ0)U∞(θ0),

U∞(θ0) = [θ1, Id1 ](Ωε(θ0))−1[θ1, Id1 ]′,

Ωε(θ0) is an eigenvalue adjusted version of a (d1 + 1) × (d1 + 1) matrix Ω(θ0) with

(i, j), i, j = 1, . . . , d1 + 1, element given by

Ωij(θ0) = tr(Kij(θ0)′Σ−1)/L,

where the L× L matrix Kij(θ0) is the (i, j) submatrix of K(θ0) defined by

K(θ0) = (B(θ0)′ ⊗ IL)V (θ0)(B(θ0)⊗ IL),

and

H∞,1(θ0) = [H1∞(θ0), . . . , Hd1∞(θ0)] ,

Hi∞(θ0) = Ḡi∞(θ0)− Ci(θ0)Σ−1m̄∞(θ0), i = 1, . . . , d1,

m̄∞(θ0) =
(
IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1

)
m∞(θ0),

Ḡi∞(θ0) = Gi∞(θ0)−Di(θ0)(G2(θ0)′Σ(θ0)−1G2(θ0))−1H2(θ0)′Σ−1m∞(θ0).

When d1 = 1, the doubly robust CLR statistic is simplified as

CLRα(θ01) =
1

2

(
ARα(θ01)−Rα(θ01) +

√
(ARα(θ01)−Rα(θ01))2 + 4Cα(θ01)Rα(θ01)

)
,

(2.22)

where Cα(θ01) and ARα(θ01) statistics are defined in (2.14) and (2.15), respectively,

and

Rα(θ01) = T̃ ′nMΣ̃
−1/2
n H̃n,2

T̃n. (2.23)

The statistic (2.22) is a variant of the CLR-type statistic proposed in Kleibergen (2005)

made robust to the boundary problem that can be implemented with n1/2-consistent

estimators of the nuisance parameters. The ARα(θ01) statistic may be replaced by

the AR0
α(θ01) statistic in (2.18), and the Cα(θ01) and Rα(θ01) statistics with the initial
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n1/2-consistent estimator could be substituted by the Cα(θ01) (or the LM statistic in

(2.12)) and Rα(θ01) statistics evaluated at the one-step estimator θ̃∗ = (θ′01, θ̃
∗′
2 )′ with

θ̃∗2 defined in (2.16).

The rank statistic (2.23) is a weighted version of the robust Jacobian, of which

alternative forms can be considered. More details are provided in Appendix C, together

with two alternative rank statistics used to construct alternative CLR-type statistics.

3 Inference in the BLP model

In this section, we describe the BLP model and the inferential challenges pertaining

to it. We discuss the implementation of the proposed statistics in the BLP model

including the appropriate form of the rank statistic used in the CLR-type test, and

show their asymptotic validity under large and many market asymptotics.

3.1 The BLP model

In each market t ∈ {1, . . . , T} (which may represent periods), a consumer i chooses

which product j to purchase. In total, Jt potential products are available, and an

outside good, indexed by j = 0, which stands for a no purchase option. To simplify the

exposition of this section, we assume that Jt = J for all t; the argument would carry

through with little modification for markets of various sizes. The utility of consumer i

from choosing the alternative j in market t is

uijt = x′jtβi − pjtα + ξjt + εijt,

where xjt is a k × 1 vector of observed product characteristics, pjt is the price of the

jth product in period t and is endogenous, ξjt is a product characteristic unobserved

by the researcher but observed by the consumer, and εijt is the remaining unobserved

component of the demand. The utility from the outside good is denoted ui0t = εi0t.

The consumer-specific k × 1 vector of random coefficients βi = (βi1, . . . , βik)
′ captures
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the variation of tastes between consumers.12 It can be decomposed as the sum of its

mean and deviation from its mean:

βi = b+ Σ
1/2
β vi, vi ∼ Fv,

where b = (b1, . . . , bk)
′, Σβ = diag{σ2

1, . . . , σ
2
k}, Σ

1/2
β is the square root of the covariance

matrix Σβ such that Σβ = Σ
1/2
β Σ

1/2
β , and Fv is the distribution function of the random

vector vi, and is known to the econometrician.

Letting δjt ≡ x′jtb − pjtα + ξjt denote the mean utility common to all consumers,

we may write

uijt = δjt + x′jtΣ
1/2
β vi + εijt.

Assuming that εijt are i.i.d. Type-I extreme value distributed across i, j, and t, the

conditional choice probability of the consumer i buying the jth product is given by

πij ≡
exp(δjt + x′jtΣ

1/2
β vi)

1 +
∑J

j=1 exp(δjt + x′jtΣ
1/2
β vi)

.

The share of the product j in the market t is obtained by integrating the conditional

choice probability πij with respect to the heterogeneity distribution:

Sjt(δt, σ) =

∫
exp(δjt + x′jtΣ

1/2
β v)

1 +
∑J

j=1 exp(δjt + x′jtΣ
1/2
β v)

dFv(v), j = 1, . . . , J, (3.1)

where δt = [δ1t, . . . , δJt]
′ and σ = [σ1, . . . , σk]

′. A common assumption is Fv = Φk,

where Φk is the cumulative distribution function of the multivariate standard normal

distribution N [0k×1, Ik].

Equating the market share implied by the model St(δt, σ) to the observed market

share st yields the market share system:

St(δt, σ) = st,

12 We assume that all characteristics have random coefficients while the price coefficient α is con-

stant.

19



where St(δt, σ) = [S1t(δt, σ), . . . , SJt(δt, σ)]′ and st = [s1t, . . . , sJt]
′. Berry (1994) shows

via a fixed point argument that there exists a unique vector δ(σ, pt, st, xt) ≡ δt where

xt = [x1t, . . . , xJt] (k × J) such that

St(δ(σ, pt, st, xt), σ) = st

for any given st, xt and σ.

The mean utility vector is obtained by inverting the implied market share function

and can be written as

δt = S−1
t (σ, pt, st, xt).

Berry, Levinsohn, and Pakes (1995) compute δt by contraction mapping while Dubé,

Fox, and Su (2012) obtain it indirectly through mathematical programming with equi-

librium constraints (MPEC).

Let σ2 = [σ2
1, . . . , σ

2
k]
′ and collect the model parameters in θ = (α, b′, σ2′)′.13 From

the last equation, the product-specific unobservable demand shock in market t is given

by

ξjt(θ, pt, st, xt) = δjt(σ, pt, st, xt)− x′jtb+ pjtα, j = 1, . . . , J. (3.2)

We focus on testing and building a confidence interval for the unknown scalar coefficient

α on the price variable. The following mean independence assumption provides an

exclusion restriction:

E[ξjt|zt] = 0, (3.3)

where zt is a L×J matrix of instruments, and is used to identify the model parameters.

The instruments zt are variables or transformations thereof that shift the price without

influencing tastes directly. One may, for example, consider the linear specification for

13 We use the parameterization in terms of the variance rather than the dispersion because, as

shown by Ketz (2017), the parameterization in terms of the latter in the BLP model results in a

distorted inference.
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the unobserved marginal cost

MCjt = x′jtγ1 + z′jt,2γ2 + ωjt, (3.4)

where zjt,2 is a l × 1 vector cost shifters (instruments) other than xjt, and ωjt is the

unobserved component of the marginal cost. In vector notation,

MCt = x′tγ1 + z′t,2γ2 + ωt, (3.5)

where MCt = [MC1t, . . . ,MCJt]
′, zt,2 = [z1t,2, . . . , zJt,2], pt = [p1t, . . . , pJt]

′ and ωt =

[ω1t, . . . , ωJt]
′.

In perfectly competitive market, firms set a price equal to the marginal cost:

pjt = MCjt. (3.6)

To gain a better understanding of the inferential problem, consider the linear case (3.4)

which along with (3.2) and (3.6) yield the following system of equations:

δjt(θ, pt, st, xt) = x′jtb− pjtα + ξjt(σ, pt, st, xt),

pjt = x′jtγ1 + z′jt,2γ2 + ωjt.

Let x−j denote the characteristics of the products other than j, and let hj(x−j) be its

transformation. As argued by Armstrong (2016a), for the model above, the characteris-

tics of the rival product, hj(x−j), have no identifying power because they shift the price

only through the markup which is zero in perfect competition. He considers the case

where σ is known in which case, after δjt(θ, pt, st, xt) is computed, the model is similar

to the classical linear simultaneous equations (or the linear IV model). Even if cost

shifters zjt,2 uncorrelated with the demand shock ξjt are available, their identification

strength may still be questionable.

Under imperfect competition, BLP instruments are made possible by exploiting

firms’ varying degree of market power which determines the markup they can extract

from customers. Each period, there are F firms engaging in Bertrand competition.
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Each firm f ∈ F produces a subset of products denoted J (f) ⊆ {1, . . . , J} and sets

the prices so as to maximize the (per consumer) profit function

∑
k∈J (f)

(pkt −MCkt)skt.

This yields the following first-order condition for Bertrand-Nash equilibrium at the

interior solution:

sjt +
∑

k∈J (f)

(pkt −MCkt)
∂skt
∂pjt

= 0 (3.7)

for any j ∈ J (f). Define a J × J matrix ∆t with a (j, k) element given by

∆t,kj =

−
∂skt
∂pjt

, if j, k ∈ J (f),

0, otherwise.

Then (3.7) in vectorized notation is

st −∆t(pt −MCt) = 0.

Solving for ct and using (3.5) gives

pt −∆−1
t st = x′tγ1 + z′t,2γ2 + ωt. (3.8)

Unlike the perfect competition case, the markup ∆−1
t st is subtracted from the equilib-

rium price in the equation (3.8). Since the characteristics of the competing products

x−j influence price through the markup term ∆−1
t st and they are unrelated to taste

shocks, they can be used as instruments. However, Armstrong (2016a) shows (assuming

known σ) that in large market environment with J tending to infinity, the competing

product characteristics instruments lose their identifying power when the markup con-

verges to a constant quickly relative to the sampling error. Cost instruments may be

included in zjt,2 but, like for the perfect competition case, their explanatory power is

not guaranteed.

As previously discussed, weak instruments are only one type of irregularity present
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in the BLP. If σ2 or its components are on the boundary, i.e., they are close to zero,

the restricted estimators of σ2 will depend on unknown parameters which are not

consistently estimable and the commonly used identification-robust statistics will not

be pivotal.

Since both weak instruments and boundary parameters may be real features of the

data, they cannot be ruled out a priori. Inference about α (as well as the other pa-

rameters) should thus be based on identification-robust and boundary-robust statistics

that have asymptotically correct rejection rates, while retaining good power when these

problems are absent from the data. The doubly robust GMM statistics introduced in

the previous section have these properties.

We first derive the key quantities that are used to build the test statistics. We

abstract from the simulation error in the evaluation of the integral (3.1), and the

sampling error in the estimation of the market share sjt.

Stack the observations into

xt = [x1t, . . . , xJt] (k × J), zt,2 = [z1t,2, . . . , zJt,2] (l × J),

X = [x1, . . . , xT ]′ (TJ × k), zt = [x′t, z
′
t,2]′ ((k + l)× J),

ξ = [ξ′1, . . . , ξ
′
T ]′ (TJ × 1), Z2 = [z1,2, . . . , zT,2]′ (TJ × l),

ω = [ω′1, . . . , ω
′
T ]′ (TJ × 1), Z = [X,Z2] = [z1, . . . , zT ]′ (TJ × (k + l)),

p = [p′1, . . . , p
′
T ]′ (TJ × 1).

The model parameters are θ = (α, b′, σ2′)′ with θ1 = α ∈ R and θ2 = (b′, σ2′)′ ∈
Θ2 ⊂ R2k. Thus, d1 = 1, d2 = 2k, and L = k + l. As in Ketz (2017), we treat the

variance vector σ2, not the standard deviation, as part of the model parameters.

Two main asymptotics have been studied in the literature: many market asymp-

totics when T tends to infinity (Freyberger (2015) and Ketz (2017, 2018)) and large

market asymptotics when J tends to infinity (Berry, Linton, and Pakes (2004), as well

as Armstrong (2016a) who also considers the intermediate case of many large markets).

If the number of markets is large relative to the number of products, the test statistics

are derived by normalizing Z ′ξ by the number of markets n = T ; the sample moment
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function is given by

m̂T (θ) = T−1Z ′ξ = T−1

T∑
t=1

J∑
j=1

zjt(δjt(σ) + pjtα− x′jtb), (3.9)

where δt(σ) ≡ δt(σ, pt, st, xt). Our results also carry over to the large market case (i.e.,

n = J) in which the moment restriction takes the following form:

m̂J(θ) = J−1Z ′ξ = J−1

J∑
j=1

T∑
t=1

zjt(δjt(σ) + pjtα− x′jtb). (3.10)

The index i used to denote the observations in Section 2 corresponds either the product

i = j or the market i = t. In what follows, we consider two cases in which the

asymptotics are taken with respect to either the number of products n = J or the

number of markets n = T .

3.2 Robust statistics under large market asymptotics

In this subsection, we show the asymptotic pivotality of our doubly robust statistics

under weak identification sequences that arise endogenously from the market equilib-

rium. Armstrong (2016a) shows that the price coefficient α in the BLP model is weakly

identified when the dependence of equilibrium markups on the characteristics of rival

products is small relative to the number of products J . He also identifies conditions

under which the BLP estimate remains consistent. We shall maintain assumptions

similar to those in Armstrong (2016a).

Let hj(x−j) be a l × 1 function of the characteristics of the products other than j

referred to as the BLP instruments. For simplicity, we consider the single market case

with T = 1, and write ξjt = δjt(σt, pt, st, xt)− x′jtb+ pjtα as

ξj = δj(σ, p, s, x)− x′jb+ pjα

suppressing the subscript t.14 We also write ξj(θ, p, s, x) = ξj(α, θ2). Let V [ξj] = Vξξ

14 The results would be similar for a fixed number of large markets. The intermediate case of many
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and C[MCj, ξj] = VMC ξ denote the variance of ξj, and the covariance between MCj

and ξj respectively. The asymptotic distributions of the robust statistics are derived

under the following conditions.

