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Abstract

We introduce noncausal processes to the count time series literature. These processes are defined
by time-reversing an INAR(1) process, a non-INAR(1) Markov affine count process, or a random
coefficient INAR(1) [RCINAR(1)] process. We show that for INAR(1) and RCINAR(1), the
causal process and its noncausal counterpart are closely related through a same queuing system
with different stochastic specifications. The noncausal processes we introduce are generically
time irreversible and have some unique calendar time dynamic properties that are unreplicable
by existing causal models. In particular they allow for locally bubble-like explosion, while at
the same time being stationary. These processes have closed form calendar time conditional
probability mass function, which facilitates nonlinear forecasting.
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1 Introduction

Recently, real-valued linear noncausal processes have raised interest in the econometric literature
thanks to their ability of capturing irreversible!, bubble-like phenomena, that are widely observed
in financial applications [see e.g. Lanne and Saikkonen (2013); Gouriéroux and Zakoian (2017)].
However, these models are not suitable for (low) count processes. To motivate the need for
introducing “bubbles" for count processes, we display in Figure 1 the hourly amount of rainfall,

measured by a rain gauge as multiples of mm in an Indian city.?
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Figure 1: Hourly rainfall on June 15th, 16th and 17th in 2013 in Dehradun, Uttarakhand, India.
This extreme rainfall resulted in the 2013 North India floods, with a casualty of more than 5000
killed.

This kind of rainfall data is very important for the prediction of floods. We can see that
the amount process features cycles of “bubbles", or cloudbusts, characterized by a period of
continuous increase of the rainfall intensity analogous to the accummulation phase of a financial
bubble, followed by a sharp decrease, which spells the end of the cloudbust, that is the analog
of the burst of the bubble. In the aforementioned literature on continuously valued time series,
it has been shown that unlike standard autoregressive type processes, a new class of noncausal

processes can capture the bubble phenomenon very well. A similar problem exists for count

LA process is time reversible (resp. irreversible) if and only if its dynamics is the same (resp. different) in both
time directions. For a Markov process (X¢), this condition is equivalent to the symmetry (resp. asymmetry) of
the distribution of (Xt7 Xt+1).

2Thus these rainfall amounts are integer-valued. This figure is downloaded from the website of the Indian
Water Portal: https://www.indiawaterportal.org/articles/playing-uttarakhand-rainfall-data



time series, since the path of a standard, say, INAR(1) process usually only features occasional
abrupt positive jump followed by steady decrease, which is opposite to the phenomenon observed
in Figure 1. The aim of our paper is to formally introduce the notion of noncausality to the

count process literature. As the first step in this direction, we focus on Markov processes of the

type:
Xt

Xit1 = Z Zit41 + €141, v, (1)

i=1
where latent counts Z;¢41’s are independent of X; = {X;, X;_1,...}, whereas the shocks €;11’s
are i.i.d., independent of the X; and Z; ;11’s. The decomposition (1) leads to different dynamics

depending on the distributions selected for the Z; ;;1’s and for e;11:

a) If the Z;;41’s are i.i.d. Bernoulli variables, then process (X;) is integer-autoregressive of
order 1 [INAR(1)], [see McKenzie (1985), Al-Osh and Alzaid (1987)]. In the original model
of McKenzie (1985), it is also assumed that the shocks ¢;’s follow a Poisson distribution,
and Schweer (2015) shows that process (X;) is time-reversible, if and only if ¢, is Poisson
distributed. An INAR(1) process can be viewed as the decomposition of the total number
of customers X; ;1 into the sum of new arrivals ¢;;; and staying old customers ZlX:tl Zi 141
[see McCabe and Martin (2005); Schweer and Wichelhaus (2015)]. The INAR(1) is the most
famous count process model and a special attention will be paid in the paper to this family,

as well as its queuing interpretation.

b) The counts Z; ;11’s can also be ii.d. only, but non binary. This larger family includes,
among others, the negative binomial autoregressive process [NBAR(1), see Gouriéroux and
Lu (2019a)], in which the Z; ;11’s have geometric distribution and €;41 is negative binomial
with the same probability parameter, and the INARCH(1) [Weiss (2010)], in which both the
Z;i1+1’s and €41 are Poisson®. These processes are also called Galton-Watson process in the
probability literature [see e.g. Klebaner and Sagitov (2002)] and the term (EZX:'l Z;+1) can
be interpreted as the number of descendants from the X; existing customers, each of which

can independently give rise to 0, 1, 2... descendants.

¢) Alternatively, one can also extend the INAR(1) model a) by relaxing the i.i.d. assumption

3See also a complete list of existing affine count processes in Lu (2018).



of Z;+41’s and assume that they are only conditionally i.i.d. given a stochastic probability
parameter i1, which itself is an i.i.d. sequence that is independent of €;y1, as well as
past observations X;. This model is called random coefficient INAR(1), or RCINAR(1) [see
e.g. Zheng et al. (2007)]. This model has a similar queuing interpretation as the INAR(1)
process, but the probability of leaving of current customers ay41 is time-varying instead of

being constant.

Equation (1) defines a dynamic factor model with a random number of factors €11, Z1 441,...,
and Zx, 141 for date ¢. Since at each date t+1, this number, i.e. X;+1, is strictly larger than the
number of observables, i.e. 1, neither shocks €y, nor variables Z; ;11 can be deterministically
recovered (except for dates with X; = 0). Nevertheless, even if the underlying factors are not
recoverable, their distributions can be identified from the observation of (X;) only.

The major appeal of the INAR(1) model a) and its affine extension b) is that the conditional
probability generating function (p.g.f.) of X;;; given X;, which characterizes the transition

dlStrlbutlon, iS conv enientl y gl ven b y :
X X’ 4 t € 2
]E[U ¢ 1‘ t] == (]E[u it 1]) ]E[U t 1]. ( )

This conditional p.g.f. is an exponential affine function of the conditioning variable X;. In
particular (X;) is a Markov process with respect to the filtration X;. Such Markov processes
are called affine (or compound autoregressive) [see Darolles et al. (2006)]. In the count process
context, Lu (2018) shows that they have tractable marginal and predictive distributions at any
horizons.

Model (1) is called causal, since X;y1 does not depend on the values of the future errors
€t42, €143, ..., or future latent factors Z;;i2,7; 13, ¢ varying. The noncausal count process
introduced in this paper can be defined simply as a Markov process whose reverse time dynamics
is causal affine. Our main contributions are the following. First, we show that for noncausal
INAR(1) and noncausal RCINAR(1), an alternative, equivalent specification is based on the
aforementioned queuing interpretation, but with a different set of distributional assumptions
from the causal queuing interpretation. In particular, under the noncausal specification, the

number of arrivals are typically heteroscedastic across time and are dependent of the current



population size. Second, we characterize all the time reversible count processes satisfying model
(1). For INAR(1) models a) only the Poisson-INAR/(1) process is reversible; as for non-INAR(1),
affine models b), only the NBAR(1) process is reversible; among RCINAR(1) models ¢), the only
reversible process is another (marginally) negtive binomial process introduced by Joe (1996).
These examples are to be discarded from a modelling point of view since they are unable to
capture the (time) asymmetry of the bubble dynamics. Thirdly, we show that when process (1)
is time irrevrsible, its noncausal version is indeed suitable for capturing bubbles. In particular,
we show that when an affine [including INAR(1)] process is time reversed, the resulting noncausal
process has necessarily a non-affine dynamics. We then derive the closed form formula of this
conditional predictive p.m.f., and through various examples we demonstrate that it often features
multiple modes, with one near zero (corresponding to the burst of the bubble) and another one
away from zero (corresponding to the continuous increase of the bubble).

The rest of the paper is organized as follows. Section 2 studies the general, determinis-
tic properties of a queuing system with an infinite capacity. Section 3 explores the stochastic
specification of the queuing system such that the queue length has a dynamics compatible with
model (1). Section 4 derives the general properties of a time-reversed count process such as
time reversibility. We also give examples of noncausal INAR(1) processes allowing for closed
form conditional p.m.f. Section 5 derives the queueing interpretation of the noncausal INAR(1)
and noncausal RCINAR(1) processes, based on the queue introduced in Section 2. Section 6

concludes. Proofs and technical algorithms are gathered in Appendices.