Assumption 3.1 (Parameter space). θ2 = (b′, σ2′)′ ∈ Θ2 ⊂ [−bl, bu]k × [0, σ2
u]
k for

some bl, bu, σ
2
u > 0.

Assumption 3.2 (Conditions for large market asymptotics). (i) Let {[x′j,MCj, ξj]
′}

be i.i.d. with finite fourth moment where xj contains a constant.

(ii) The vector of instruments is denoted as zj = [x′j, hj(x−j)
′]′, the matrix Z =

[z1, . . . , zJ ]′ has full column rank with probability one: P [rank(Z) = k+l] = 1 with

l ≥ k, and as J → ∞, the matrix J−1Z ′ ∂δ(σ)
∂σ2′ converges in probability uniformly

over σ to a nonrandom matrix of full rank and continuous at σ0. Moreover,

J−1Z ′Z − E[J−1Z ′Z]
p−→ 0 and J−1

∑J
j=1 ‖zj‖4 − E[J−1

∑J
j=1 ‖zj‖4]

p−→ 0 as

J →∞, where the stated expectations exist.

(iii) It holds that J1/2max1≤j≤J |pj −MCj − η|
p−→ 0 for some constant η as J →∞.

In addition, for all j = 1, . . . , J E
[
(J1/2|pj −MCj − η|)2+ε

]
< Ū <∞ for some

Ū , ε > 0.

(iv) It holds that

J−1/2

J∑
j=1

vec
(
zj
(
x′j,MCj, ξj

)
− E

[
zj
(
x′j,MCj, ξj

)]) d−→ N [0, V ],

as J →∞, where the asymptotic covariance matrix

V = lim
J→∞

E

[
J−1

J∑
j=1

vec
(
zj
(
x′j,MCj, ξj

))
vec
(
zj
(
x′j,MCj, ξj

))′]

− E

[
J−1

J∑
j=1

zj
(
x′j,MCj, ξj

)]
E

[
J−1

J∑
j=1

zj
(
x′j,MCj, ξj

)]′

is invertible.

large markets, also discussed by Armstrong, is beyond the scope of this paper.
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(v) It holds that

J−1zjMCjξjz
′
j−E[J−1zjMCjξjz

′
j]

p−→ 0, J−1
∑J

j=1 zjz
′
jMC2

j−E[J−1
∑J

j=1 zjz
′
jMC2

j ]
p−→

0, and J−1
∑J

j=1 zjz
′
jMCj − E[J−1

∑J
j=1 zjz

′
jMCj]

p−→ 0.

(vi) The conditional covariance of the marginal cost and the demand shock given zj

does not depend on zj: E[MCjξj|zj] = VMC ξ.

(vii) supθ2∈Θ2
‖J−1Z ′ξ(α0, θ2)−E[J−1Z ′ξ(α0, θ2)]‖ p−→ 0 and supθ2∈Θ2

‖J−1
∑J

j=1 zjz
′
jξ

2
j (α0, θ2)−

E
[
J−1

∑J
j=1 zjz

′
jξ

2
j (α0, θ2)

]
‖ p−→ 0 where limJ→∞E[J−1Z ′ξ(α0, θ2)] is zero uniquely

at θ02 = [b′0, σ
2′
0 ]′ and continuously differentiable with respect to θ2, and

limJ→∞E
[
J−1

∑J
j=1 zjz

′
jξ

2
j (α0, θ2)

]
is positive definite, and continuous in θ2.

Remark 3.1. Assumption 3.1 covers the realistic case where the variance vector or

some of its components are zero, i.e., on the boundary of the parameter space.

Assumption 3.2 is a modified version of the assumptions of Theorem 1 of Armstrong

(2016a) and allows for unknown σ. Assumption 3.2 (ii) states that the Jacobian of

the sample function with respect to the nuisance parameter vector is of full rank so

that mean and variance parameters of the random coefficients are (locally) strongly

identified. A similar high level rank condition for the Jacobian with respect to a full

parameter vector (either θ = (α, b′, σ2′)′ or (α, b′, σ′)′) is used by Berry, Linton, and

Pakes (2004), Freyberger (2015) and Ketz (2017). In contrast, Assumption 3.2 (ii) is

with respect to the subvector [b′, σ2′]′, hence allows for weak identification of the price

coefficient α.

Assumption 3.2 (iv) and (v) are stated in high level forms because, in general, the

instrument vectors zj’s are not independently distributed and their dependence structure

are left unspecified. In addition, they are correlated with the marginal costs MCj’s.

However, Assumption 3.2 (iv) and (v) can be substituted by simpler conditions once

the dependence structure of the instruments zj’s is characterized, or the marginal cost

equation is specified explicitly.

Assumption 3.2 (vi) is an exogeneity-type condition that is needed for establishing

the consistency of the covariance matrix estimates.

Assumption 3.2 (vii) guarantees the identification of θ02 and is used to establish the

consistency of the restricted GMM estimator θ̃2.
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As shown by Armstrong (2016a), the faster convergence of the markups to a vector

of constants, η, than the J1/2-rate, stated in Assumption 3.2 (iii), is essentially a

weak identification condition which renders the BLP estimators inconsistent. This is

intuitive because the characteristics of the rival products shift the price through the

markup and have weak explanatory power if the markup is close to a constant.

On the other hand, the usual assumption of modeling the weak identification of the

price coefficient α (see Stock and Wright (2000) and Kleibergen (2005) for analogous

conditions) entails that

E[ĜJ,α(θ0)] = C̄J−1/2 (3.11)

for some vector of constants C̄ as stated in Assumption A.4, where ĜJ,α(θ) = ∂m̂J (θ)
∂α

.15

The condition (3.11) is perhaps natural for modeling weak cost shifter instruments but

its link with Assumption 3.2 (iii) may be somewhat elusive. It is therefore instructive to

elaborate on the relationship between these two conditions. To this end, let b̄ = [b′, α]′,

xj = [1, w′j]
′ and X̄ = [X,−p] and define:

Γ =


1 E[w′j] −E[MCj]− η

E[wj] E[wjw
′
j] −E[wjMCj]− ηE[wj]

0 0 1


−1

Ek, Ek =


0 01×(k−1) 1

0(k−1)×1 Ik−1 0(k−1)×1

1 01×(k−1) 0

 .
Here Ek is the exchange matrix of dimension k where the counterdiagonal elements are

1’s and all other elements are zero. Partition Γ = [Γ1,Γ2], where

Γ1 =

(E[xjx
′
j])
−1E[xj(MCj + η)]

1

 , Γ2 =

(E[xjx
′
j])
−1

01×k

 Ek.
Following Armstrong (2016b), one can verify that

J−1E[Z ′(X,−MC − ηιJ)]Γ1 = 0. (3.12)

15 Andrews and Guggenberger (2015a) consider more general sequences of drifting parameters and

establish the asymptotic similarity of GMM AR-type and GMM-CLR-type tests for full parameter

vector. Although it is plausible that the subvector tests proposed here are also asymptotically

similar under certain conditions, establishing such a property goes beyond the scope of this paper.
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Rotate the parameter vector as [α, φ′]′ = Γ−1b̄ where

φ =

0(k−1)×1 Ik−1

1 01×(k−1)

[E[xjx
′
j] −E[xj(MCj + η)]

]b
α

 ,
and rewrite the normalized sample moment function as

m̂J(θ) = J−1Z ′(δ(σ) + pα−Xb] = J−1Z ′(δ(σ)− X̄ΓΓ−1b̄]

= J−1Z ′(δ(σ)− X̄Γ1α− X̄Γ2φ] ≡ m̂J(ϑ), (3.13)

where ϑ = (α, φ′, σ2′)′. It turns out that the Jacobian of the reparameterized moment

function (3.15) with respect to α:

ĜJ,α(ϑ) =
∂m̂J(ϑ)

∂α
= J−1Z ′X̄Γ1

is compatible with the drifting Jacobian condition in Assumption A.4. To see this,

write

J1/2E[ĜJ,α(ϑ0)] = J−1/2E[Z ′X̄Γ1]

= J−1/2E[Z ′X̄Γ1 − Z ′(X,−MC − ηιJ)Γ1] + J−1/2E[Z ′(X,−MC − ηιJ)Γ1],

where ιJ denotes a J × 1 vector of ones. The second term is zero by (3.12). The weak

identification condition in Assumption 3.2 (iii) along with moment bounds imply

J−1/2E[Z ′X̄Γ1 − Z ′(X,−MC − ηιJ)Γ1]→ 0. (3.14)

This shows that the reparameterized model is comptabile with the standard drifting

Jacobian condition for weak identification: E[ĜJ,α(ϑ0)] = C̄J−1/2. In addition, it is

easy to see that J−1E[Z ′(X,−MC − ηιJ)]Γ2 has full column rank k. These together

with the fact that J−1Z ′ ∂δ
∂σ2′ converges in probability to a matrix of full rank, and ϑ

and m̂J(ϑ) in place of θ and m̂J(θ) verify Assumption A.4.
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The sample analog of the matrix Γ is given by Γ̂ = [Γ̂1, Γ̂2] where

Γ̂1 =

(X ′X)−1X ′p

1

 , Γ̂2 =

(J−1X ′X)−1Ek
01×k

 .
The corresponding sample moment function is

m̂J(θ) = J−1Z ′(δ(σ) + pα−Xb] = J−1Z ′(δ(σ)− X̄Γ̂1α− X̄Γ̂2φ
∗]

= J−1Z ′(δ(σ) +MXpα−X(J−1X ′X)−1Ekφ∗) ≡ m̂J(ϑ∗), (3.15)

where ϑ∗ = (α, φ∗′, σ2′)′ and

φ∗ = Ek
[
J−1X ′X −J−1X ′p

]b
α

 . (3.16)

Given an estimator b̃∗ of b, one can estimate the parameter subvector φ or φ∗ under

H0 : α = α0 by plugging b̃∗ in (3.16).

Ketz (2017) shows that, when σ2
` = 0 or σ2

` → 0 (for any δ = δt, t = 1, . . . , T )

∂δ

∂σ2
`

= lim
σ`→0

1

2

∂2δ

∂(σ`)2
6= 0, ` = 1, . . . , k.

Thus, the Jacobian of the sample moment function with respect to an individual vari-

ance term is not degenerate. It does not, however, imply that the probability limit of

the Jacobian with respect to the entire variance vector σ2 is of full rank as maintained

in Assumption 3.3.

The implementation of the robust test statistics requires a J1/2-consistent estimator

of the nuisance parameter vector θ2. By definition, the C(α)-type statistic uses a J1/2-

consistent estimator; the doubly robust Cα statistic in (2.13) is asymptotically pivotal

with a plug-in J1/2-consistent estimate. In addition, the ARα statistic (2.15) and

the corresponding CLRα statistic (2.19) are also based on the orthogonalized sample

moment function in (2.7), thus have C(α) statistic interpretation. Andrews (2002)

and Ketz (2017) show that the GMM estimators of the boundary parameters are J1/2-

29



consistent though not asymptotically normal in general. Accordingly, we estimate the

nuisance parameters by the restricted CU-GMM under H0 : α = α0 and show their

J1/2-consistency so as to ensure Assumption A.6.

Since the model is not defined for negative values of σ2, the doubly robust AR-type

statistic cannot be the AR0
α statistic computed using the one-step estimator defined

by (2.16). Instead, we proceed with the ARα statistic in (2.15). The orthogonalized

moment function is given by

m̄J(θ̃) = m̂J(θ̃)− ĜJ,2(θ̃)′(ĜJ,2(θ̃)′Σ̂J(θ̃)−1ĜJ,2(θ̃))−1ĜJ,2(θ̃)′Σ̂J(θ̃)−1m̂J(θ̃),

= J−1

J∑
i=1

z′j(δ̃
∗
j + pjα0 − x′j b̃∗), (3.17)

where

δ̃∗j = δj(σ̃)−
[
0T×k,

∂δj(σ̃)

∂σ2′

]
(ĜJ,2(θ̃)′Σ̂J(θ̃)−1ĜJ,2(θ̃))−1ĜJ,2(θ̃)′Σ̂J(θ̃)−1m̂J(θ̃) (3.18)

and

b̃∗ = b̃− [Ik, 0k×k] (ĜJ,2(θ̃)′Σ̂J(θ̃)−1ĜJ,2(θ̃))−1ĜJ,2(θ̃)′Σ̂J(θ̃)−1m̂J(θ̃). (3.19)

From (3.18), it is clear that δ̃∗j can be viewed as one-step estimator of δt(σ) which in

turn is a nonlinear transformation of the model parameters and the data. In fact, one

can proceed to show that J1/2[δ̃∗j − δj(σ)] is asymptotically normally distributed.

Denote the AR-type statistic for H0 : α = α0 based on (3.17) corresponding to

(2.15) by

ARα(α0) = J m̄J(θ̃)Σ̃−1
J m̄J(θ̃).

In the BLP context, contrary to the general GMM model of Subsection 2.1, we know

that the instruments in Z2 specifically are the ones that may lead to weak identification

of α. Hence, in addition to the rank statistic defined in (2.23), we may also consider

alternative CLR-type statistics based on simplified rank statistics obtained from the
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sample moment function given by

m̂M
J (θ) = J−1Z ′MXξ, (3.20)

where X is partialled out. These alternative statistics are detailed in Appendix C.

In the following proposition, we formally establish the results on the doubly robust

statistics by first showing that the reparameterized sample moment function (3.15)

satisfies the assumptions of the general GMM statistics of Section 2, and then appealing

to the invariance properties of the test statistics to reparameterization. For general

results about the invariance properties of various tests statistics in general estimating

functions and GMM framework, see Dufour, Trognon, and Tuvaandorj (2017).

Proposition 3.1. Let Assumption 3.1 and 3.2 hold. Under H0 : α = α0, the ARα

and Cα statistics based on (3.10) satisfy ARα(α0)
d−→ χ2

l−k and Cα(α0)
d−→ χ2

1 as

J → ∞. The asymptotic distribution of the CLRα statistics based on the sample

moment functions (3.10)and (3.20) statistic are as given in (2.21).