2 A queuing system

In this section we extend the queuing system associated with the INAR(1) process [Pickands and
Stine (1997); McCabe and Martin (2005); Schweer and Wichelhaus (2015)] to a more general
framework. We temporarily leave the laws of various count variables unspecified, and focus on
the deterministic relationships between these variables. We do not assume model (1) in this

section.



2.1 A Lexis diagram

Imagine a bar with an infinite capacity.* It has existed since the infinite past and will keep
indefinitely open. Time is discrete and Z—valued. This double-sidedness will be essential later
on when we study the reverse time property of the queuing system. In particular, the date t =0
is not the origin of the bar, which is open since the infinite past. Moreover, the choice of this
time origin is not important, as we will focus on stationary queuing systems.

When a customer arrives at date t, she is immediately served and counts as a customer. At
the earliest she can leave the bar at date ¢t + 1, and she will no longer be a customer at the date
of departure. Hence, the duration spent by each customer® at the bar is at least equal to one.
We are interested in the counts of customers with various arrival and/or departure dates, as well
as the total number of customers at each date. To this end, for each couple (s,t) € Z? such that
s < t, we first denote by 7, ; the number of customers arriving at date s and leaving at date ¢t. It
is important to emphasize that this definition prioritizes neither the two dates s,t, nor the two
time directions. Indeed, for a given s, the sequence (7s,): is indexed in calendar time ¢, which
increases from s+ 1 to +00; on the other hand, given ¢, the sequence (7s)s is indexed in reverse
time, s decreasing from ¢ — 1 to —oo. Let us now report these count variables in the following

Lexis diagram:

0 Mi—1t Me—141  Me—1,042  Te—1,t43

0 N 141 N 142 Nepys oo (3)
0 Net1,t42  Tit1,i43
0

This is an infinite, upper triangular matrix, in which variable 7, ; appears on the s—th row and
the t-th column.® In particular, only terms strictly above the diagonal s = ¢ can be non zero due
to the constraint s < ¢t. In the next subsection we will see that, under reasonable assumptions,

this matrix is sparse.

4We could also follow the queuing literature and use the terminology of a queue with an infinity of servers.
However, we think that, compared to “queue", the terminology “bar" can better convey the idea that customers
in the bar do not wait to be served, whereas in many stochastic queue models, customers are served sequentially
by order of arrival.

5In the queuing literature, this duration is sometimes called service time.

6The direction of the s axis is southwards and the direction of the ¢ axis is eastwards.



2.2 Analyzing the arrival and departure cohorts

The doubly indexed sequence (7s,) will now serve as the building block of other count sequences

allowing to follow the movements of customers by either arrival, or departure cohort.

2.2.1 The arrival cohorts

For a given date s and each posterior date t > s, we denote by e4(¢) the number of customers
arriving at date s and staying at least until date ¢, with the convention that €s(s) = €5 is the
number of customers arriving at date s regardless of their departure date. Here index s is
prioritized, whereas integer ¢t appears merely as an argument of the s—indexed process. We call
index s the arrival cohort of these individuals, and €, the (initial) size of this cohort. Clearly,

the sequence €;4(t), where t > s, is nonincreasing in ¢, and we have:

0< s =es(t—1) —es(t), VE>s+1. (4)

Thus this sequence converges to a nonnegative integer limit, and 7+ is necessarily zero for large
t. Hence, in each row of the Lexis diagram (3), there are at most a finite number of positive

terms. Throughout the paper we assume that:
Assumption 1. For each given cohort s, sequence €,(t) is equal to zero for sufficiently large ¢.

In other words, there are no indefinitely staying customers. Then equation (4) can be equiv-

alently rewritten into:

€s(t) = Not41 + N t42 + Noe43 + -+, vVt > s, (5)

that is, those arriving at date s and staying until date ¢t will ultimately leave at one of the

following dates: t + 1, t 4+ 2, .... In particular, taking s = ¢, the above equality yields:

€s = s, s+1 +7737s+2—|—’r]57s+3_|-... . (6)

Equations (5) and (6) are easy to interpret using the Lexis diagram (3). Equation (6) says that

variables on the s—th row sum up to e5. Moreover, if we truncate this summation and keep only



terms on the right hand side (RHS) of 7, ; in the Lexis diagram, excluding s, we get (5) by

equation e4(t).

2.2.2 The departure cohorts

Let us now consider the departure time t of the customers. More precisely, for a given date ¢
and each s < t, we denote by €:(s) the number of customers leaving at date ¢ and arriving before

date s. This sequence is nondecreasing in s, and we have:

0<msy=¢&(s+1)—é&l(s), Vs <t—1. (7)

Thus each column of the Lexis diagram contains also a finite number of non zero terms and

similarly as Assumption 1, we assume that:
Assumption 2. For each given t, sequence €s(t) goes to 0 when s goes back to —co.

In other words, no customers have been in the bar since the infinite past. Thus, for small s,

both &/(s) (and hence also 75(t)) are equal to 0 and we have:

€(S) = Ne—1,t + Ms—2,p + Ns—zt + -+, Vs < t. (8)

In terms of the Lexis diagram, &(s) is obtained by summing all the terms above 7, ;. In particular,
when s = t, we get:

€ =€ (t) = Mm—10 + M—2t + N30+, 9)

which is the total number of customers leaving at date t, or the size of the departure cohort

t. It is equal to the sum of all elements on the t—th column of the Lexis diagram.

2.2.3 An arrival/departure duality

Let us now relate definitions (7), (8), (9) to equations (4), (5), (6). Instead of observing customers’
movements in calendar time (CT), alternatively we can observe them in reverse time (RT), that
is by looking at the time-reversed video.” In other words, for any ¢ € Z, the picture of the bar

taken at CT date t is observed at RT date —t. Therefore:

7Such a duality has previously been considered in the (continuous time) queuing literature by Foster (1959).



e When a customer arrives at CT date s € Z, s is also the earliest CT date when she is at
the bar. When the video is reversed, —s becomes her last RT date at the bar, hence she

leaves the bar at RT date —s + 1;

e Similarly, when the customer leaves at CT date t € Z, the last CT date when she is at the
bar is t — 1; when the time is reversed, —t 4+ 1 becomes her first RT date at the bar. In

other words she arrives at the bar at RT date —¢ + 1.

To summarize, we have the following duality table:

Arrival date | Departure date | Order of the two event dates
In calendar time S t s<t
In reverse time —t+1 —s+1 —t+1<—-s5+1

Table 1: Correspondence between calendar/reverse time and arrival/departure.

Reversing the time direction is equivalent to interchanging the arrivals and departures, taking
the opposite then shifting® by +1 all the dates. As a consequence, counts defined in Section
2.2.2, which concern the different CT departure cohorts, correspond to RT arrival cohorts. This
explains the similarity between equations (7), (8), (9) on the one hand, and equations (4), (5),
(6) on the other hand.

2.3 Analyzing the current customer counts

It remains to count the current number of customers X, regardless of their arrival or departure
cohort. We have:

Xe=e€+e€e—1(t) +e—o(t) +-- -, (10)

by decomposing by their arrival cohort t, t — 1, t — 2.... In the Lexis diagram, ¢; is the sum of
all the entries in the ¢-th row that are right to 7,41 (including this latter count); e,—1(¢) is the
sum of all the entries in the (¢ —1)-th row that are right to 7:—; 141 (including this latter count),

and so on. Thus we have:

Xt = ZZ%,T, (11)

s<t t<T

8This shift is due to the fact that when an individual arrives at date t, she is at the bar at date t. On the
other hand, if she leaves at date t, then by definition she is no longer at the bar at date ¢.



where the double summation is with respect to both arrival time s with s < ¢, and departure
time 7 with 7 > ¢. In other words X; is the sum of all the entries in the northeast of 1. +11, that
is:

Xe= > mij where A; = {(i,7) € Z%,i > t,j >t + 1}.
(4,7)€A:

Figure 2 below illustrates the region A; in the Lexis diagram.
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Figure 2: The infinite triangular area filled with northeast lines defines region A;. Count X;
is the sum of all variables in the Lexis diagram on region A; (borders included). When time ¢
increases, this region moves jointly eastwards and southwards.