The BLP model above resembles the linear IV model with a single endogenous right

hand variable (the price term). In the latter model, the CLR statistic of Kleibergen

(2005) reduces to the CLR statistic of Moreira (2003), which is known to have an

optimal power property (see Andrews, Moreira, and Stock (2006) and Andrews and

Guggenberger (2015a)). Thus it is plausible that the doubly robust CLR statistic in

the BLP model may have similar optimal properties.

3.3 Robust statistics under many market asymptotics

The results of the previous subsection continue to hold in the many market scenario

with T large. Here, weak identification may arise if the variation in the price induced

by a change in the cost shifters is relatively small. We shall verify the conditions for

the general GMM results of Subsection 2.1 on doubly robust tests under the following

set of assumptions.

Assumption 3.3 (Jacobian and identifiability of model parameters). The matrix of

IV’s, Z, has full column rank with probability one: P [rank(Z) = k + l] = 1 with
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l ≥ k. E[T−1Z ′MXp] = C̄T−1/2 for some (k + l) × 1 vector C̄. The matrices

E[ztx
′
t] and E

[
zt
∂δt(σ0)
∂σ2′

]
have full rank. E[ztξt(α0, θ2)] = 0 uniquely at θ2 = θ02, and

E[ztξt(α0, θ2)ξt(α0, θ2)′z′t] is nonsingular for all θ2 ∈ Θ2.

Assumption 3.4 (Sampling regularity). The observed data {(p′t, s′t, z′t)′}Tt=1 are in-

dependent with E[‖zt‖2+ε] < M < ∞ for some M > 0 and ε > 0, the random

vector (p′t, x
′
t)
′ lies in a compact set with probability one. The market shares satisfy

ε ≤ sjt ≤ 1 − ε for some ε > 0 and for all j = 1, . . . , J and t = 1, . . . , T with

s0t = 1−
∑J

j=1 sjt.

Remark 3.2. Assumption 3.3 is the counterpart of Assumption 3.2 (ii) in many mar-

kets context, and guarantees the identification of the parameters other than α.

Assumption 3.4 is used by Freyberger (2015) and Ketz (2017), and ensures the

applications of LLN and CLT to the sample moment function and the estimators of

covariance matrices.

In order establish the asymptotic properties, we use a reparameterization analogous

to (3.15):

m̂T (θ) = T−1Z ′(δ(σ) + pα−Xb] = T−1Z ′(δ(σ)− X̄Γ̂1α− X̄Γ̂2φ
∗]

= T−1Z ′(δ(σ) +MXpα−X(T−1X ′X)−1Ekφ∗) ≡ m̂T (ϑ∗), (3.21)

where ϑ∗ = (α, φ∗′, σ2′)′ and φ∗ = Ek
[
T−1X ′X −T−1X ′p

]
[b, α]′. Let also

m̂M
T (θ) = T−1Z ′MXξ. (3.22)

In the following proposition, we establish the asymptotic distribution of the robust

statistics:

Proposition 3.2. Let Assumptions 3.1,3.3 and 3.4 hold. Under H0 : α = α0, the

ARα and Cα statistics based on (3.9) satisfy ARα(α0)
d−→ χ2

l−k and Cα(α0)
d−→ χ2

1

as T → ∞. The asymptotic distribution of the CLRα statistics based on the sample

moment functions (3.9)and (3.22) statistic are as given in (2.21).
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4 Simulations

This Monte Carlo section explores the finite sample properties of our tests applied to the

BLP model in a wide range of specifications with cost shifters and BLP instruments.

The three boundary-robust statistics considered are: i) the ARα statistic defined in

(2.15), 2) the Cα statistic defined in (2.14), and 3) a CLRα statistic based on the ARα

and Cα statistics, using the Robin and Smith (2000) rank statistic Rα defined in (2.23).

The performance of two alternative robust CLR-type statistics are also presented in

Table 3 Appendix C.

A complementary question to explore is how severely testing can be affected by

assuming away boundary parameter problems. Within the same set of specifications,

we do so by focusing on the following non-boundary-robust statistics: 1) an AR statistic

defined in (2.11), 2) the subvector LM statistic of Kleibergen (2005) reproduced in

(2.12), 3) a CLR statistics constructed with AR, LM and a non-boundary-robust

version of the rank statistic Rα where Ĝ⊥jn(θ) defined in (2.2) is used instead of Ĥn(θ)

defined in (2.3).

4.1 Simulations with cost shifters

Our main set of specifications with cost shifter instruments adapts the simple and flex-

ible data generating process of Reynaert and Verboven (2014). A product j in market

t is described by its price pjt and exogenous characteristics xjt. The characteristics

include one constant term and either one or two additional random characteristics,

according to the specification: xjt = (1, w1
jt) or xjt = (1, w1

jt, w
2
jt).

The endogenous price is a function of the product’s exogenous characteristics and

a vector of cost shifters zjt,2 that do not influence consumer tastes: pjt = x′jtγ1 +

z′jt,2γ2 + ωjt. This price-setting equation reflects a perfect competition situation in

which the price equals marginal cost. We include four cost shifter instruments: zjt,2 =

(z1
jt,2, ..., z

4
jt,2). Since AR-type statistics may entail a power loss when the model is

overidentified compared to C(α) and CLR-type statistics, four cost shifters should

make this difference more salient. The consumer’s mean utility for product j at time

t is δjt = x′jtb− pjtα + ξjt.
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The characteristic w1
jt, w

2
jt and the cost shifters z′jt,2 are all independently drawn

from uniform distributions: w1
jt, w

2
jt ∼ U(1, 2) and z1

jt,2, ..., z
4
jt,2 ∼ U(0, 1). The error

terms of product demand and marginal cost are drawn from normal distributions and

correlated:  ξjt

ωjt

 ∼ N


 0

0

 ,
 1 ρ

ρ 1


 .

We set ρ = 0.3 for specifications with weak endogeneity and ρ = 0.8 for strong en-

dogeneity. Endogeneity levels of 0.8 may be high for differentiated product demand

models, but the goal is to explore a wide parameter space.

The sample size is T = 25 markets and J = 10 products per markets, for a total of

N = T × J = 250 observations. Market size and sample size will vary in simulations

using BLP instrument in the next subsection. The mean taste for product character-

istics is α = 2 and b = (2, 2) (or b = (2, 2, 2)). The value of α and the coefficient for

the constant term have variance set to zero, which is assumed to be known in the es-

timation. The coefficients w1
jt (and w2

jt) have i.i.d. normal distributions with variance

Σβ = σ2 (or Σβ = diag{σ2, σ2}). We use either σ2 = 0 or σ2 = 1, the former being more

likely to generate boundary distortions. The price equation is set to γ1 = (0.7, 0.7)′

(or γ1 = (0.7, 0.7, 0.7)′) and γ2 = κ(1, 1, 1, 1)′, where κ determines the strength of the

instruments. Three cases are considered: κ = 3 (as in Reynaert and Verboven (2014))

for strong instruments, κ = 2
√
C/(N(3l2 + l)) = 0.055 with a concentration parame-

ter C = 10 for weak instruments (see Rothenberg (1984) or Stock and Yogo (2005)),

and κ = 0 for non-informative instruments. Under the many-markets asymptotics,

variances are computed at the market level, providing 25 i.i.d. observations. Appendix

E provides extra details on the simulation design and the estimation algorithm.

Results. The rejection rates of boundary robust statistics at the true null H0 presented

in Table 1 conform well with the asymptotic results of Subsection 2.1. In all cases, the

tests have rejection rates near 5%, irrespective of instrument strength or of σ2 being

at the boundary.

The motivation of the paper is reaffirmed by the results for non-boundary-robust
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Table 1: Rejection rates at true value, boundary robust statistics (%)
One random coefficient Two random coefficients

Boundary
Yes No Yes No

param.
Endog.

Low High Low High Low High Low High
of price

Strong instruments

ARα 3.44 3.58 3.20 3.29 4.40 4.11 5.30 7.20
Cα 4.36 4.30 3.98 4.06 7.10 5.72 7.70 8.50
CLRα 3.72 3.78 3.42 3.47 4.80 4.61 6.40 7.30

Weak instruments

ARα 3.24 2.52 2.94 2.40 2.80 2.40 2.00 2.10
Cα 3.96 4.62 4.10 4.58 4.10 3.10 2.90 3.60
CLRα 3.18 2.80 3.08 2.64 2.30 2.40 1.60 1.80

Uninformative instruments

ARα 3.22 2.58 2.92 2.40 2.60 2.80 1.60 1.90
Cα 3.98 5.04 4.30 4.70 3.20 3.50 2.60 2.40
CLRα 3.08 2.94 3.14 2.70 2.30 2.60 1.60 1.80

Note: Nominal sig. level: 0.05. Low endog.: ρ = 0.3; high endog.:
ρ = 0.8. Boundary parameter: σ2 = 0; no boundary parameter:
σ2 = 1. Strong instruments: κ = 3; weak instruments: κ = 0.055;
uninformative instruments: κ = 0.

35



Regular specification Boundary parameter

High endogeneity

Figure 1: Power curves for strongly identified specifications

statistics shown in Table 4 of Appendix F. Over-rejection is especially serious for the

LM and CLR statistics. With two random coefficients and strong instruments, even

specifications with no true parameter at the boundary over-reject the true null hy-

pothesis. This is understood once we realize that even with the true variance being

Σβ = diag{σ2, σ2} = diag{1, 1}, over 50% of the draws estimate at least one σ̂2 = 0.

Figure 1 shows the power of each test for cost shifters in various strongly-identified

specifications (κ = 3). The regular specification has parameter values σ2 = 1, ρ = 0.3,

γ2 = 3 and regular instruments. The specification with boundary parameter sets

σ2 = 0, and the specification with high endogeneity sets ρ = 0.8.

The asymmetric power of the tests with regular instruments reflects the nonlin-

earity of the BLP and its sensitivity to the exact parameter configurations. Different

values of b would change the skewness of the confidence region. This is a clear ad-
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vantage of confidence intervals obtained by inverting AR, C(α) or CLR-type statistics

compared to standard two-sided tests which assume a symmetric sample distribution

of the estimates. For regular instruments, no statistic clearly dominates all others in

terms of power, but the CLRα dominates the ARα. Interestingly, the Cα has lower

rejection rates than the other statistics for smaller values of α, but higher rejection

rates for larger values.

4.2 Simulations with BLP instruments

We explore the finite sample properties of weak BLP instruments using a DGP similar

to the one proposed by Armstrong (2016a). Products are still defined by their price p

and two characteristics: a constant term and a random characteristic, xjt = (1, wjt),

with wjt ∼ U(0, 1). The true parameters are α = 1 and b = (3, 6). As before, the

taste for the random characteristic is a random variable with variance σ2 = 9, like

in Armstrong (2016a)’s original DGP, or σ2 = 0 to increase the risk of boundary

distortions.

In contrast to the previous subsection, firms set their prices endogenously in a

Nash-Bertrand market equilibrium. Prices are determined by a markup over marginal

costs, described in (3.8), which provides identification power to BLP instruments. For

a product j produced by firm f (which produces a set of goods Jf ) in market t, the

two BLP instruments are the sum of the other products’ characteristics in the same

firm
∑

k 6=j,k∈Jf xk,t and the sum of other products’ characteristics in the same market∑Jt
k=1 xk,t − xj,t.
Like in the previous subsection, we are interested in the properties of the tests

for an overidentified model. However, in Armstrong (2016a)’s main specifications,

all firms sell 10 products and markets have same sizes, either all 20, all 60 or all

100 products. Thus, no BLP instruments could be derived from the constant term,

only 2 extra instruments from the random characteristics. Hence, we deviate from

Armstrong (2016a) by using both the constant term and the random characteristic to

generate a total of 4 BLP instruments. To do so, firms vary in size within markets, with

approximately 1/3 selling 2 products, 1/3 selling 5 products and 1/3 selling 10 products.
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Table 2: Simulations for BLP instruments, Boundary-robust statistics

Number. of
1 3 20

markets
Products 16 20 48 80 16 20 48 80
per 60 100 20 60 60 100 20 60 60 100
market 24 100 72 120 24 100 72 120

σ2 = 9, null rejection rate

ARα 3.1 2.1 3.4 3.5 3.8 4.5 5.6 5.7 4.8 6.4
Cα 6.9 6.7 6.5 6.4 6.6 5.8 4.8 6.7 5.4 4.9
CLRα 3.6 3.1 3.6 3.6 3.7 4.7 5.9 6.1 5.1 6.1

σ2 = 9, power of test α = 0

ARα 3.6 2.7 63.0 42.5 18.2 12.9 100.0 100.0 98.7 85.0
Cα 8.8 7.8 42.9 40.0 20.2 13.4 60.6 88.7 58.7 55.4
CLRα 4.1 3.5 63.9 43.4 18.4 13.5 100.0 100.0 98.7 85.7

σ2 = 0 (boundary parameter), null rejection rate

ARα 3.4 3.0 2.7 3.5 4.2 4.4 4.1 4.4 5.7 4.7
Cα 7.0 6.5 7.8 5.5 5.3 5.6 5.3 3.4 5.9 4.9
CLRα 3.9 3.4 3.2 3.6 4.1 4.2 4.5 4.4 5.5 4.8

σ2 = 0 (boundary parameter), power of test α = 0

ARα 5.2 3.7 75.2 56.7 28.5 16.8 100.0 100.0 99.7 94.7
Cα 9.7 7.0 48.4 53.3 23.5 16.9 69.0 97.8 61.5 54.2
CLRα 5.7 4.0 75.4 58.7 29.1 17.1 100.0 100.0 99.7 94.5

Note: Nominal sig. level: 0.05. Specifications with multiple mar-
kets contain approx. 1/3 of markets of each different size. All
specifications have approx. 1/3 of firms of size 2, 1/3 of size 5 and
1/3 of size 10.
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Simulated datasets contain either 1, 3 or 20 markets. Markets have on average 20, 60

or 100 products and, in specification with many markets, approximately 1/3 are 20%

larger than average and 1/3 are 20% smaller. Following Armstrong (2016a), some

cases allow for more variation, with 1/3 of markets having 20 products, 1/3 having 60

and 1/3 having 100 products. In specifications with a single market, since
∑Jt

k=1 xk,t

is constant, it is replaced by
∑

k∈Jf x
2
k,t to provide the same number of instruments.16

An additional cost shifter is drawn to further influence prices, but it is excluded from

the estimation to maintain weak identification from BLP instruments. The structural

errors are ξi = υ1,i+υ3,i−1 and ωi = υ1,i+υ2,i−1 where υ1, υ2, υ3 are independent U(0, 1)

random variables. Appendix E provides extra details on the estimation procedure.