Similarly, by counting the current customers according to their departure dates, we get:

Xe=6€41+ €1 (t+2)+E&1(E+3)+--- (12)

The corresponding Lexis diagram interpretation is that the double summation in (11) can be

10



alternatively conducted by exchanging the orders of summation, that is,

X, = ZZnS,T (13)

s<t t<T

= Zzns,‘r (14)

t<t s<t

= &(t+1)

t<t

=&+ a1 (t+2)+ & (t+3)+---, (15)

which is the RHS of equation (12). Thus, instead of first summing terms on the same rows [in
(13)] and then aggregating these partial sums, we can alternatively first sum terms on the same

columns [(14)].

2.4 Linking the departure and arrival population sizes

Finally, there also exists a relationship between the sizes of arrival cohorts (e;), those of departure
cohorts (&), as well as (X3):

€1+ Xop1 = Xy + €441, (16)

that is, at date ¢t + 1, the counts of leaving customers, €1, plus those currently in the bar,
X411, is equal to the previous customer count X; plus the new arrivals €;41. The interpretation
in terms of the Lexis diagram is that the integer points covered by A; and A;y; differ in two
ways [see Figure 1]. First, A; covers all the points on the (¢ + 1)-th column whereas A;y; covers

neither of them; Meanwhile, A;y; covers all the points on the (¢ + 1)-th row, but not A;.

2.5 Summary

To summarize, we have introduced four count sequences (1s,¢)s,t, (€s(t))s,t, (€:(5))s,t, (X¢)i- They

are linked as follows:
e There is a one-to-one correspondence between (1,¢)s,: and (e5(t))s,¢ [see eq. (4), (5)].

e There is a one-to-one correspondence between (15¢)s ¢ and (€:(s))s: [see eq. (7), (8)].

11



e (X,); is a linear combination of either (es(t))s,, or (€:(s))s.t, Or (Ns,t)s.¢ [see eq. (10), (12)].

e The sizes of departure cohorts (&), arrival cohorts (e;) and the count of current customers
(X:) are linked through (16). For a given (X}), this link between departure cohort sizes

(&) and arrival cohort sizes (e;) is one-to-one.

In particular, as in model (1), it is impossible to recover the other underlying latent counts from

the knowledge of (X3); alone.

3 Stochastic properties of the queuing system

The different counts in the queuing system, their interpretations and their interrelationships have
been explored in Section 2. Let us from now on assume that only (X;) is observed. This leads
to another latent factor model for (X;) that is a priori different from model (1), with a new
set of unrecoverable latent counts (es(t)) [or equivalently (€(s)), or (ns,)]. Nevertheless, under
distributional assumptions on these latent factors, the queuing factor model will constrain the
distribution of the observed process (X;). In this section we characterize the distributions of
the underlying latent counts (es(¢)) leading to a dynamics for (X;) that is compatible with the
INAR(1) model.?

3.1 The Markov property

Since model (1) is Markov, we will focus on stochastic specifications for the latent (e4(¢)) under

which the resulting process (X;) defined by equation (10) is Markov, that is:
€(Xt|Xt,1) = g(Xt|Xt71). (17)

Let us define €,(t — 1) as the information set of population sizes of various arrival cohorts at date
t—1:

et —1) ={es(t—1),s =t —1,t—2,..}.

9By the arrival/departure duality, such an analysis can also be conducted for the specifications of the latent
counts (€¢(s)). This is omitted due to space constraints.

12



The information set of all realized arrival counts up to time ¢t — 1 is: €4(t — 1) := {es(7),s <7 <

t—1} ={ns(7),s <7 <t —1}. These information sets are ordered by:
X1 C (Xi—1,ee(t — 1)) C co(t — 1).

Therefore, we have:

Lemma 1. A sufficient condition for (X:) to be Markov is that:
[(Xt|€.(t— 1)) :E(ththl). (18)

This lemma is intuitive and says that, if increasing the information set from X;_; to e€qo(t — 1)
does not improve the prediction of Xy, then increasing to an intermediate information set X;_;
should not provide extra useful information either. Let us now look for conditions for equation
(18) to hold. Since by equation (11), X} is the sum of €s(t), s varying, it will be convenient to

assuime:

Assumption 3. For two different arrival cohorts s; # so, the processes of population sizes of
different cohorts (e, (s1 + 7))r>0 and (€s,(s2 + 7))r>0 are i.i.d.

Under this assumption, €4(t) is independent of, and has the same distribution as €511 (¢t + 1).
Note, however, that within the same arrival cohort s, the process (e;(t))+s is generically serially
dependent and nonstationary (since this sequence is nonincreasing and goes to zero at infinity).

Next, we also assume that:

Assumption 4. Within each cohort s, the sequence of sizes (es(t)); is itself Markov, that is,

Coa(e®leslt = 1) es(t=2), ) = o (es®lest = 1)), Vst (19)

In other words the future size of an arrival cohort s at time ¢ depends only on its current
size, but not the previous oes. We use the double subscript s,¢ in £, (-] - ) since by definition
the conditional distribution of €;(t) given es(t — 1) has the support {0,1,...,e5(t — 1)}, and is
thus time-inhomogeneous. Moreover, by Assumption 3, £ .(-|es(t — 1)) as a measurable function

depends on s,t and e4(t — 1) only through €s(t — 1) and the time lag t — s.

13



When all the €,(t) have finite mean'®, we also have, by Assumption 3:

t

EX]= 3 Ele(0)] =3 Ele(t + 7)) (20)

S§=—00

Thus in order for X; to be almost surely finite, not only the population of a cohort (e;(t + 7)),
should decrease to zero when the “age" of the population 7 goes to infinity (that is Assumption

1), but the convergence speed should be sufficiently fast.

Example 1 (A conditionally binomial specification). Let us now give an example of specification
compatible with condition (20). If there exists a constant probability parameter « such that for
each s < t, the conditional distribution of e4(t) given €s(t — 1) is binomial B(es(t — 1), @), then
we have E[es(t)]es(t —1)] = aes(t — 1), and by iteration E[e(t)] = o' *E|e;], hence equation (20)
is satisfied. It will be shown in the next lemma that this specification is the only specification of

the queuing system satisfying Assumptions 3, 4, as well as equation (18).

Lemma 2. If the queuing system is such that both Assumptions 3, 4 and equation (18) are
satisfied, then, for any s < t, the conditional distribution of es(t) given es(t — 1) is binomial

Bles(t — 1), a).

Proof. See Appendix A.1. O

3.2 A queuing interpretation of the INAR(1) process

The following proposition is a direct consequence of the above Lemma 2. It says that in the above

Markov queuing system, the dynamics of the customer count process (X;) is indeed INAR(1).

Proposition 1 (Arrival cohort-disaggregated representation). The solution to the causal INAR(1)

model (1) has the disaggregate queuing representation (10), that is:
Xi=e+ea(t)+---,

where the joint distribution of (es(t)) is as follows:

10This finite mean assumption is made for expository purpose. In the following sections we will see examples
of stationary INAR(1) processes with E[es] = oo.

14



1. For a given cohort s, sequence (es(t)) is Markov and the conditional distribution of es(t+1)
given €5(t) is binomial with a fized parameter o € [0,1[. That is,

es(t)
&(t+1)=> Zispr1, V>, (21)
i=1

where Z; 141 are i.i.d. Bernoulli with parameter a and are independent of €s(t), es(t —

1),

2. The sequence (es) is i.i.d., and sequences (es(t))i>s are independent for different s.
Proof. See Appendix A.2. O

Let us recall that the causal INAR(1) model (1) satisfies: E[X;|X;—1] = aXi—1 + Ele],
provided that E[e] is finite. This is exactly the conditional expectation formula of a linear
AR(1) model, which also has an equivalent linear MA(oco) interpretation. Formula (10) can be
viewed as the (nonlinear) MA(oo) representation of X;. since for fixed ¢, the terms es(¢t) are

independent across s and conditionally follow binomial distribution with probability a!=*

and
size parameter € given €. In particular we have: E[e;(t)] = o' *E[e], so long as E[e] is finite.

We can also check that the collection of Z; 5 ;4+1’s in equation (21), where ¢ and s vary, is
equal to the collection of Z; ;11’s in equation (1). Indeed, in both cases these variables represent
the binary decisions of X; individuals of whether or not to stay at time ¢ + 1, depending on

whether the X, individuals are disaggregated by arrival cohort.!!

Remark 1. The above representation shares similarities with the integer-valued moving average
(INMA), or INARMA models [see e.g. Al-Osh and Alzaid (1988); Jgrgensen and Song (1998);
Enciso-Mora et al. (2009); Brannés and Quoreshi (2010) for discrete time processes and Wheatley
et al. (2018) for a continuous time analog]. For instance, an INMA(q) process, where ¢ is an

integer, has the representation:

q €t—i

Xi =€+ Z Z Zijts (22)

i=1 j=1

HNote that the same index in equations (21) and (1) does not necessarily correspond to the same “individual”.
Indeed, the underlying queuing system of the INAR(1) process assumes that customers of the same cohort are
exchangeable.
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where Z; ;+ are mutually independent when ¢,7,¢ vary, Bernoulli distributed with parameter
B; € [0,1], and are independent of X;_1, X;_o, ....

The main difference between representations (11) and (22) is that, in the former case, although
each component €;_;(t) has the same distribution as a' o €,_;, these terms are dependent within

the same cohort, that is when both ¢ and ¢ vary while keeping ¢ — ¢ constant.

The causal INAR(1) process is specified through the joint distribution of the cohort-by-
cohort population sizes (€5(¢))s . Then the distribution of departure counts (&(s))s,; is implicitly
derived through (7,.). What properties possesses the departure process? Can they also be i.i.d.?

The following proposition says that this is generically not the case:

Proposition 2 (The dynamics of the departure cohort size). Let us consider the INAR(1)
process (1) along with its corresponding queue defined in Proposition 1. Then the arrival process
(e1) and the departure process (&) are both i.i.d., if and only if €, (resp. &) is Poisson P(\)

distributed. Moreover, in this case, (&) is also i.i.d. and Poisson P(\) distributed.

This result complements Thm 1 in Schweer (2015), which says that process (X;) is time
reversible if and only if variable ¢; is Poisson P()) distributed.!? The “if" part of Proposition 2 is
easily illustrated using the Lexis diagram. If ¢; is P(A) distributed, then by the property of the
Poisson distribution, variables n;(t+1), n:(t +2),... in equation (6) are independent and Poisson

distributed with parameters a\, a\,...respectively. Thus & defined in (9) is still Poisson.

Proof. See Appendix A.3. O

3.3 A queuing interpretation of the RCINAR(1) process

The queuing system of the RCINAR(1) process is very similar to that of the INAR(1) process,
except that Assumption 3 is replaced by the assumption that the population counts €;(t), s vary-
ing are conditionally independent given (es;—1)s and a time-varying factor oy. More precisely,

we have the following result:

Proposition 3 (A queuing interpretation of the RCINAR(1) model). The solution to the causal,
RCINAR(1) model has the disaggregate queuing representation (10), where the joint distribution
of (es(t)) is as follows:

12Schweer’s result focuses on time reversibility whereas ours concerns the independence of the errors.
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1. For a given s, sequence (es(t)) is Markov and the conditional distribution of es(t+1) given

es(t) is conditionally binomial given the time-varying parameter oy € [0, 1], and oy is 4.4.d.
2. For any s1 # sa, variables €5, 111 and €5, 141 are independent given €5, 1, €5, + and oy.
3. The sequence (€5)s 15 i.i.d.

The proof is obvious and omitted.

3.4 Markov affine count process

In the above subsections we have focused on INAR(1) and RCINAR(1) processes, defined by
recursive equation (1) with i.i.d. Bernoulli variables Z;;+1’s. What happens in the affine case,
where the Z;;11’s are i.i.d., but with a possibly non-binomial count distribution? In this case
process (X;) generically no longer has the queuing interpretation. Indeed, we can still analo-
gously define the sequence e4(t) through the recursion e,(t) = Z;‘ﬁ_l) Zj s, for a fixed s, and
disaggregate X; into:

Xe=e€+e—1(t) +e—o(t)+---,

which is the MA(o0) representation of process (X;). Nevertheless, sequence (e,(t)); is no longer
nonincreasing, since the Z; ; ; can be larger than 1. Thus we can define neither the count sequence

ns(t) through equation (4), nor the departure counts (&).

4 Time reversing a Markov count process

Let us now analyze irreversible noncausal processes and their calendar time dynamics. This
provides new families of Markov dynamics for count process, that are easy to analyze under
closed-form. In particular we consider the noncausal geometric and the noncausal discrete stable
INAR(1) processes. We also explain why some of these dynamics are appropriate to capture

bubble phenomena.

4.1 The definition

Let us now give the definition of a noncausal count process.
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Definition 1. The process (X;) is noncausal affine, if it has the representation:

Xiq1

Vi, Xe= Y Ziités, (23)
i=1

where'® &1 is independent of X;11 = {Xi41,Xi42,...} and is i.i.d. acrosst; variables Z;;’s are
i.i.d. when t varies, and are independent of X¢y1 and &1. In particular, if Z;;’s are Bernoulli
distributed, we say that (X:) is noncausal INAR(1).

Alternatively, if Z;;’s are only i.i.d. and Bernoulli conditional on a commun probability

parameter oy which is itself i.i.d., then process (X;) is called noncausal RCINAR(1).

4.2 Time reversibility

The noncausal process (23) can be interpreted as a count process observed in reverse time. Let
us derive some general properties of such processes. First, we will see that the Markov and

stationarity properties are usually preserved by time revrsal.

Lemma 3 (See Section 1 of Cambanis and Fakhre-Zakeri (1995)). If process (X;) is stationary

and Markov in calendar time, then it is also stationary and Markov in reverse time.

Thus the noncausal INAR(1) process is also Markov. But what is the form of its calendar time
conditional distribution of X;;; given X;? For instance, if the reverse time dynamics is affine
(including INAR(1)), could the calendar time dynamics be also affine, that is, can process (X3)
have both a representation of type (1) and another representation of type (23)? To answer this
question we have to first discard the obvious case of time reversible processes for which the answer
is affirmative. By Thm 1 in Schweer and Wichelhaus (2015), the only time reversible INAR(1)
process is Poisson-INAR(1). By Darolles et al. (2006), Section 5, the only non-INAR(1) Markov
affine process that is reversible is the NBAR(1) process formally introduced by Gouriéroux and

Lu (2019a). Then we have the answer to the above question:

Lemma 4 (See Proposition 3 of Gouriéroux and Lu (2019b)). If the noncausal affine process

(23) is also affine in calendar time, and is weakly ergodic in both time directions, then it is time

13Note that we could have indexed the error term &; instead of €t+1. However we prefer the second indexation,
since it will be become clear later that this error term has the interpretation of the number of customers leaving
at date ¢ + 1.
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reversible.

Thus, except the two reversible cases, model (23) leads to a genuinely new, non-affine Markov
dynamics for count processes. Let us now show that such dynamics has quite unique properties
that distinguish them from the standard causal count processes of the literature.

Compared to the INAR(1) family, the RCINAR(1) family is substantially larger, but less

tractable'®. Nevertheless, we have the following result concerning the reversibility:

Proposition 4. If the sequence (cy) is i.i.d. and independent of (&), then the RCINAR(1)
process is time reversible if and only if («) is beta B(p,q) distributed, for some p,q € (0,00),

and (&) is negative binomial distributed NB(0,q), that is, the degree of freedom parameter is

equal to q, with p.g.f. E[u®] = (—guye-
Proof. See Appendix A.4. O

When (€;) is NB(0, q), we can check that the marginal distribution of (X) is NB(¢,p + q).
In this case we can easily check that the departure process ¢, is also i.i.d. NB(0,q). This process
is first introduced by Joe (1996) and applied to real data by Silva et al. (2019). It is non affine,
and is hence different from the NBAR(1) process introduced in Gouriéroux and Lu (2019a).
Nevertheless, if we keep the ratio of ﬁ = qg fixed and let p+ ¢ go to infinity, while at the same
time keeping the product g = Ay constant, then in the limiting case the beta (resp.) distribution
reduces to the Dirac mass at ag (resp. Ag). Hence we recover the Poisson-INAR(1) process as

the limiting process.