Results. Since the strength of BLP instruments depends on market power, they

should be weak in larger markets. Table 2 confirms this intuition, especially in the

single-market case where BLP instruments are completely uninformative for testing

H0 : α = 0. But the weakness of the BLP instruments does not compromise validity of

the doubly robust statistics, which show rejection rates close to 5% when testing the

true null hypothesis H0 : α = 1. This contrasts with Armstrong (2016a) who found

that when using BLP instruments, two-sided tests at nominal levels of 5% rejected

the true null in corresponding DGP at rates over 15% when the number of products

is large relative to the number of markets. Like for cost shifter instruments, the Cα

statistic shows lower power for testing a small value of α, while the CLRalpha shows

good overall performances.

Table 5 of Appendix F confirms the wrong asymptotic size of the non-boundary-

robust tests in the same set of simulations. As expected, the rejection rates are higher

when the true σ2 is at the boundary of the parameter space. Interestingly, the LM

statistic over-rejects the true null hypothesis especially in smaller samples, while the

other non-boundary-robust statistics slightly over-reject the true null in larger samples.

16 Contrary to Armstrong (2016a), but following Berry, Levinsohn, and Pakes (1995), the product

itself is excluded from the sums of characteristics that form the BLP instruments, which makes

a difference in the estimation when taking higher power of the BLP instrument.
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5 Conclusion

This paper proposes robust statistics that are implemented with n1/2-consistent aux-

iliary estimator of the nuisance parameters in moment condition models. They are

asymptotically pivotal under the null hypothesis, even if the parameters of interest

are weakly identified and true parameters are close to the boundary of the parameter

space. Our doubly robust statistics include a generalization of the GMM AR statistic

of Stock and Wright (2000), a C(α)-type statistic and a CLR-type statistic which ex-

tends the identification-robust GMM LM and CLR-type statistics of Kleibergen (2005)

and Andrews and Guggenberger (2015a).

We apply our tests to the differentiated products demand models of Berry, Levin-

sohn, and Pakes (1995), which is subject to weak identification because of firms’ limited

market power or marginally relevant cost instruments, and to boundary parameter

problems because of the heterogeneous tastes for products characteristics. In simu-

lations, all tests are found to have correct level using as instruments standard cost

shifters or BLP instruments in all parameter configurations. In contrast, similar non-

boundary-robust statistics often show important size distortions.

Following Reynaert and Verboven (2014), seeing how optimal instruments may

substantially improve estimation accuracy in the BLP context, making them robust to

weak identification is a logical avenue for future work. Beyond the BLP, our test statis-

tics can be adapted to conduct robust inference in other GMM applications where both

boundary parameters and weak identification can be present. For example, using the

methods developed in this paper, one may derive pivotal statistics for ARMA/GARCH-

type models that are robust to weak identification, persistence and boundary param-

eter problems at the same time. Another important problem is the development of

an identification-robust inference methods on structural coefficients after selecting the

instruments by selection or regularization methods (see Chernozhukov, Hansen, and

Spindler (2015)). We leave these topics for future research.
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A Regularity Conditions

Assumption A.1 (Jacobian of the sample moment function). The sample moment

function m̂n(θ) has continuous left/right partial derivatives of order 1 with respect to

θ, denoted

Ĝn(θ) =
∂m̂n(θ)

∂θ′
,

for all n on Θ (with probability one).17 The last d2 columns of the L × d Jacobian

matrix Ĝn(θ) =
[
Ĝn,1(θ), Ĝn,2(θ)

]
partitioned conformably with θ = (θ′1, θ

′
2)′, satisfies

sup
θ2∈Θ2:‖θ2−θ02‖≤εn

‖Ĝn,2(θ01, θ2)−H2(θ01, θ2)‖ p−→ 0,

for all εn → 0, and a nonrandom matrix function H2(θ).

Assumption A.2 (Derivative of the Jacobian). The L×1 column vectors, Ĝin(θ), i =

1, . . . , d1, of the Jacobian

Ĝn(θ) =
∂m̂n(θ)

∂θ′1
= [Ĝ1n(θ), . . . , Ĝd1n(θ)],

have continuous left/right partial derivatives of order 1 with respect to θ2, denoted

D̂in(θ) =
∂Ĝin(θ)

∂θ′2
,

for all n, on Θ2. Furthermore, for every i = 1, . . . , d1 and all εn → 0

sup
supθ2∈Θ2:‖θ2−θ02‖≤εn

‖D̂in(θ01, θ2)−Di(θ01, θ2)‖ p−→ 0,

for some L× d2 matrix function Di(θ).

Assumption A.3 (Asymptotic normality of the sample moment function and the

Jacobian). The random vector n1/2

[
m̂n(θ0)′, vec

(
Ĝn,1(θ0)− E[Ĝn,1(θ0)]

)′]′
obeys the

17 See Andrews (1999) for the definition of left/right partial derivative.
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CLT:

n1/2

 m̂n(θ0)

vec
(
Ĝn,1(θ0)− E[Ĝn,1(θ0)]

)  d−→

 m∞(θ0)

G∞,1(θ0)

 ,
 m∞(θ0)

G∞,1(θ0)

 ∼ N [0, V (θ0)],

where the asymptotic covariance matrix partitioned conformably to [m∞(θ0)′, G∞,1(θ0)′]′,

V (θ) =

 Σ(θ) ΣmG1(θ)

ΣG1m(θ) ΣG1G1(θ)

 , (A.1)

is continuous at θ0, V (θ0) is positive definite, and ΣmG1(θ) = [C1(θ)′, . . . , Cd1(θ)′]′ with

Ci(θ0) ≡ Ci.

Assumption A.4 (Identification status of parameter subvectors). E[Ĝn,1(θ0)] = C̄n−1/2

where C̄ is a L×d1 fixed matrix function of θ0, and rank[H2(θ0)] = d2 where Ĝn,2(θ0)
p−→

H2(θ0).

Assumption A.5 (Consistent weighting matrix). The weighting matrix Wn is a con-

sistent estimator of a positive definite matrix W :

Wn
p−→ W.

Assumption A.6 (Root-n consistent nuisance parameter estimate). θ̃∗2 is a consistent

estimator of θ02 such that n1/2(θ̃∗2 − θ02) is asymptotically bounded in probability as

n→∞, i.e.,

n1/2(θ̃∗2 − θ02

)
= Op(1).

Assumption A.7 (Consistent covariance matrix estimator). The estimator defined by

V̂n(θ) =

 Σ̂n(θ) Σ̂n,mG1(θ)

Σ̂n,G1m(θ) Σ̂n,G1G1(θ)

 with Σ̂n,mG1(θ) = [Ĉ1n(θ)′, . . . , Ĉd1n(θ)′]′ (A.2)

is nonsingular for every (θ′01, θ
′
2)′, where θ2 ∈ Θ2, ‖θ2 − θ02‖ ≤ εn and εn → 0, and

satisfies V̂n(θ̃∗)
p−→ V (θ0), where θ̃∗ = (θ′01, θ̃

∗
2)′ with θ̃∗2 defined in Assumption A.6.
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By standard argument, one can show that the following assumption together with

Assumption A.6 imply Assumption A.7.

Assumption A.8 (Local uniform convergence). V̂n(θ) is nonsingular for (θ′01, θ
′
2)′, for

every (θ′01, θ
′
2)′, where θ2 ∈ Θ2, ‖θ2−θ02‖ ≤ εn and εn → 0, and satisfies supθ2∈Θ2,‖θ2−θ02‖≤εn ‖V̂n(θ01, θ2)−

V (θ01, θ2)‖ p−→ 0.

B Proofs

Proof of Proposition 2.1. We first show that

n1/2Ĥjn(θ̃∗) = n1/2Ĥjn(θ0) + op(1), j = 1, . . . , d1,

n1/2m̄n(θ̃∗) = n1/2m̄n(θ0) + op(1).

By the triangle inequality, for any i = 1, . . . , d

‖D̂in(θ̃∗)−Di(θ0)‖ ≤ ‖D̂in(θ̃∗)−Di(θ̃
∗)‖+ ‖Di(θ̃

∗)−Di(θ0)‖.

Since θ̃∗
p−→ θ0, there exists a sequence εn → 0 such that P [‖θ̃∗ − θ0‖ ≤ εn]→ 1. For

any ε > 0,

P [‖D̂in(θ̃∗)−Di(θ̃
∗)‖ ≤ ε]

≥ P [‖θ̃∗ − θ0‖ ≤ εn, ‖D̂in(θ̃∗)−Di(θ̃
∗)‖ ≤ ε]

≥ P

[
‖θ̃∗ − θ0‖ ≤ εn, sup

θ2∈Θ2,‖θ2−θ02‖≤εn
‖D̂in(θ01, θ2)−Di(θ01, θ2)‖ ≤ ε

]

≥ 1− P [‖θ̃∗ − θ0‖ > εn]− P

[
sup

θ2∈Θ2,‖θ2−θ02‖≤εn
‖D̂in(θ01, θ2)−Di(θ01, θ2)‖ > ε

]
−→1,

where the last convergence holds by Assumption A.2 and A.6. Thus, ‖D̂in(θ̃∗) −
Di(θ̃

∗)‖ p−→ 0. By the continuity of Di(θ) at θ0 (Assumption A.2), ‖Di(θ̃)−Di(θ0)‖ p−→
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0 hence

D̂in(θ̃∗)
p−→ Di(θ0). (B.1)

Using Assumptions A.1 and A.6,

H̃n,2
p−→ H2(θ0). (B.2)

By the mean value expansion, we have under Assumptions A.1, A.2 and A.6,

n1/2m̂n(θ̃∗) = n1/2m̂n(θ0) + Ĝn,2(θ̄)n1/2(θ̃∗2 − θ02), (B.3)

n1/2Ĝin(θ̃∗) = n1/2Ĝin(θ0) + D̂in(θ)n1/2(θ̃∗2 − θ02), i = 1, . . . , d1, (B.4)

where θ̄ and θ are points on the segment joining θ0 and θ̃∗. Using Assumptions A.1

and A.6, we have Ĝn,2(θ̄)
p−→ H2(θ0). Substituting (B.3) in m̄n(θ̃∗), using (B.2), and

Assumption A.6, we have

n1/2m̄n(θ̃∗) =
(
IL − Ĝn,2(θ̃∗)(Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1Ĝn,2(θ̃∗))−1Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1

)
n1/2m̂n(θ̃∗)

=
(
IL − Ĝn,2(θ̃∗)(Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1Ĝn,2(θ̃∗))−1Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1

)
(
n1/2m̂n(θ0) + Ĝn,2(θ̄)n1/2(θ̃∗2 − θ02)

)
=
(
IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1

)
n1/2m̂n(θ0) + op(1)

d−→
(
IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1

)
m∞(θ0)

≡ m̄∞(θ0), (B.5)

where the convergence holds by Assumption A.3 and Slutsky’s lemma. Similarly, sub-

stituting (B.3) and (B.4) in Ḡn(θ̃∗), using (B.1)and (B.2), and Assumption A.6, we
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have

n1/2Ḡin(θ̃∗) (B.6)

= n1/2Ĝjn(θ̃∗)− D̂in(θ̃∗)(Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1Ĝn,2(θ̃∗))−1Ĝn,2(θ̃∗)′Σ̂n(θ̃∗)−1n1/2m̂n(θ̃∗)

= n1/2Ĝin(θ0) +Di(θ0)n1/2(θ̃∗2 − θ02)

−Di(θ0)(H2(θ0)′Σ(θ0)−1H2(θ0))−1H2(θ0)′Σ−1
(
n1/2m̂n(θ0) +H2(θ0)n1/2(θ̃∗2 − θ02) + op(1)

)
= n1/2Ĝin(θ0)−Di(θ0)(H2(θ0)′Σ(θ0)−1H2(θ0))−1H2(θ0)′Σ−1n1/2m̂n(θ0) + op(1)

d−→ Gi∞(θ0)−Di(θ0)(H2(θ0)′Σ(θ0)−1H2(θ0))−1H2(θ0)′Σ−1m∞(θ0)

≡ Ḡi∞(θ0), (B.7)

where the convergence holds again by Assumption A.3 and Slutsky’s lemma. Since

Ĉin(θ̃∗)
p−→ Ci(θ0), i = 1, . . . , d1, and Σ̂n(θ̃∗)

p−→ Σ(θ0) by Assumption A.7, using

(B.5) and (B.7) in the definition of H̃n,1, we have for i = 1, . . . , d1

n1/2Ĥin(θ̃∗) = n1/2Ḡin(θ̃∗)− Ĉi(θ̃∗)Σ̂n(θ̃∗)−1n1/2m̄n(θ̃∗)

= n1/2Ḡin(θ0)− Ci(θ0)Σ−1n1/2m̄n(θ0) + op(1)

d−→ Ḡi∞(θ0)− Ci(θ0)Σ(θ0)−1m̄∞(θ0)

≡ Hi∞(θ0), (B.8)

where the convergence uses the CMT and Slutsky’s lemma. Stack the vectors so

obtained into

H∞,1(θ0) = [H1∞(θ0), . . . , Hd1∞(θ0)] .