4.3 Calendar time dynamics of a noncausal INAR(1)

From now on we will focus on noncausal INAR(1) processes for which (e;) is not Poissonian, i.e.,
(X}) is irreversible. Since in practice X;11 is only observed after X, the noncausal representation
(23) is not directly usable for the forecasting of X1 given observation of X;. Let us now derive

the corresponding calendar time one-step-ahead conditional p.m.f. ¢(X;11]/X;). By the Bayes

1ndeed, these processes are non-affine, and the (joint or conditional) Laplace transforms of the process is
generically complicated.
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formula we have:

(X1, X)) U Xip1)

el X0 =" = o))

(X Xiq1), (24)

where ¢(X}),#(X;+1) denote the stationary p.m.f. of the process (X;) evaluated at X; and X;41,

respectively, and ¢(X;|X;11) is, by simple convolution:

min( Xy, X¢41) Xt ) 4 ‘
UXel Xepr) = Y ( . )al(l —a) TP = X, — ] (25)

N 1
=0
Thus the predictive distribution ¢(X;.1|X;) has closed form, whenever the p.m.f’s of both
(&) and (X;) do. In subsections 4.4-4.6 below, we check that these conditions are satisfied by a

large range of noncausal INAR(1) models.

4.4 Noncausal geometric INAR(1)

We first consider the noncausal analog of geometric INAR(1) process introduced by McKenzie

(1986). This process has a geometric stationary distribution, that is: E[u™t] = and

1
1+B8(1—u)’

the p.g.f. of & is given by:

E[ug’] _ E[uXt-1] 1+ Ba(l —u)
 Ellau+1—-a)X]  1+8(1—u)

=(1-aqa) +a, Vuelo1].

1
14+8(1—w)
In other words, €; has a two-component mixture distribution. The first component has weight
a €]0,1], and is a point mass at zero. The other component is the geometric distribution with

parameter p = with 8 €]0, 00[. Thus this is a zero-inflated geometric distribution and we

1
5
can deduce the p.m.f. of &:

577,

e == g

(1—-a)+al,—, Vn € N. (26)

Figure 3 plots the path of a noncausal geometric INAR(1). The parameter values are set
equal to @ = 0.85 and /5 = 3. For this process, the theoretical marginal expectation is E[X;] =

L =2.43.
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Figure 3: Path of a noncausal geometric INAR(1) process. We can see severl bubble periods
with abrupt burst of the bubble.

The reverse time conditional p.m.f. is:

X,
E(Xt|Xt+1) = aﬂXtSXt+1 ( )t;_l)(lxt(l _ a)Xt+1—Xt
t

min(X¢,X¢41)

X Xi—n
+(1—a) Z < ;H)oz"(l — a)Xt+1*”—(5 _fl)xt_nﬂ .

n=0

Thus the predictive p.m.f. has closed form:

(X X 1)0(Xiq1)
0(Xe)

ﬂXt+1_Xt

Z(Xt+1|Xt) = —(ﬂ T 1)Xt+1*Xt .

= (Xt X111)

Figure 4 plots the conditional p.m.f. P[X;,; = -|X; = 4] for the above noncausal INAR(1)
process, for two different values of ¢ € {5,10}. As a comparison, we also plot P[X; = | X411 = i],

which is equal to the conditional p.m.f. of the corresponding causal INAR(1) process.
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Figure 4: Comparison between the conditional p.m.f. in a noncausal and causal geometric
INAR(1) process. In the upper panel we set ¢ = 5 and in the lower panel ¢ = 10. In both
figures, the red full (resp. black dashed) line represents the curve of the noncausal (resp. causal)
conditional p.m.f.. In both figures we have also added a vertical blue line crossing the x axis at
i.

In both panels, the two conditional p.m.f’s coincide at argument z = i. This is a direct
consequence of the Bayes formula (25) and of the stationarity of the process. Moreover, the
noncausal conditional p.m.f. assigns more weights immediately right to i, as well as towards
zero. In other words, under the noncausal model, process (X;) has a larger probability of growing
larger and larger, that is the accumulation of the bubble. On the other hand it also has a larger
probability of hitting zero, which corresponds to the collapse of the bubble. Figure 5 displays
the corresponding conditional expectation in calendar time (E[X;41]|X; = 4]) and reverse time

(E[X¢| Xt 41 = 1]), as a function of i.
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value of X [t]

Figure 5: Comparison between the conditional expectation in a noncausal and causal discrete
stable INAR(1) process. Black full line: noncausal model, red dashed line: causal model.

The reverse time conditional expectation E[X|X; 1 = i| = ai + El[e] is affine in ¢, but the
affine property no longer holds for the causal expectation E[X;,1|X; = i].}® This is expected
since process (X;) is irreversible. Moreover, the direct time expectation function is larger than
the reverse time expectation function, when the value of i is neither too large, nor too small. We
can also remark that the difference between the two conditional p.m.f’s is much more important
than that between the two conditional expectations, suggesting the limit of the conditional
expectation in summarizing the nonlinear dynamics.

Finally, the causal, (marginally) geometric INAR(1) process has an obvious extension, that
is the (marginally) negative binomial INAR(1) process of McKenzie (1987). Thus we can also
extend our model to noncausal INAR(1) with negative binomial marginal distribution. This is

straightforward and is omitted.

4.5 Noncausal discrete stable INAR(1)

In this subsection we consider another noncausal INAR(1) model, in which the distribution of
(&) is discrete stable DS(8,v) [see e.g. Steutel and Van Harn (1979); Christoph and Schreiber
(1998)]16, with p.g.f.:

E[uf] = e P0-9" vy e0,1],

15However, the noncausal INAR(1) and its causal counterpart share the same autocorrelation function since
corr(X¢, X¢y1) = corr(Xe41, Xt).

16Despite their similar terminology, the discrete stable distributions do not belong to the family of a-stable
distributions, which are continuously valued. However, Steutel and Van Harn (1979) interpret them as the discrete
analog of the a—stable distributions.
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where scale parameter 3 > 0, and shape parameter v €]0, 1[.}7 The corresponding p.m.f. is:

s ke (VY (=8
Plé, = k] = (—1) Z<k> T Vk € N. (27)
7=0
The specificity of new noncausal process is that the mean E[¢;] is infinite [see Christoph and
Schreiber (1998)], and is thus suitable for heavy-tailed count process data. Figure 6 plots the

trajectory of a noncausal discrete stable INAR(1) process with v = 0.5, 8 = 0.05, and « = 0.5.
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Figure 6: Simulated path of a noncausal discrete stable INAR(1) process. We can see two bubble
periods.

Let us first derive the stationary distribution of this process by considering its p.g.f. We have:

E[u™] = E[u®]E[(au + 1 — a)¥+!] = E[u®]E(au + 1 — a)*].

By iterating we get:

e} o v
Efu¥] = [[ e PO-o v’ = [ =P (-0 = o= B5=ar
h=0 h=0

which corresponds to the discrete stable distribution DS(%,U). Thus by eq. (27), the

marginal p.m.f. is:

PLX = = (-1 (Jk > - 5/(}_ L ween (28)
3=0 '

Let us now plot the analog of Figure 4. Using equations (25), (27) and (28), we can compute

the conditional p.m.f. ¢(Xyy1|X; = ). Since a discrete stable distribution is heavy-tailed, we

7Tn the limiting case where v = 1, we recover the Poisson distribution P(8); thus this case is omitted.
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will consider two larger values for the conditioning observation i = 10, or 25. These conditional

p-m.f’s are plotted in Figure 6.
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Figure 7: Comparison between the direct time conditional p.m.f. P[X;11 = | X; = ] (red full

line) and the reverse time counterpart, i.e. P[X; = | X;y1 = 4] (black dashed line) in a noncausal
discrete stable INAR(1) process. Upper panel: the conditioning observation is ¢ = 10; lower
panel: the conditioning observation is ¢ = 25.