Since Wn
p−→ W by Assumption A.5, Σ̃

p−→ Σ and H̃n,2
p−→ H2(θ0), invoking CMT

gives

WnΣ̃WnH̃n,2(H̃ ′n,2WnΣ̃WnH̃n,2)−1H̃ ′n,2Wn
p−→ WΣWH2(θ0)(H2(θ0)′WΣWH2(θ0))−1H2(θ0)′W.
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Using Slutsky’s lemma, we then have

n1/2B̃n = n1/2H̃ ′n,1WnΣ̃nWn − H̃ ′n,1WnΣ̃nWnH̃n,2(H̃ ′n,2WnΣ̃nWnH̃n,2)−1H̃ ′n,2WnΣ̃nWn

d−→ H∞,1(θ0)′WΣW −H∞,1(θ0)′WΣWH2(θ0)(H2(θ0)′WΣWH2(θ0))−1H2(θ0)′WΣW

≡ B∞(θ0). (B.9)

Since B∞(θ0)H2(θ0) = 0, we obtain

n1/2B̃nn
1/2m̂n(θ̃∗) = B∞(θ0)

[
n1/2m̂n(θ0) +H2(θ0)n1/2(θ̃∗2 − θ02) + op(1)

]
= B∞(θ0)m∞(θ0) + op(1)

= B∞(θ0)m̄∞(θ0) + op(1). (B.10)

Write

B∞(θ0)m̄∞(θ0) = H∞,1(θ0)′(WΣW )1/2M(WΣW )1/2H2(θ0)(WΣW )1/2m̄∞(θ0).

Since

E[Ḡi∞(θ0)m̄∞(θ0)′] = Ci(θ0)Σ−1
[
Σ−H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)′

]
,

V [m̄∞(θ0)] = Σ−H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)′,

it follows that

E[Hi∞(θ0)m̄∞(θ0)′] = 0.

Hence, Hi∞(θ0), i = 1, . . . , d1, and (WΣW )1/2M(WΣW )1/2H2(θ0)(WΣW )1/2m̄∞(θ0) are

independent Gaussian random vectors. Using B∞(θ0)H2(θ0) = 0, we have conditional

on H∞,1(θ0)

B∞(θ0)m̄∞(θ0) ∼ N [0d1×1, B∞(θ0)ΣB∞(θ0)′]. (B.11)
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Therefore, conditional on H∞,1(θ0)

Cα(θ01) = n1/2m̂n(θ̃∗)′n1/2B̃′n

[
n1/2B̃nΣ̃nn

1/2B̃′n

]−1

n1/2B̃nn
1/2m̂n(θ̃∗)

d−→ m̄∞(θ0)′B∞(θ0)′ [B∞(θ0)ΣB∞(θ0)′]
−1
B∞(θ0)m̄∞(θ0)

∼ χ2
d1
.

Since the latter is pivotal distribution, the result also holds unconditionally as claimed

in the proposition.

Proof of Lemma 2.2. By the mean value expansion,

ψ(θ̃) = ψ(θ0) +
∂ψ(θ̄)

∂θ′2
(θ̃2 − θ02),

where θ̄ is the mean value lying on the segment joining θ̃ and θ0 and satisfies θ̄
p−→ θ0.

By the continuous differentiability of ψ(θ) we have

∂ψ(θ̄)

∂θ′2

p−→ ∂ψ(θ0)

∂θ′2
.

Since n1/2(θ̃2 − θ02) is bounded in probability,

n1/2(ψ(θ̃)− ψ(θ0)) =
∂ψ(θ̄)

∂θ′2
n1/2(θ̃2 − θ02) =

∂ψ(θ0)

∂θ′2
n1/2(θ̃2 − θ02) + op(1). (B.12)

Proceeding similarly to (B.3), we have

n1/2m̂n(θ̃) = n1/2m̂n(θ0) +H2(θ0)n1/2(θ̃2 − θ02) + op(1) (B.13)
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Thus, from (B.12) and (B.13)

n1/2(ψ̃∗ − ψ(θ0)) = ψ(θ̃)− ∂ψ(θ̃)

∂θ′2
(Ĝn,2(θ̃)′Σ̂n(θ̃)−1Ĝn,2(θ̃))−1Ĝn,2(θ̃)′Σ̂n(θ̃)−1m̂n(θ̃) + op(1)

= −∂ψ(θ0)

∂θ′2
(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)′Σ−1n1/2m̂n(θ0) + op(1)

(B.14)

d−→ N

[
0,
∂ψ(θ0)

∂θ′2
(H2(θ0)′Σ−1H2(θ0))−1∂ψ(θ0)′

∂θ2

]
.

Proof of Proposition 2.3. We first take up the AR0
α(θ01) statistic. From Theorem 3.5

of Newey and McFadden (1994),

n1/2(θ̃∗2 − θ02) = −(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1n1/2m̂n(θ0) + op(1) (B.15)

d−→ N [0, (H2(θ0)′ΣH2(θ0))−1]. (B.16)

From the equation (B.3), we have

n1/2m̂n(θ̃∗) = n1/2m̂n(θ0) +H2(θ0)n1/2(θ̃∗2 − θ02) + op(1), (B.17)

hence using (B.15)

n1/2m̂n(θ̃∗) = n1/2m̂n(θ0)−H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1n1/2m̂n(θ0) + op(1)

=
[
IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1

]
m∞(θ0) + op(1). (B.18)

Thus,

AR0
α(θ01) = n m̂n(θ̃∗)′Σ̂n(θ̃∗)−1m̂n(θ̃∗)

= m∞(θ0)′
[
IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1

]′
Σ−1[

IL −H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1
]
m∞(θ0) + op(1)

= m∞(θ0)′Σ−1/2MΣ−1/2H2(θ0)Σ
−1/2m∞(θ0) + op(1). (B.19)
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The result follows on noting that MΣ−1/2H2(θ0) is idempotent matrix of rank L−d2 and

Σ−1/2m∞(θ0) ∼ N [0, IL].

Next consider the ARα(θ01) statistic. Following the same argument that led to

(B.14) (replacing ψ̃∗, ψ(θ0) and ∂ψ(θ0)
∂θ′2

by m̂∗n(θ̃), m̂n(θ0) and H2(θ0), respectively), we

have

n1/2m̂∗n(θ̃) = n1/2m̂n(θ0)−H2(θ0)(H2(θ0)′Σ−1H2(θ0))−1H2(θ0)Σ−1n1/2m̂n(θ0) + op(1),

which corresponds to (B.17). Therefore, proceeding as in (B.18), we obtain the result

ARα(θ01)
d−→ χ2

L−d2
.

Proof of Proposition 2.4. Since V̂n(θ̃∗)
p−→ V (θ0) by Assumption A.7, invoking the

CMT gives

K̂n(θ̃∗)
p−→ K(θ0). (B.20)

Then, using Σ̃n = Σ̂n(θ̃∗)
p−→ Σ, (B.20), and the CMT yields Ω̂n(θ̃∗)

p−→ Ω(θ0) from

which it follows that Ω̂ε
n(θ̃∗)

p−→ Ωε(θ0) by the continuity of Ω̂ε
n(θ), see Lemma 17.1

(e) and Comments (iv) of Andrews and Guggenberger (2015b). Using the CMT once

again gives

Ûn(θ̃∗)
p−→ U∞(θ0) = [θ0, Id1 ]Ωε(θ0)−1[θ0, Id1 ]′.

In the proof of Proposition 2.3, we have shown that

M
Σ̃
−1/2
n H̃n,2

Σ̃−1/2
n m̂n(θ̃∗) = MΣ−1/2H2(θ0)Σ

−1/2m∞(θ0) + op(1)

∼MΣ−1/2H2(θ0)S∞ + op(1),

where S∞ ∼ N [0, IL] and the proof of Proposition 2.1 shows that

n1/2Ĥin(θ̃∗)
d−→ Hi∞(θ0), i = 1, . . . , d1,

where Hi∞(θ0) is distributed independently of S∞. Next we shall determine the limit
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of T̃n. By Slutsky’s lemma,

n1/2T̃n
d−→ Σ−1/2H∞,1(θ0)U∞(θ0)

≡ T∞

and by the CMT, we have

CLR
d−→ S ′∞MΣ−1/2H2(θ0)S∞ − λmin

[
(S∞, T∞)′MΣ−1/2H2(θ0)(S∞, T∞)

]
≡ CLR∞.

Proof of Proposition 3.1. We only prove the asymptotic results for the robust statistics

based on the sample moment function (3.10). The proof of the CLR statistic based on

(3.20) is similar thus omitted. The reparameterized sample moment function

m̂J(ϑ) = J−1Z ′ξ = J−1Z ′(δ(σ)− X̄Γ1α− X̄Γ2φ] (B.21)

is continuously differentiable with respect to θ because δ(σ) is so as shown by Berry

(1994). This together with the uniform convergence in Assumption 3.2 (ii) implies

Assumption A.1. Assumption A.2 is clearly satisfied because

D̂1n(ϑ) =

[
Z ′

∂2ξ

∂α∂φ′
, Z ′

∂2ξ

∂α∂σ2′

]
= 0. (B.22)

To verify Assumption A.3, partition Γ1 = [Γ ′11, 1]′ where Γ11 ∈ Rk, and write

J1/2ĜJ,α(ϑ0) = −J−1/2Z ′X̄Γ̂1

= J−1/2Z ′p− J−1/2Z ′XΓ11

= J−1/2Z ′(p−MC − ιJη) + J−1/2Z ′(MC + ιJη)− J−1/2Z ′XΓ11.

(B.23)

Note that J−1/2vec(Z ′X), J1/2Z ′MC and J1/2Z ′ξ are jointly asymptotically normal.
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By Cauchy-Schwarz inequality

J−1/2‖Z ′(p−MC − ιJη)‖ ≤ J−1‖Z‖J1/2‖p−MC − ιJη‖
p−→ 0, (B.24)

where the convergence follows from Assumption 3.2 (ii) and (iii). Furthermore, by

Assumption 3.2 (iv)

J−1Z ′(MC + ιJη)− J−1E[Z ′MC]− J−1E[Z ′ιJ ]η
p−→ 0. (B.25)

Since J−1Z ′X converges in probability to matrices of full rank by Assumption 3.2 (ii),

(B.23)-(B.25) together with Slutsky’s lemma yield Assumption A.3. Note that

J1/2E[ĜJ,α(ϑ0)] = J−1/2E[Z ′X̄Γ̂1]

= J−1/2E[Z ′X̄Γ̂1 − Z ′(X,−MC − ηιJ)Γ̂1] + J−1/2E[Z ′(X,−MC − ηιJ)Γ̂1],

(B.26)

where ιJ denotes a J × 1 vector of ones. By direct calculation,

J−1/2E[Z ′(X,−MC − ηιJ)]Γ1 = 0. (B.27)

Furthermore,

J−1/2Z ′X̄Γ1 − Z ′(X,−MC − ηιJ)Γ1 = −J−1/2Z ′ [0J×k, p−MC − ηιJ ] Γ1

p−→ 0,

because using Cauchy-Schwarz inequality, Assumption 3.2 (ii) and (iii),

J−1/2‖Z ′(p−MC − ιJη)‖ ≤ J−1‖Z‖J1/2‖p−MC − ιJη‖
p−→ 0. (B.28)

Let ψj = |J1/2(pj − MCj − η)| and ψ = [ψ1, . . . , ψJ ]′. Then, by Cauchy-Schwarz
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inequality

E
[(
J−1/2‖Z ′(p−MC − ιJη)‖

)1+ε/2
]

= E
[(
J−1/2‖Z‖

)1+ε/2 (
J−1/2‖ψ‖

)1+ε/2
]

≤
(
E
[(
J−1/2‖Z‖

)2+ε
])1/2 (

E
[(
J−1/2‖ψ‖

)2+ε
])1/2

=
(
E
[(
J−1‖Z‖2

)1+ε/2
])1/2 (

E
[(
J−1‖ψ‖2

)1+ε/2
])1/2

.

(B.29)

By Jensen’s inequality and Assumption 3.2 (ii) and (iii),

E
[(
J−1‖ψ‖2

)1+ε/2
]
≤ E

[
J−1

J∑
j=1

ψ2+ε
j

]
<∞, (B.30)

and

E
[(
J−1‖Z‖2

)1+ε/2
]
≤
(
E
[(
J−1‖Z‖2

)2
])(1+ε/2)/2

≤

(
E

[
J−1

J∑
j=1

‖zj‖4

])(1+ε/2)/2

<∞.

(B.31)

From (B.29)-(B.31),

E
[(
J−1/2‖Z ′(p−MC − ιJη)‖

)1+ε/2
]
<∞. (B.32)

It follows from (B.28) and (B.32) that

J−1/2E[Z ′X̄Γ1 − Z ′(X,−MC − ηιJ)Γ1]→ 0. (B.33)

Finally, (B.26), (B.27) and (B.33) together yield

E[ĜJ,α(ϑ0)] = C̄J−1/2.

Assumption A.4 is satisfied because the probability limit of the Jacobian J−1Z ′ ∂δ(σ)
∂σ2′ is
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of full rank as maintained in Assumption 3.2 (ii), and the Jacobian with respect to φ

−J−1Z ′X̄Γ2 = −J−1Z ′X(E[xjx
′
j])
−1

01×(k−1) 1

Ik−1 0


converges in probability to a matrix of full rank.

In order to obtain the J1/2-consistent estimator of ϑ2 = (φ′, σ2′)′, we estimate the

nuisance parameter vector θ2 by the restricted GMM under H0 : α = α0. We verify the

assumptions of Andrews (2002) (see also Proposition 1 of Ketz (2017)). By standard

argument (e.g., Theorem 2.1 of Newey and McFadden (1994)), the compactness of

the parameter space in Assumption 3.1 and Assumption 3.2 (vii) together imply the

consistency of the restricted GMM estimator θ̃2. Thus, Assumption GMM1 of Andrews

(2002) holds. Assumption 3.2 (vii) implies Assumption GMM2 (a), (c) and (e) of

Andrews (2002). Thus, the part (a) of Assumption GMM22∗ of Andrews (2002) holds.