The comparison between the causal and noncausal conditional p.m.f’s is quite similar as
that for Figure 4. In particular, they have respectively two and one local modes. Indeed, for
a large value of Xy, the causal conditional distribution assigns a negligible probability to the
conditional probability P[X;11 > X;], whereas under the noncausal model, this probability is
quite significant.

Since the discrete stable distribution has an infinite mean, the noncausal conditional expec-
tation E[X;|X;+1] does not exist. However, the calendar time dynamics has thin tail as shown

in the next proposition:

Proposition 5. For fired X;, the conditional p.m.f. is asymptotically equal to:

1 — h Xt+h
%)7 when X1, goes to infinity,

XV+17Xt

U Xin|Xy) = O(
t4h

and the conditional moment E[Xf+h|Xt] is finite for any power p > 0 and any horizon h.
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Proof. See Appendix A.5. O

The finiteness of E[X ;45| X] does not contradict the non existence of E[X;]. Roughly speak-
ing, the causal prediction E[X;;,|X] is finite for any fixed horizon h, but increases to infinity
when h goes to infinity.

Figure 8 plots E[X;41|X; = i] as a function of i. Their values are computed numerically from

those of the conditional p.m.f., by truncating the identity:
(oo}
E[Xy|X, = i] = Zn{P[XtH = n|X; = i]},
n=0

at a large, finite order. On the contrary to Figure 4, we have not plotted the corresponding

reverse time conditional expectation, as this latter is infinite.

conditional expectation

20 30 40
1 1

10
1

T T T T T
0 10 20 30 40

value of X[t]

Figure 8: Noncausal conditional expectation

The conditional expectation seems to increase nearly linearly'® in i, with a slope that is
larger than 1. This impression is confirmed by Lemma 3, which is the discrete analog of a result
for (continuously valued) noncausal linear a—stable AR(1) processes [see Cambanis and Fakhre-
Zakeri (1995); Gouriéroux and Zakoian (2017)], for which the convergence in equation (29) is

simply replaced by equality.

Proposition 6. For the noncausal discrete stable INAR(1) process, the conditional expectation

1s such that:

]E[Xt+1|'Xt = i Lol (29)
7

18 A closer numerical inspection reveals that the curve is not exactly linear.
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when 1 goes to infinity.
Proof. See Appendix A.6. O

Thus for large values of Xy, the conditional expectation is linear with an “asymptotic" au-
toregressive coefficient equal to o', which is larger than 1, since v,a € [0,1[. In particular
this ratio is different from the autoregressive coefficient « in reverse time, which is constant and
smaller than 1. As a consequence, conditional on X; being large, Xy, is in average even larger
than X;. Such a locally explosive feature cannot be replicated by a standard INAR(1) process,

since in model (1) the autocorrelation coeflicient is @ < 1 and hence the corresponding limit of

E[X¢y1]|Xe=1]
i

isa < 1.
As Figure 7 shows, the conditional distribution of X;,; given X; has two (local) modes, one
near zero and the other larger than the current value X;. A further investigation reveals that we

have the following result:
Proposition 7. For a given € > 0, when Xy goes to infinity,

o the probability IP’[X)‘(—irl € (0,¢) | Xt} goes to 1 — a”.

e the probability IP’[X)’(—jrl et-elie Xt} goes to o .

Proof. See Appendix A.7. O

Thus when the process is currently in the bubble (i.e. X is large), the conditional distribution
of the future scaled value X)‘(—tl given X; is approximately binary. With a fixed probability a”,
the bubble continues to grow at the geometric rate of é; whereas with fixed probability 1 — ¥,
the bubble collapses. This also echoes Proposition 6, which says that the conditional expectation
E[X;41]X¢] is approximately equal to o=t X,;_, that is % times the probability o”.

Proposition 7 is again linked to the recent literature on (linear) noncausal AR(1) processes,
which is the continuously valued analog of the noncausal discrete stable INAR(1). Fries (2018),
Prop. 2.2, shows that the very same proposition holds for this continuous analog. Roughly speak-
ing, this similarity is due to the fact that the joint distribution of (X, Xt41) is within the domain
of attraction of a certain bivariate a—stable vector (Y3, Y;y1), where process (Y;) is a noncausal

a—stable linear AR(1) process. Thus the joint distribution of (X¢, X¢4+1) is asymptotically “close
to" that of (Y, Yiy1), for which the result of Fries (2018) applies.
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The presence of more than one local modes also implies that standard forecasting tools for
time series counts, such as the conditional expectation and the (single) conditional mode [see
Freeland and McCabe (2004)] can be misleading. Hence the importance of the closed form
conditional p.m.f. derived in this paper. The result can also be compared with the fact that
the marginal distribution of a (causal or noncausal) INAR(1) process is necessarily uni-modal
[see Steutel and Van Harn (1979)]. What we have seen is that a noncausal INAR(1) processes
can have multi-modal conditional distribution, even though the the marginal distribution is
uni-modal since infinitely divisible. This multi-modality cannot be uncovered by standard data

visualization tools such as the empirical marginal histogram.

4.6 Other examples

Besides the examples given in Section 4.4 and 4.5, in general the stationary p.m.f. of a (causal or
noncausal) affine process has no known parametric form. However, under mild assumptions, this
p.m.f. remains computable through inexpensive, closed form matrix operations [see Lu (2018)].
In Appendix B, we briefly review and illustrate this method using two further examples of
noncausal INAR(1) processes with respectively negative binomial and Poisson-Inverse Gaussian
distributed innovations. See also Aly and Bouzar (1994) for examples of affine count processes

with closed form stationary distributions.

5 A queuing interpretation of the noncausal count process

We now show that the noncausal INAR(1) can also be specified through the queuing system

introduced in Section 2.

5.1 The (noncausal) specification of the queuing system for the non-

causal INAR(1) process

Proposition 8. The noncausal INAR(1) process has the disaggregate representation (12), that
18:

Xi =& +E&1(t+2) 4+,
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where the joint distribution of €:(s), t > s is defined as follows:

1. For a given t, the sequence (€,(s))s<t—1 is such that the terminal value &(t) is equal to &,

whereas previous values are defined backwardly and recursively by:

é(s)

G(s—1)=> Z,, Vs<t-—1, (30)
i=1
where Z} 1,4 =1,... are i.i.d. Bernoulli B(c), and are independent of &(s).

2. The departure counts €, s € Z, are i.i.d., and are independent of Z] ;.

Let us consider a statistician observing the reverse time video: she first observes the total
number of departures € of the entire departure cohort, then tries to “trace back" the time of
arrival of these customers. Given that a customer is in the bar at a certain date s < ¢, she thinks
that there is a probability of a (resp. 1 — «) that the customer was (resp. was not) already at
the bar at the previous date.

This proposition is the noncausal analog of Proposition 1, and equation (12) can be viewed
as the MA(oo) representation of the noncausal process, that is the analog of (10). However, the
two models differ fundamentally in terms of observability. Indeed, the variables on the RHS of
(12) involve a departure date that is posterior to ¢; thus they are fundamentally unobservable at

the present date ¢, even if all the movements of the queuing system are observed up to present.

5.2 The causal dynamics of the queuing system of the noncausal INAR(1)

process

We now turn to the queuing system introduced in Section 2. In the causal INAR(1) model, cus-
tomers count processes of (€5(t))s>s are i.i.d. across different arrival cohorts s, and Proposition
2 says that the departure cohort size € cannot be i.i.d., except for Poisson distributed (e;). By
the arrival/departure duality, Proposition 2 also holds for the noncausal INAR(1) model. That
is, since in the non-Poisson noncausal model, counts & (s) are i.i.d., the resulting arrival counts

€ cannot be i.i.d.1% What else can be said about the arrival count process (¢;) and the departure

191n the continuous time queuing literature, models with non i.i.d. arrival sequence have already been considered
by various authors [see e.g. Fakinos (1984)]. But our model is fundamentally different from theirs in the sense
that none of these previous models specify the queuing system in reverse time.
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decisions of existing customers? Does the probability of leaving of each customer depend on the

previous numbers of entries? To answer these questions, let us write:

Xit1 = (Xip1 — €41) + €41,

where process (X;) is noncausal INAR(1) and process (e;) is defined by (16). This representation
is analogous to representation (1), where X, is decomposed into the sum of the number of
newcomers and the number of old customers who stay. By equation (16), X;11 — €41 is equal
to X¢ — €41, which is nonnegative and non larger than X;. Lemma 5 below summarizes the
major differences of between the calendar time dynamics of a noncausal INAR(1) and the causal

INAR(1) process:

Lemma 5. For a noncausal INAR(1) process defined in Definition 2, the following statements

are equivalent:
1) Process (X;) is time reversible;
1) Process (€;) defined by equation (16) is Poisson;
ii1) Xi11 — €r1 18 binomial given Xy;
iv) €141 s independent of Xy;
v) Xip1 — €41 and €41 are independent given X;.
Proof. See Appendix A.8. O

As a reminder, for a causal INAR(1) model with arbitrarily distributed (e;), conditions 4i3), iv)
and v) in Lemma 5 are all satisfied. On the other hand, this lemma says that in a non-Poisson,
noncausal INAR(1) model, the calendar time dynamics of (X}) is non thinning-based, the arrival

t20 and is conditionally dependent of the number of staying

size process (ey1) is state-dependen
old customers Xy — €:41. As a consequence, we have introduced a new, non-INAR family of

dynamic count models.

20That is, €t+1 depends on the previous customer count X;.
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5.3 The distribution of the arrival count

Although (e;) features serial dependence by Lemma 6, it has a time-invariant stationary distri-

bution, with p.g.f.:

E[u+1] = Efuf+1+HXm—Xe] (by equation (16))
= E{UZ;f(l—Zw)} (by equation (23))
:E{[(l —a)u+a]X”1}, (31)

by compounding the p.g.f. of the distribution of X; and of the Bernoulli distribution B(1,1— «).
Let us now derive the explicit formula for the two special models considered in Sections 4.4 and

4.5.

Example 2 (Noncausal geometric INAR(1) process, see Section 4.4). If the noncausal INAR(1)

process has the geometric marginal distribution, then E[u™t] = m, and equation (31)

becomes:

1 1

E[u®] = 1+80-(1-au—-a 1+B01-a)(l-u)

Hence (¢;) is geometric distributed and we have: E[¢;] = (1 — «) = Ele].

Example 3 (Noncausal discrete stable INAR(1) process, see Section 4.5). Let us re-consider the

a-w)”
noncausal discrete stable INAR(1) process. Since E[uXt] = e # =+ equation (31) becomes:

Efu®] = e~ #T=ar (1-w)"

Hence the distribution of (&) is DS(ﬂ(l_Q)V v). Since?! % > 1, the stationary distribution

1—av

of ¢; has a larger scale parameter than the distribution of &;.

5.4 Extension to noncausal RCINAR(1) process

When the RCINAR(1) process is time irreversible, its reverse time dynamics is different from the

calendar time dynamics. Then a noncausal RCINAR(1) is defined as a time-reversed RCINAR(1)

211n the limiting Poisson case, when v = 1, the inequality becomes an equality.
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process, that is: Then we can give a similar queuing interpretation for the noncausal RCINAR(1),
in a similar way as in Section 5.1 for noncausal INAR(1). Such an interpretation would be based
on the stochastic specification of the sequence (€;(t)) instead of (es(t)) and is omitted due to

space constraint.

6 Conclusion

In this paper we have introduced the concept of noncausality for count processes. In particular
we have studied in details the noncausal INAR(1) process and have shown that (resp. noncausal)
INAR(1) process can be interpreted by an infinite server queue, in which the sizes of the arrival
(resp. departure) cohorts are i.i.d. We have also seen that the resulting noncausal processes,
which is generically time irreversible and non affine, can feature bubble-like dynamics character-
ized by some unique bi-modal conditional distribution. Moreover, the same analysis has been
extended to both Markov affine processes and RCINAR(1) processes. Another important impli-
cation of the paper is that measures such as autocovariance should be used with care?2. Indeed,
these moments need not be finite, and even if this is the case, they do not characterize the serial
dependence pattern. In particular, we have seen in the paper that a noncausal process and its
causal counterpart share the same autocovariance function??, but can have completely different
nonlinear dynamics. Finally, the noncausal, Markov affine process is the simplest example of
noncausal count process. In the paper we have briefly discussed the extension to RCINAR(1),
but a large range of other extensions are also possible, including non-Markov, mixed causal-
noncausal models. Such a process allow the bubble to burst gradually instead of abruptly, at
a rate that is potentially different from the rate of explosion of the bubble?*. These all await

future research.

228ee e.g. Livsey et al. (2018); Jia et al. (2018) for recent developments on count processes with flexible
autocorrelation function.

23This is due to the fact that the covariance operator is symmetric in the two arguments.

24See e.g. Fries and Zakoian (2019) for a continuous analog.
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Appendix

A  Proofs

Al Proof of Lemma 2

We have:

E[u"[e(t = 1)] = Blutttee1OFe-20 e ¢ — 1))

= E[u*] ﬁ E[uf® e (t — 1)], (a.1)
s=—00

where the first term E[u] is factored out, since by Assumption 3, € is independent of €4 (¢t — 1),
whereas the conditional p.g.f. of €;_1(¢)+€:—_2(¢)+- - - becomes the product of different conditional
p.g.f. by the conditional independence (see Assumption 4). By Assumption 3, the s-th element
in the infinite product is a measurable function of e5(¢ — 1),u and ¢ — s only, and by equation
(10), these conditioning variables should also sum up to X;_1. Thus, in order for £(X;|eqs(t — 1))
to depend on €,(t — 1) through X; 1 only for all possible values of €,(t — 1), there should exist
a constant function of u, g(u), say, as well as a function of v and ¢t — s, ga(u,t — s), say, such
that:

Elu®les(t — 1)] = [g1(w)] " Vga(u,t — s),

for any s <t — 1. That is, E[u®(®)|e,(t — 1)] should be an exponential affine function of e,(t — 1)
with a slope that can only depend on u, but not on ¢ — s. Since the LHS of the above equation

is a conditional p.g.f., functions g; and g, are constrained. Indeed,

e First by taking the special case where e5(t — 1) = 0 (in this case €4(t) is almost surely zero

as well), we get ga(u,t — s) = 1 is constant.

e Then we take the special case where e5(t—1) = 1, and can conclude that ¢; (u) is necessarily
the p.g.f. of a count distribution. Thus given e4(t — 1), the conditional distribution of e4(t)
is the convolution of e4(t — 1) identical count distributions with p.g.f. g(-). But since the

distribution of €,(¢) is bounded by e4(t — 1), function g; () must be the p.g.f. of a Bernoulli
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distribution, say, B(1, «), i.e. g1(u) =au+1— a.

As a consequence, the conditional distribution of €4(¢) given €s(t — 1) is binomial B(es(t — 1), o).

A2 Proof of Proposition 1

By Lemma 2, equation (a.1) becomes:

E[u™|X,_ 1] = E[u®] H (ou+1— )<Y = E[u](au+1—a)¥+1,

s<t—1

which is exactly equation (2) for Bernoulli distributed Z; ;41’s. This completes the proof.

A3 Proof of Proposition 2

First, since (X) is stationary, by equation (16), process (e;) is stationary too. Thus it suffices to

show, for instance, that é; and €4, are independent. Let us compute their joint p.g.f.. We have:

E[ugtvgt+1] — E[uXt+Ef,+1—Xt+1UXt+1+6t+2—Xt+2]

Xt+6t+1 Xit1 Xt+l+6t+2 Xt+2|Xt+17€t+25Xt7€t+l]}

—E |:uXt+€t+1 Xt+1 Xit1 E[ —Xiqotert2 |Xt+1’ €112, X, 6t+1]:|
— E|:uXt+€t+l_Xf+1 Xt+1(g +1— a)Xt+1:|
_ ]E|:uXt+€t+1 (1 — a) )Xt+1:|

u
= ]E{uxf“t“E 7+ (1= a)v)X“llXt, et+1}]

U

a0

u u

E|[e? + a1l —a)v+ (1 — a)u ]X‘}E[[a—l—(l—a)u]et*l]

Thus the RHS is multiplicatively separable if and only if the marginal p.g.f. function g(u) :=
E[uXt] satisfies:

gz +y—1)=g(x)g(y)/g(1),
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where 7 = a? + a(l —a)v+1—a and y = a + (1 — a)u. We can check that under suitable
regularity conditions (such as the continuity of g), the only solution of this functional equation
is g(z + 1) = e**, for some constant A\. Thus we deduce that &(t) and &(t + 1) are independent if
and only if g(u) = eM*~1) that is if (X;) is Poisson P(\) distributed. Then by stationarity, the
p.g.f. of ¢ is:

E[uXt]

E[(au + 1 — a)¥Xt] =

E[u] = 1—0)A(u=1),

and ¢; is also Poisson P((1 — «))) distributed.