The part (b) therein is satisfied by Assumption 3.1 and 3.2 (vii). The part (c) follows

because m̂J(θ) is continuously differentiable with respect to θ2. The part (d) is satisfied

because J−1Z ∂ξ(α0,θ2)
∂θ′2

converges in probability to a nonrandom matrix uniformly over

Θ2 that is continuous at σ0. The part (e) follows from Assumption 3.2 (ii). Thus,

Assumption GMM22∗ of Andrews (2002) is verified. Assumption GMM3 of Andrews

(2002) holds by Assumption 3.2 (iv). Then by Theorem 1 of Andrews (1999), the

restricted GMM estimator θ̃2 is J1/2-consistent though not asymptotically normal in

general. Given the J1/2-consistent estimator b̃, the estimator φ̃ is obtained as in (3.16):

φ̃ =

0(k−1)×1 Ik−1

1 01×(k−1)

(E[xjx
′
j] −E[xj(MCj + η)]

) b̃
α0

 .
Because b̃ is J1/2-consistent, so is φ̃. This verifies Assumption A.6.
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Next we verify Assumption A.7. Note that

ξ(ϑ̃) ≡ δ(σ̃)− X̄Γ̂1α0 − X̄Γ̂2φ̃

= δ(σ̃) + pα0 −Xb̃

= ξ(θ̃). (B.34)

Let ξ̃ ≡ ξ(ϑ̃) = ξ(θ̃) = [ξ̃1, . . . , ξ̃J ]′, δ̃j = δj(σ̃) and ξ̃j = δ̃j +pjα0−x′j b̃. The covariance

matrix estimates are given by

C̃J ≡ ĈJ(ϑ̃) = J−1

J∑
j=1

zjpj ξ̃jz
′
j,

Σ̃J ≡ Σ̂J(ϑ̃) = J−1

J∑
j=1

zjz
′
j ξ̃

2
j .

We will show that

C̃J − VMC ξE[J−1Z ′Z]
p−→ 0, (B.35)

Σ̃J − VξξE[J−1Z ′Z]
p−→ 0. (B.36)

Write

C̃J = J−1

J∑
j=1

zjpj ξ̃jz
′
j

= J−1

J∑
j=1

zjz
′
j ξ̃j(pj −MCj − η) + J−1

J∑
j=1

zjz
′
j ξ̃j(MCj + η). (B.37)

Note that by Assumption 3.2 (ii)

J−1

J∑
j=1

‖zj‖2 = J−1

J∑
j=1

tr(zjz
′
j)

= tr
(
J−1Z ′Z

)
= Op(1), (B.38)
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The first term in (B.37) can be written as

J−1

J∑
j=1

zjz
′
j ξ̃j(pj −MCj − η) = J−1

J∑
j=1

zjz
′
j(ξj + (δ̃j − δj)− x′j(b̃− b))(pj −MCj − η).

Note that

‖J−1

J∑
j=1

zjz
′
jξj(pj −MCj − η)‖ ≤ J−1

J∑
j=1

‖zjz′j‖ max
1≤j≤J

|ξj| max
1≤j≤J

|pj −MCj − η|

→ 0,

where the convergence is due to max1≤j≤J |ξj| = op(J
1/2) which holds by the indepen-

dence of ξj’s and its finite second moment, J1/2 max1≤j≤J |pj −MCj − η| = op(1), and

(B.38). Moreover,

J∑
j=1

zjz
′
j(δ̃j − δj)(pj −MCj − η) ≤

J∑
j=1

‖zjz′j‖ max
1≤j≤J

|δ̃j − δj| max
1≤j≤J

|pj −MCj − η|

→ 0, (B.39)

where the convergence is due to max1≤j≤J |δ̃j − δj| = op(1) and J1/2 max1≤j≤J |pj −
MCj − η| = op(1), and (B.38). In addition,

J∑
j=1

zjz
′
jx
′
j(b̃− b)(pj −MCj − η) ≤

J∑
j=1

‖zjz′j‖ max
1≤j≤J

‖xj‖‖b̃− b‖ max
1≤j≤J

|pj −MCj − η|

→ 0, (B.40)

where the convergence holds because max1≤j≤J ‖xj‖ = op(J
1/2), J1/2(b̃ − b) = Op(1),

J1/2 max1≤j≤J |pj−MCj−η| = op(1), and (B.38). Thus the first term on the right-hand

side (RHS) of (B.37) is asymptotically negligible:

J−1

J∑
j=1

zjz
′
j ξ̃j(pj −MCj − η)

p−→ 0. (B.41)
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Next consider the second term J−1
∑J

j=1 zjz
′
j ξ̃j(MCj + η) in (B.37). Write

J−1

J∑
j=1

zjz
′
j ξ̃j(MCj+η)−J−1

J∑
j=1

zjz
′
jξjMCj = J−1

J∑
j=1

zjz
′
j(ξ̃j−ξj)MCj−J−1

J∑
j=1

zjz
′
j ξ̃jη.

(B.42)

Using the triangle inequality and the matrix norm product inequality, the first term

on the RHS of (B.42) can be bounded as

‖J−1

J∑
j=1

zjz
′
j(ξ̃j − ξj)MCj‖ = ‖J−1

J∑
j=1

zjz
′
j(δ̃j − δj)MCj − x′j(b̃− b)MCj‖

≤ J−1

J∑
j=1

‖zjz′jMCj‖ max
1≤j≤J

|δ̃j − δj|+ J−1

J∑
j=1

‖zjz′j‖‖b̃− b‖ max
1≤j≤J

‖xj‖

(B.43)

Using Cauchy-Schwarz inequality,

J−1

J∑
j=1

‖zjz′jMCj‖ ≤

(
J−1

J∑
j=1

‖zj‖4

)1/2(
J−1

J∑
j=1

MC2
j

)1/2

. (B.44)

The last term on the RHS of (B.44) is bounded in probability because MCj’s are

i.i.d. with finite second moments. The first term on the RHS of (B.44) is bounded in

probability by Assumption 3.2 (ii). Using max1≤j≤J |δ̃j − δj| = op(1), the first term of

(B.43) is bounded. The second term of (B.43) is bounded using (B.38) and the fact

that ‖b̃− b‖max1≤j≤J ‖xj‖ = op(1). Finally, we show that

J−1

J∑
j=1

zjz
′
j ξ̃j

p−→ 0. (B.45)

Proceeding similarly to previous calculations, we obtain

J−1

J∑
j=1

zjz
′
j(ξ̃j − ξj)

p−→ 0.
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Let zjs denote the s-th element of zj. Since

E

[
J−1

J∑
j=1

zjz
′
jξj

]
= 0,

and by Assumption 3.2 (ii)

V

[
J−1

J∑
j=1

zjzjsξj

]
= E

[
J−2

J∑
j=1

zjz
′
jz

2
js

]

= J−1E

[
J−1

J∑
j=1

‖zj‖2z2
js

]
→ 0,

(B.45) follows. Combining (B.42) and (B.45), we have

J−1

J∑
j=1

zjz
′
j ξ̃j(MCj + η)− J−1

J∑
j=1

zjz
′
jξjMCj

p−→ 0. (B.46)

By Assumption 3.2 (v) and (vi),

J−1

J∑
j=1

zjz
′
jξjMCj = E

[
J−1

J∑
j=1

zjz
′
jξjMCj

]
+ op(1) (B.47)

= VMC ξE[J−1Z ′Z] + op(1). (B.48)

We next show that

J−1

J∑
j=1

zjz
′
j ξ̃

2
j − J−1

J∑
j=1

E[zjz
′
jξ

2
j ]

p−→ 0. (B.49)

Write

J−1

J∑
j=1

zjz
′
j ξ̃

2
j = J−1

J∑
j=1

zjz
′
jξ

2
j + J−1

J∑
j=1

zjz
′
j(ξ̃

2
j − ξ2

j ).
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It suffices to show that the second term converges to 0. By the triangle inequality,

‖J−1

J∑
j=1

zjz
′
j(ξ̃

2
j − ξ2

j )‖ ≤ J−1

J∑
j=1

‖zjz′j‖|ξ̃2
j − ξ2

j |. (B.50)

On noting that ξ̃j = ξj + δj − δj − x′j(b̃− b),

ξ̂2
j = ξ2

j + (δ̃j − δj)2 + (b̃− b)′xjx′j(b̃− b) + 2ξj(δ̃j − δj)− 2ξjx
′
j(b̃− b)− 2(δ̃j − δj)x′j(b̃− b).

(B.51)

Hence

J−1

J∑
j=1

‖zjz′j‖|δ̃2
j − δ2

j | ≤

(
J−1

J∑
j=1

‖zjz′j‖

)
max

1≤j≤J
|δ̃2
j − δ2

j |

p−→ 0. (B.52)

Using max1≤j≤J ‖xj‖ = op(J
1/2),

J−1

J∑
j=1

‖zjz′j‖(b̃− b)′xjx′j(b̃− b) ≤

(
J−1

J∑
j=1

‖zjz′j‖

)
max

1≤j≤J
|x′j(b̃− b)|2

→ 0. (B.53)
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Using Cauchy-Schwarz inequality gives the following convergence results:

J−1

J∑
j=1

‖zj‖2|ξj||δ̃j − δj| ≤

√√√√J−1

J∑
j=1

‖zj‖4

√√√√J−1

J∑
j=1

ξ2
j max

1≤j≤J
|δ̃j − δj|

p−→ 0,

(B.54)

J−1

J∑
j=1

‖zj‖2|ξjx′j(b̃− b)| ≤

√√√√J−1

J∑
j=1

‖zj‖4

√√√√J−1

J∑
j=1

‖xjξj‖2‖b̃− b‖ p−→ 0,

(B.55)

J−1

J∑
j=1

‖zj‖2|(δ̃j − δj)x′j(b̃− b)| ≤

(
J−1

J∑
j=1

‖zj‖2

)
max

1≤j≤J
|δ̃j − δj| max

1≤j≤J
|x′j(b̃− b)|

p−→ 0.

(B.56)

From (B.50)-(B.56),

J−1

J∑
j=1

zjz
′
j ξ̃

2
j − J−1

J∑
j=1

zjz
′
jξ

2
j

p−→ 0.

Note that

E

[
J−1

J∑
j=1

zjz
′
jξ

2
j

]
= E[J−1Z ′Z]Vξξ

and by the independence of ξj’s

V [J−1

J∑
j=1

zjzjsξ
2
j ] = E

[
J−2

J∑
j=1

zjz
′
jz

2
js(ξ

2
j − Vξξ)2

]
,

where zjs denotes the s-th element of zj. Since

E

[
J−1

J∑
j=1

zjz
′
jz

2
js

]
= E

[
J−1

J∑
j=1

‖zj‖2z2
js

]
= O(1),

we have

V [J−1

J∑
j=1

zjzjsξ
2
j ] = E

[
J−2

J∑
j=1

zjz
′
jz

2
js(ξ

2
j − Vξξ)2

]
→ 0.
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Then (B.49) follows by Chebyshev’s inequality.

To verify Assumption A.7, it remains to show that Σ̂G1G1 − ΣG1G1

p−→ 0 where

Σ̂G1G1 = J−1

J∑
j=1

z̄j z̄
′
jp

2
j − J−1Z̄ ′p(J−1Z̄ ′p)′. (B.57)

Since J−1/2Z̄ ′p = J−1/2Z̄ ′(MC+ηιJ)+op(1) = J−1/2
∑J

j=1(zj−E[J−1Z ′X](E[xjx
′
j])
−1xj)(MCj+

η), the covariance matrix ΣG1G1 of the Jacobian J−1/2Z̄ ′p is given by the limit of

E[J−1

J∑
j=1

(zj − E[J−1Z ′X](E[xjx
′
j])
−1xj)(zj − E[J−1Z ′X](E[xjx

′
j])
−1xj)

′(MCj + η)2]

− E[J−1Z̄ ′(MC + ηιJ)](E[J−1Z̄ ′(MC + ηιJ)])′. (B.58)

The first term of (B.58) can be rewritten as

E[J−1

J∑
j=1

(zj − E[J−1Z ′X](E[xjx
′
j])
−1xj)(zj − E[J−1Z ′X](E[xjx

′
j])
−1xj)

′(MCj + η)2]

= J−1E

[
J∑
j=1

zjz
′
j(MCj + η)2

]
− E[J−1Z ′X](E[xjx

′
j])
−1E

[
J−1

J∑
j=1

xjz
′
j(MCj + η)2

]
(B.59)

− E

[
J−1

J∑
j=1

zjx
′
j(MCj + η)2

]
(E[xjx

′
j])
−1E[J−1X ′Z] (B.60)

+ E[J−1Z ′X](E[xjx
′
j])
−1E

[
J−1

J∑
j=1

xjx
′
j(MCj + η)2

]
(E[xjx

′
j])
−1E[J−1X ′Z].

(B.61)

Rewrite the first term on the RHS of (B.57) as

J−1

J∑
j=1

z̄j z̄jp
2
j = J−1

J∑
j=1

z̄j z̄
′
j(pj −MCj − η)2 + 2J−1

J∑
j=1

z̄j z̄
′
j(MCj + η)(pj −MCj − η)

+ J−1

J∑
j=1

z̄j z̄
′
j(MCj + η)2. (B.62)
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The first and the second on the RHS of (B.62) are op(1) because, using J−1Z̄ ′Z̄ = Op(1)

and J−1
∑J

j=1 z̄j z̄
′
jMCj = Op(1) (Assumption 3.2 (ii) and (v)), we have

J−1

J∑
j=1

z̄j z̄
′
j(pj −MCj − η)2 ≤ J−1

J∑
j=1

z̄j z̄
′
j max

1≤j≤J
(pj −MCj − η)2 p−→ 0,

J−1

J∑
j=1

z̄j z̄
′
j(MCj + η)(pj −MCj − η) ≤ J−1

J∑
j=1

z̄j z̄
′
j(MCj + η) max

1≤j≤J
|pj −MCj − η|

p−→ 0.

Thus,

J−1

J∑
j=1

z̄j z̄jp
2
j = J−1

J∑
j=1

z̄j z̄
′
j(MCj+η)2+op(1) = J−1

J∑
j=1

z̄j z̄
′
j(MC2

j+2MCjη+η2)+op(1),

(B.63)

Using z̄j = zj − Z ′X(X ′X)−1xj, rewrite

J−1

J∑
j=1

z̄j z̄
′
j(MCj + η)2

= J−1

J∑
j=1

(zj − Z ′X(X ′X)−1xj)(zj − Z ′X(X ′X)−1xj)
′(MCj + η)2

= J−1

J∑
j=1

zjz
′
j(MCj + η)2 − Z ′X(X ′X)−1J−1

J∑
j=1

xjz
′
j(MCj + η)2

− J−1

J∑
j=1

zjx
′
j(MCj + η)2(X ′X)−1X ′Z + Z ′X(X ′X)−1J−1

J∑
j=1

xjx
′
j(MCj + η)2(X ′X)−1X ′Z.

Invoking Assumption 3.2 (ii), (v) and CMT, and using the expressions (B.59)-(B.61),

we obtain

J−1

J∑
j=1

z̄j z̄
′
j(MC2

j + 2MCjη + η)2

− E[J−1

J∑
j=1

(zj − E[J−1Z ′X](E[xjx
′
j])
−1xj)(zj − E[J−1Z ′X](E[xjx

′
j])
−1xj)

′(MCj + η)2]
p−→ 0,

66



From (B.63),

J−1

J∑
j=1

z̄j z̄jp
2
j − E[J−1

J∑
j=1

(zj − E[J−1Z ′X](E[xjx
′
j])
−1xj)(zj − E[J−1Z ′X](E[xjx

′
j])
−1xj)

′(MCj + η)2]

p−→ 0. (B.64)

Furthermore, using J−1Z̄ ′p = J−1Z̄ ′(MC + ηιJ) + op(1) and Assumption 3.2 (i) and

(ii), we have

J−1Z̄ ′(MC + ηιJ)− E[J−1Z̄ ′(MC + ηιJ)]

= J−1Z ′(MC + ηιJ)− E[J−1Z ′(MC + ηιJ)]

−
(
J−1Z ′X(J−1X ′X)−1J−1X ′(MC + ηιJ)− E[J−1Z ′X](E[xjx

′
j])
−1E[xj(MCj + η)]

)
+ op(1)

p−→ 0.

Since E[J−1Z̄ ′(MC + ηιJ)]− E[J−1Z ′X](E[xjx
′
j])
−1E[xj(MCj + η)] = 0 by (B.27), it

follows that J−1Z̄ ′p
p−→ 0. The latter combined with (B.64) yields Σ̂G1G1 −ΣG1G1

p−→
0. Therefore, Assumption A.7 is satisfied. It follows that the C(α)-type statistic

based on the reparameterized moment function is asymptotically χ2
1 distributed under

H0 : α = α0. Finally, we verify the invariance properties of the test statistics. From

(3.15), the sample moment function is invariant to reparameterization:

m̂J(θ) = m̂J(ϑ). (B.65)

For ĜJ,2(θ) =
[
ĜJ,b(θ), ĜJ,σ2(θ)

]
=
[
−J−1Z ′X, J−1Z ′ ∂δ(σ)

∂σ2′

]
,

ĜJ,2(ϑ) = [ĜJ,φ(ϑ), ĜJ,σ2(ϑ)]

=

[
−J−1Z ′X(E[xjx

′
j])
−1Ek, J−1Z ′

∂δ(σ)

∂σ2′

]

=

[
−J−1Z ′X, J−1Z ′

∂δ(σ)

∂σ2′

](E[xjx
′
j])
−1Ek 0k×k

0k×k J−1Z ′ ∂δ(σ)
∂σ2′


= ĜJ,2(θ)B̄. (B.66)
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Therefore, using (B.66), Ĝn,2(θ) = Ĥn,2(θ) and Σ̂n(ϑ) = Σ̂n(θ)

MΣ̂n(ϑ)−1/2Ĥn,2(ϑ)

= IL − Σ̂n(ϑ)−1/2Ĥn,2(ϑ)(Ĥn,2(ϑ)′Σ̂n(ϑ)−1Ĥn,2(ϑ))−1Ĥn,2(ϑ)′Σ̂n(ϑ)−1/2,

= IL − Σ̂n(θ)−1/2Ĥn,2(θ)B̄(B̄Ĥn,2(θ)′Σ̂n(θ)−1Ĥn,2(θ)B̄)−1B̄Ĥn,2(θ)′Σ̂n(θ)−1/2,

= MΣ̂n(θ)−1/2Ĥn,2(θ). (B.67)

This combined with (B.65) yields the invariance of the ARα statistic to reparameteri-

zation:

ARα(α0) = J m̄J(θ̃)′Σ̂J(θ̃)−1m̄J(θ̃),

= J m̄J(ϑ̃)′Σ̂J(ϑ̃)−1m̄J(ϑ̃)

d−→ χ2
l−k. (B.68)

Let X̄ = [X,−p] = [x̄1, . . . , x̄J ]′. Next we show the invariance of the C(α)-type statis-

tic. The robust Jacobian estimator defined in (2.9) takes the following form in the

reparameterized model:

ĤJ,1(ϑ) = ĤJ,α(ϑ) = −J−1Z ′X̄Γ1 +

(
J−1

J∑
j=1

zjx̄
′
jΓ1ξj(ϑ)z′j

)
Σ̂J(ϑ)−1m̄J(ϑ),

where we used (B.22). Since ξj(ϑ)z′jΣ̂J(ϑ)−1m̄J(ϑ) is scalar, we may rewrite the Jaco-

bian estimator above as

ĤJ,α(ϑ) = −J−1Z ′X̄Γ1 +

(
J−1

J∑
j=1

zjx̄
′
jΓ1ξj(ϑ)z′j

)
Σ̂J(ϑ)−1m̄J(ϑ),

=

[
−J−1Z ′X̄ + J−1

J∑
j=1

zjx̄
′
jξj(ϑ)z′jΣ̂J(ϑ)−1m̄J(ϑ)

]
Γ1

= [ĤJ,b(θ), ĤJ,α(θ)]Γ1.
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Similarly, we have

ĤJ,φ(ϑ) =

[
−J−1Z ′X̄ + J−1

J∑
j=1

zjx̄
′
jξj(ϑ)z′jΣ̂J(ϑ)−1m̄J(ϑ)

]
Γ2 = [ĤJ,b(θ), ĤJ,α(θ)]Γ2.

In sum, [ĤJ,α(ϑ), ĤJ,φ(ϑ)] = [ĤJ,b(θ), ĤJ,α(θ)]Γ and

[ĤJ,α(ϑ), ĤJ,φ(ϑ), ĤJ,σ2(ϑ)] = [ĤJ,b(θ), ĤJ,α(θ), ĤJ,σ2(θ)]

Γ 0

0 Ik

 .
Now applying the Proposition 4.2 of Dufour, Trognon, and Tuvaandorj (2017), we

obtain the invariance of the robust C(α) statistic from which it follows that

Cα(α0)
d−→ χ2

1. (B.69)

Next we consider the rank statistic (2.23). Using (B.67),

MΣ̂J (ϑ)−1/2ĤJ,2(ϑ)Σ̂J(ϑ)−1/2ĤJ,1(ϑ) = MΣ̂J (ϑ)−1/2ĤJ,2(ϑ)Σ̂J(ϑ)−1/2
[
ĤJ,b(θ), ĤJ,α(θ)

]
Γ1

= MΣ̂J (ϑ)−1/2ĤJ,2(ϑ)Σ̂J(ϑ)−1/2
[
ĤJ,b(θ)Γ11 + ĤJ,α(θ)

]
= MΣ̂J (θ)−1/2ĤJ,2(θ)Σ̂J(θ)−1/2ĤJ,α(θ). (B.70)

Since ÛJ(ϑ) = [α, 1]Ω̂ε
J(ϑ)−1[α, 1]′, where Ω̂ε

J(θ) is as defined in (2.20), is scalar, we

thus have

T̂J(ϑ)′MΣ̂J (ϑ)−1/2ĤJ,2(ϑ)T̂J(ϑ) = J ĤJ,α(ϑ)′Σ̂J(ϑ)−1/2MΣ̂J (ϑ)−1/2ĤJ,2(ϑ)Σ̂J(ϑ)−1/2ĤJ,α(ϑ)ÛJ(ϑ)

= J ĤJ,α(θ)′Σ̂J(θ)−1/2MΣ̂J (θ)−1/2ĤJ,2(θ)Σ̂J(θ)−1/2ĤJ,α(θ)ÛJ(ϑ)

= T̂J(θ)′MΣ̂J (θ)−1/2ĤJ,2(θ)T̂J(θ)ÛJ(ϑ)/ÛJ(θ)

d−→ T ′∞MΣ−1/2H2
T∞U∞(ϑ0)/U∞(θ0). (B.71)

Therefore, the rank statistic (2.23) is invariant under the reparameterization up to the

scale factor ÛJ(ϑ)/ÛJ(θ). Using (B.68), (B.69) and (B.71) and invoking the CMT, we

obtain the asymptotic distribution of the CLR statistic.
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Proof of Proposition 3.2. Again, we only provide the proof for the test statistics based

on the sample moment function (3.9). We write ξ(α0, θ2) = ξ(α0, θ2, pt, st, xt). The dif-

ferentiability of the sample moment function holds as in the proof of Proposition 3.1.

The compact support condition for the observed data (p′t, s
′
t, x
′
t)
′, the parameter space

assumption and the continuity of ξt(α0, θ2) and ∂ξt(α0, θ2)/∂σ2′ in their arguments

imply that ξt(α0, θ2) and ∂ξt(α0, θ2)/∂σ2′ are bounded random vectors with finite mo-

ments. Therefore, E[‖zt∂ξt(α0, θ2)/∂σ2′‖] < E[‖zt‖]M̄ <∞ for some constant M̄ > 0.

Lemma 2.4 of Newey and McFadden (1994) then gives

sup
θ2∈Θ2

‖T−1Z ′∂ξ(α0, θ2)/∂θ′2 − E[zt∂ξt(α0, θ2)/∂θ′2]‖ p−→ 0, (B.72)

where E[zt∂ξt(α0, θ2)/∂θ′2] is continuous in θ2. This verifies Assumption A.1. Similarly

to (B.72), we obtain

sup
θ2∈Θ2

‖T−1Z ′ξ(α0, θ2)− E[ztξt(α0, θ2)]‖ p−→ 0. (B.73)

Assumption A.2 is verified as in Proposition 3.1. Assumption A.4 follows from Assump-

tion 3.3 on noting that ĜT (ϑ) = T−1Z ′MXp and the probability limits of T−1Z ′X

and T−1Z ′∂δ(σ0)/∂σ2′ have full rank. Assumptions A.3 is implied by Assumptions

3.1 and 3.4. To see this, using the fact that pt lies in a compact set, note that

E[‖ztξt‖2+ε] < E[‖zt‖2+ε]M̄ < ∞ and E[‖ztpt‖2+ε] < E[‖zt‖2+ε]M̄ < ∞ for some

constant M̄ > 0 Therefore, T−1/2Z ′MXp and T−1/2Z ′ξ obey the CLT (see also Frey-

berger (2015)).

Next, we verify Assumption A.6. Again, this is established by verifying the assump-

tions of Andrews (2002). On noting that E[‖ztξt(α0, θ2)ξt(α0, θ2)′z′t‖] ≤ E[‖zt‖2‖ξt(α0, θ2)‖2] <

E[‖zt‖2]M̄ <∞ for some M̄ > 0, by Lemma 2.4 of Newey and McFadden (1994) and

i.i.d. assumption

sup
θ2∈Θ2

‖T−1

T∑
t=1

ztξt(α0, θ2)ξt(α0, θ2)′z′t − E[ztξt(α0, θ2)ξt(α0, θ2)′z′t]‖
p−→ 0, (B.74)
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where E[ztξt(α0, θ2)ξt(α0, θ2)′z′t] is continuous in θ2. Combining this with the com-

pactness of the parameter space in Assumption 3.1, the identifiability of θ02 and

the nonsingularity of E[‖ztξ(α0, θ2)ξt(α0, θ2)′z′t‖] in Assumption 3.3, and using The-

orem 2.1 of Newey and McFadden (1994), we obtain the consistency of the restricted

GMM estimator θ̃2. Thus, Assumption GMM1 of Andrews (2002) holds. Assump-

tion GMM2 (a), (c) and (e) of Andrews (2002) follows from the uniform LLN for

T−1Z ′ξ(α, θ2) in (B.73), E[ztξt(θ0)] = 0, and (B.74) combined with the continuity

of E[ztξ(α0, θ2)ξt(α0, θ2)′z′t] at θ02, respectively. Thus, the part (a) of Assumption

GMM22∗ of Andrews (2002) holds. The part (b) therein is satisfied by Assumption

3.1 and the continuous differentiability of E[ztξt(α0, θ2)] with respect to θ2 which fol-

lows from the fact that ξt(α0, θ2) is continuously differentiable with respect to θ2,

E[supθ2∈Θ2
‖ztξt(α0, θ2)‖] ≤ E[‖zt‖ supθ2∈Θ2

‖ξt(α0, θ2)‖] <∞ and Lemma 3.6 of Newey

and McFadden (1994). The part (c) follows because ztξt(α0, θ) is continuously differen-

tiable with respect to θ2. The part (d) holds because T−1Z ∂ξ(α0,θ2)
∂θ′2

converges in proba-

bility uniformly over Θ2 to a nonrandom matrix continuous at θ02 as shown in (B.72).

Assumption GMM3 of Andrews (2002) holds because T−1/2Z ′ξ
d−→ N [0, E[ztξtξ

′
tz
′
t]] as

verified above. Then by Theorem 1 of Andrews (1999), the restricted GMM estimator

θ̃2 is T 1/2-consistent.

Assumption A.8 follows from the uniform LLN for the following sums established

similarly to (B.74):

T−1

T∑
t=1

ztξt(α0, θ2)
∂ξt(α0, θ2)′

∂θ2l

z′t, T−1

T∑
t=1

zt
∂ξt(α0, θ2)

∂θ2l

∂ξt(α0, θ2)′

∂θ2l

z′t,

where θ2l denotes the l-th element of θ2. Finally, noting that Assumptions A.6 and

A.8 imply Assumption A.7, and using the invariance properties of the test statistics

we obtain the result.
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C Alternative rank and CLR statistics

As in Kleibergen (2005, 2007) and Smith (2007), one may consider CLR-type statistic

based on the Robin and Smith (2000) rank statistic in which the robust Jacobian

is weighted by V̂Hn(θ)−1/2 , the inverse square root of the Jacobian variance matrix

(Jacobian-variance weighting):

V̂Hn(θ) =
n∑
i=1

[
vec(Gi(θ)− Ĝn(θ))

] [
vec(Gi(θ)− Ĝn(θ))

]′
+
[
Ĉn(θ)Σ̂n(θ)−1Ĝn,2(θ)− D̂n(θ)

] [
Ĝn,2(θ)′Σ̂n(θ)−1Ĝn,2(θ)

]−1

[
Ĉn(θ)Σ̂n(θ)−1Ĝn,2(θ)− D̂n(θ)

]′
− Ĉn(θ)Σ̂n(θ)−1Ĉn(θ)′, (C.1)

Ĉn(θ) =
[
Ĉ1n(θ)′, . . . , Ĉdn(θ)′

]′
∈ RdL×L,

D̂n(θ) =
[
D̂1n(θ)′, . . . , D̂dn(θ)′

]′
∈ RdL×L,

where Ĉjn(θ), i = 1, . . . , d, denotes the estimator of the covariance between the sample

moment functions and the Jacobian vector Ĝjn(θ), and D̂n(θ) is the left/right derivative

of Ĝjn(θ) with respect to θ2. The variance matrix (C.1) accounts for the additional

variation induced by the term

(
Ĉjn(θ)Σ̂n(θ)−1Ĝn,2(θ)− D̂jn(θ)

)
(Ĝn,2(θ)′Σ̂n(θ)−1Ĝn,2(θ))−1Ĝn,2(θ)′Σ̂n(θ)−1m̂n(θ)

in (2.4). For testing the full parameter vector with d ≥ 2, Andrews and Guggenberger

(2017) show that the CLR tests based on the Jacobian-variance weighting may not lead

to tests with correct asymptotic size in general. Andrews and Guggenberger (2017)

also show that the rank statistic of Robin and Smith (2000) weighted by Σ̂n(θ)−1/2, the

inverse square root of the sample moment variance matrix (moment-variance weight-

ing), as considered by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and

Smith (2012), leads to tests with asymptotically correct size but may entail a power

loss.

For the BLP application – a nonlinear IV model with a single endogenous variable

– in addition to the CLR statistic (2.19) (or (2.22)), we will use a simpler rank statistic
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in which exogenous variables that do not affect the identification of the price coefficient

are partialled out. Let Z̄ = MXZ = [z̄1, . . . , z̄J ]′ with z̄j = zj − Z ′X(X ′X)−1xj, j =

1, . . . , J . The robust Jacobian corresponding to the sample moment function (3.20) is

ĤM
J,α(θ) = ĜM

J,α(θ)− ĈM
J,α(θ)Σ̂M

J (θ)−1m̄M
J (θ), (C.2)

where

ĜM
J,α(θ) = J−1Z̄ ′p, ĈM

J,α(θ) = J−1

J∑
j=1

z̄jpjξj z̄
′
j, Σ̂M

J (θ) = J−1

J∑
j=1

z̄j z̄
′
jξ

2
j ,

m̄M
J (θ) = m̂M

J (θ)− ĜM
J,σ2(θ)(ĜM

J,σ2(θ)′Σ̂M
J (θ)−1ĜM

J,σ2(θ))−1ĜM
J,σ2(θ)′Σ̂M

J (θ)−1m̂M
J (θ),

ĜJ,σ2(θ) = J−1Z̄ ′
∂δ(σ)

∂σ2′ .

From the simplified moment condition (3.20) and the corresponding Jacobian (C.2), a

rank statistic RαM(θ01), an analog of Rα(θ01), can be constructed. We may also define

a simpler rank statistic

RαM1(θ01) = J ĤM
J,α(θ̃)′V̂ M

HJ(θ̃)−1ĤM
J,α(θ̃), (C.3)

where

V̂ M
HJ(θ) = Σ̂M

J,GαGα(θ)− ĈM
J,α(θ)Σ̂M

J (θ)−1/2MΣ̂MJ (θ)−1/2ĤJ,σ2 (θ)Σ̂
M
J (θ)−1/2ĈM

J,α(θ)′,

Σ̂M
J,GαGα(θ) = J−1

J∑
j=1

z̄j z̄
′
jp

2
j − J−1Z̄ ′pp′Z̄.

Since CLR-type statistics based on the three rank statistics Rα(θ01), RαM(θ01), and

RαM1(θ01) could have different properties, we investigate all versions in simulations.

Table 3 shows the performance of all versions of our tests for cost shifters with a

single random coefficient. It includes two alternative doubly-robust CLR-type statis-

tics: a CLRαM statistic computed from the simplified moment function and a CLRαM1

statistic also computed from (3.20) where the rank statistic Rα is replaced by the sim-

plified rank statistic RαM1 defined in (C.3). We show the rejection rates for the true
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value of α = 2, as well as testing power for α = 1.75 and α = 2.25.

The results confirm the good performance of the CLR-type statistics and the weaker

power of the ARα statistic. Even with the potential for greater accuracy, the properties

of the CLRαM and CLRαM1 tests are nearly identical to those of the CLRα. Inter-

estingly, the CLRαM1 places more weight on the Cα statistic, providing better power

when testing larger values of α, but less when testing smaller values.

D Eigenvalue adjustment

The eigenvalue adjustment procedure of Andrews and Guggenberger (2015a) is de-

scribed as follows. Let A be a nonzero positive semidefinite matrix of dimension

p × p, and ε > 0 be some constant. The spectral decomposition of A is given by

A = Γ∆Γ′, where ∆ = diag(λ1, . . . , λp), λ1 ≥ · · · ≥ λp ≥ 0, is the diagonal matrix

that consists of the eigenvalues of A, and Γ is an orthogonal matrix of the correspond-

ing eigenvectors. The eigenvalue adjusted matrix is defined as Aε = Γ∆εΓ′ where

∆ε = diag(max{λ1, λ1ε}, . . . ,max{λp, λ1ε}). The matrix Aε enjoys a number of im-

portant properties (see Andrews and Guggenberger (2015a)).

E Details on estimation and simulations

The model is estimated by MPEC and sparse grid integration. Dubé, Fox, and Su

(2012) showed that MPEC displays speed and convergence improvement over the tra-

ditional Nested Fixed Point algorithm using contraction mapping which is often used

with looser tolerance level. The normal distribution of β is estimated using sparse-grid

integration, which Skrainka and Judd (2011) showed to be faster, more precise and

less prone to convergence to local minima than Monte Carlo integration. For the cost

shifters, we use a 7-node approximation for the creation of the data and for the esti-

mation to avoid sampling error. We parameterize the model in terms of σ2 to avoid

the problem of reduced-rank Jacobian and improve convergence properties. The code

was written by Dubé, Fox, and Su (2012) and modified by Ketz (2017) and ourselves.

The need to estimate the model with α constrained far away from its true value makes
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Table 3: Rejection rates for all doubly-robust statistics (%)
Bound.

Yes No
param.
Endog.

Low High Low High
of price
α0 1.75 2.00 2.25 1.75 2.00 2.25 1.75 2.00 2.25 1.75 2.00 2.25

Strong, regular instruments

ARα 80.5 3.4 18.3 84.9 3.6 14.1 73.2 3.2 15.9 78.5 3.3 14.3
Cα 78.8 4.4 35.9 81.2 4.3 30.6 71.8 4.0 33.2 75.5 4.1 29.4
CLRα 83.0 3.7 26.9 86.7 3.8 20.7 75.9 3.4 23.8 80.8 3.5 20.4
CLRαM 82.7 3.7 26.4 86.5 3.7 20.6 75.8 3.4 23.7 80.4 3.2 19.8
CLRαM1 82.2 3.9 32.6 85.2 3.9 26.8 75.9 3.7 29.6 79.6 3.7 26.4

Weak, regular instruments

ARα 3.3 3.2 3.0 2.8 2.5 2.4 3.1 2.9 2.9 2.6 2.4 2.3
Cα 3.8 4.0 4.3 4.5 4.6 4.7 4.1 4.1 4.5 4.6 4.6 4.8
CLRα 3.2 3.2 3.2 3.0 2.8 2.6 3.3 3.1 3.1 3.0 2.6 2.5
CLRαM 3.1 2.9 2.9 2.7 2.5 2.4 3.2 2.9 2.8 2.6 2.4 2.4
CLRαM1 3.3 3.0 3.1 3.1 2.8 2.8 3.2 3.2 3.1 3.0 2.8 2.7

Uninformative, regular instruments

ARα 3.0 3.2 2.9 2.7 2.6 2.5 3.0 2.9 3.0 2.6 2.4 2.4
Cα 3.7 4.0 4.4 4.6 5.0 5.2 4.2 4.3 4.4 4.8 4.7 4.8
CLRα 3.1 3.1 3.0 3.0 2.9 2.8 3.2 3.1 3.0 2.8 2.7 2.7
CLRαM 2.9 2.8 2.7 2.6 2.5 2.5 3.1 3.0 2.8 2.6 2.4 2.5
CLRαM1 3.2 3.0 3.0 3.1 3.1 3.1 3.1 3.1 2.9 2.8 2.8 3.0

Note: Nominal sig. level: 0.05. Low endogeneity: ρ = 0.3; high endo-
geneity: ρ = 0.8. Boundary parameter: σ2 = 0; no boundary parameter:
σ2 = 1. Strong instruments: κ = 3; weak instruments: κ = 0.055.
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convergence of the MPEC algorithm significantly more challenging than for α = α0.

To improve convergence of the algorithm, we bound market shares away from zero

to avoid rank degeneracy of the Jacobian and Hessian matrices in intermediate steps.

Also, logit probability market shares cannot be computed if δjt+x
′
jtΣ

1/2
β v takes exceed-

ingly large values for some j, t because of exponentiation. Since these quantities enter

the logit fractions at the numerator and denominator, the problem can be avoided by

appropriate scaling.

The estimation is done by CU-GMM. As previously mentioned, the CU-GMM

auxiliary estimate is not necessary for the validity of our robust statistics, but it is

necessary for the non-boundary-robust statistics to which we compare them. The

starting values are based on a two-stage least squares estimation of a homogeneous

model and a starting guess for σ2 based on the magnitude of the OLS estimate of b.

Two other random starting points are used to avoid the convergence to local minima

which arises when testing values of α that are far from its true value. For the power

curves shown in Figure 1, instead of the first stage estimates, we use the estimates of

a neighboring value of α as starting values to increase convergence speed.

For simulations with BLP instruments, we generate the data and compute equi-

librium prices by adapting the program written by Armstrong (2016a). Estimation is

done with the same algorithm as for the cost shifters simulations. To minimize the

risk of simulation errors, the Monte Carlo integration is done with a 100 support point

distribution instead of the original 10.

Rejection rates are computed using 5,000 replications for all specifications, except

those with two random coefficients and with BLP instruments, which use 1,000 repli-

cations to avoid prohibitive computing time.

F Simulation results, non-boundary-robust statis-

tics

This section presents simulation results for non-boundary-robust statistics using cost

shifters in Table 4 and BLP instruments in Table 5.
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Table 4: Rejection rates at true value, non-boundary-robust statistics (%)
One random coefficient Two random coefficients

Boundary
Yes No Yes No

param.
Endog.

Low High Low High Low High Low High
of price

Strong instruments

AR 5.78 5.80 3.56 3.77 13.40 12.44 9.00 10.40
LM 13.12 13.42 6.96 8.33 26.10 27.48 17.40 18.10
CLR 8.26 8.30 4.64 5.08 15.90 15.65 10.20 10.70

Weak instruments

AR 5.68 4.68 4.10 3.58 8.60 7.10 4.71 4.10
LM 8.36 9.62 6.28 7.90 14.80 15.10 11.01 12.20
CLR 5.44 5.00 4.34 4.00 8.30 7.00 4.71 4.20

Uninformative instruments

AR 5.64 4.80 4.14 3.60 8.10 7.10 3.80 3.90
LM 8.26 10.02 6.60 8.38 14.10 14.70 12.00 10.50
CLR 5.46 5.20 4.44 3.92 7.80 6.60 4.00 4.40

Note: Nominal sig. level: 0.05. Low endog.: ρ = 0.3; high endog.:
ρ = 0.8. Boundary parameter: σ2 = 0; no boundary parameter: σ2 = 1.
Strong instruments: κ = 3; weak instruments: κ = 0.055; uninformative
instruments: κ = 0.
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Table 5: Simulations for BLP instruments, Non-boundary-robust statistics

Number. of
1 3 20

markets
Products 16 20 48 80 16 20 48 80
per 60 100 20 60 60 100 20 60 60 100
market 24 100 72 120 24 100 72 120

σ2 = 9, null rejection rate

AR 3.3 2.7 3.4 3.5 3.9 4.7 5.6 5.7 4.8 6.4
LM 7.4 7.6 6.6 6.5 6.9 6.4 4.8 6.7 5.4 4.9
CLR 3.5 3.1 3.6 3.6 4.0 4.5 5.4 5.7 4.8 6.7

σ2 = 9, power of test α = 0

AR 4.4 3.4 68.2 47.2 19.2 13.3 100.0 100.0 98.7 85.0
LM 11.8 9.2 45.3 45.5 21.9 14.4 61.2 89.9 58.8 55.3
CLR 5.6 4.2 68.1 48.1 19.6 13.0 100.0 100.0 98.6 85.2

σ2 = 0 (bound. param.), null rejection rate

AR 5.4 5.4 5.4 5.7 6.3 6.6 7.5 7.4 8.0 6.4
LM 12.4 10.2 11.0 9.4 9.7 8.8 5.8 5.8 6.8 6.5
CLR 5.7 6.4 6.2 6.2 6.5 6.8 7.7 7.2 7.6 6.2

σ2 = 0 (bound. param.), power of test α = 0

AR 10.4 8.3 83.6 74.4 35.9 22.7 100.0 100.0 99.9 96.2
LM 16.0 13.7 50.7 72.6 30.5 22.2 72.8 99.8 62.6 56.1
CLR 10.7 8.9 83.5 76.0 35.5 23.4 100.0 100.0 99.9 96.0

Note: Nominal sig. level: 0.05. Specifications with multiple markets
contain 1/3 of markets of each different size. All specifications have 1/3
of firms of size 2, 1/3 of size 5 and 1/3 of size 10.
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