A4 Proof of Proposition 4

We follow the proof of Schweer (2015) for INAR(1) processes. The “if" part of the proposition
is straightforward and we focus on the “only if" part. Suppose that process (X;) is RCINAR(1).

Then the conditional distribution of the process is:

min(4,5) .
p(ilf) =PXp =il X, =41 = ) (;)eoczk)E[af(lat)”“L vi,j €N,
k=0

where function ¢; is the p.m.f. of €,. Under reversibility, we have:
P[(Xtv Xt-‘rla Xt+27 Xt+3) = (07 1,4, O)] = P[(Xta Xt+17 Xt+27 Xt+3) = (07 i, 1, 0)}7 Vi € Na

or equivalently?®,

p(1{0)p(i|1)p(0]7) = p(i[0)p(1]i)p(0[1). (a.3)

25We can check that P[e; = 0] > 0.
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Equation (a.2) leads to:

p(il0) = £o(2),
p(0]i) = Lo(0)E[(1 — )],
p(ill) = Lo(D)E[(1 — o)] + Lo (i — 1)E[a],

p(1]i) = €o(DE[(1 — an)'] + l(0)Efare(1 — ) ).
We plug in these expressions into equation (a.3) to get:

£o(1) [l EL — ar)] + £o(i — DEla] [ fo(O)E[(1 — ar)']

= £o(i) [€o(EI(1 = a)'] + it(O)E[a(1 — 0)' ]| to(O)E[(1 - )],

or equivalently:
Co(DE[]E[(1 — ay)’]

b)) = ol = 1) R o (1 — ) TJEI(1 — 7)) (a.4)
Similarly, by considering the paths (0,2,4,0) and (0,4, 2,0), we get:
p(2[0)p(i[2)p(0]i) = p(il0)p(2[i)p(0[2), (a.5)

or equivalently:

€o(2) [eo@)E[(l — a)’] + 260 (i — DE[as(1 — ap)] + Lo(i — 2)E[a?]}£o(0)E[(1 — )]

= £0(9) [fo(DE((1 — 0] + ito()E(1 — )] + D E[02(1 - )] o 0)EI(L — )2

Let us now expand the parenthesis on both sides and check that the first terms (resp. the second
terms) on both sides exactly cancel out due to equation (a.4). Then the equality between the

third terms shows that:
E[(1 — a) 'E[07 (1 — o) 7?]
Elag (1 — ag) " E[a (1 — a)*~2]

(a.6)
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is constant when ¢ varies. Let us denote:

mi1 =EB[(1—ay)™Y],  Vi>1.

Then we have:

Eloe (1 — a) '] = mi_y — my;

Ela7(1— )] = E[(1 — a)'] = E[(1 — )" '] + Efag (1 — )" ] = mi + my_g — 2m,_q,

and the term in equation (a.6) becomes:

(mi +mi_o —2m;_1)m;_1 mi_1 1 m;

(mz‘71 - mi)(mz‘d - mi71) B mi—g2 —Mi—1 m;—1 — mi7

my

m)z is an arithmetic sequence.
i i

which should be constant in ¢. In other words, the sequence (
If this sequence is constant, then the sequence of integer moments of 1 — «; is geometric. Since
this sequence of moments characterizes a distribution on [0, 1], we conclude that oy follows a

point mass distribution, that is, process (X;) is indeed INAR(1). Otherwise, when the increment

of this arithmetic sequence is strictly positive, we have —™+— = (i — 1)c + d for positive

m;—1—m;
constants ¢ and d, or equivalently:
m; (t—1)+d/c g+i—1

= = . Vi1,
mi—1 (i—1)+d/c+1/c pH+qg+i—1 -

B(p,g+i)
B(p,q) °

where p = %,q = % € [0,00], or by iteration m; = In other words the sequence of
integer moments of 1 — oy coincides with those of a beta distribution Beta(g, p), thus we deduce
that the stochastic probability «; follows the beta distribution Beta(p,q). Let us finally get

back to equation (a.4) and show that, in this case, the distribution of (¢;) is negative binomial.

Summing up this equation for i = 1,2, .... yields:

~

o(1
£o(0)’

~
—~
&
N |
~

ap = (g +p)
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where p is the expectation of €. Thus equation (a.4) becomes:

meo(l) = lo(i — 1)L__1L Vi > 1. (a.8)

foli) = boli ~1) qi  £o(0) i optq -

By iteration we deduce that (¢;) follows a NB distribution with degree of freedom parameter ¢

(and with mean p € RT).

A5 Proof of Proposition 5

Let us first prove the lemma for A = 2. By Christoph and Schreiber (1998), the tail of the

discrete stable distribution satisfies:

1
kv+1 )7

P[Xt-‘,-l = k] - O(

when k goes to infinity. On the other hand, for a given X; and for large X1 such that X;11 > X4,

the noncausal conditional p.m.f. is:

min(Xt,Xt+1)

UXe| X)) = Y (X?l)ai(l —a)¥ (X, )
=0
X, . y ’
= ; (X; >o/(1 — o)X (X, — )
= (1 — )Xt i (XF“> (L)ie(xt —9). (a.9)

7
=0

For fixed X;, the term £(X; — ¢) is uniformly bounded for varying i, whereas the term (Xti“) is

bounded by:

(Xt+1> _ X (X — 1) (Xpp1 —i+1) < Xii

7 7! - 4
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Thus the RHS of equation (a.9) is bounded by a polynomial of X;;; of degree Xy, and hence

Xt
U(X¢| Xi41) = O((1 — a)Xe %), when X, goes to infinity. Thus by the Bayes’ formula:

Xi| Xi41)0(Xi41)
0(Xy)
_ 0<(1 —a)¥e

V1= X, )
Xt+1

U Xp41|Xy) = “

Finally, let us explain why the above result remains true for higher horizons h. For instance

for h = 2, we have, by iterated expectation formula:

E[u™[X;y0] = E[(au + 1 — @)+ [ X o] E[u]
= (®u+1— o)X+ 2E[(au + 1 — a)*]E[u®]

_ _ oy (d-w)” o (a—w)”
— (azu—i—l—a)xt“e B—a)" = g =B =ar

In other words, the joint distribution of (X, X;i2) has the same parametric form as that of
(X¢, X¢41), but with a different probability parameter a?. Thus the above result for h = 1 still

applies to the case h = 2.

A6 Proof of Proposition 6

The joint p.g.f. of (X, X¢41) is:

L(u,v) = E[uXtoX+1] = E[E[ux‘\XtH]vX“fl]

B Y [1—(cu+1—a)v]”
7exp<76(17u) -3 T o ), Yu,v € [0, 1]. (a.10)
Then we get, for each u € [0, 1[:
E[X,y 0] = thlz = %(au Fl-a)a’ (- w)’ ' Vue0,1] (all)
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a-—w)¥

Similarly, by considering the marginal p.g.f. £(u) := E[u**] = e # 1T=a" | we get:

OL(u) _ X¢—1
8u = E[Xtu ],
4 O0L(u) a-w”  fBu _ _
v—1 X1 v—1 B v—1 - v—1
or E[o"" " Xiutt] = « 5 e T—a® (1—w)" " u. (a.12)

On the other hand, we can expand the LHS of (a.11) and (a.12) and get:

E[X,qu™t Z WE[X, 41| X, = i|P[X, = 1], (a.13)
=0
Elo” ' Xu™Xt] = Zul LiP[X, = ). (a.14)

Thus, to show that E[X;,1|X; = i] and a”~!i are asymptotically equivalent, it suffices to show
that the coefficients of the Taylor’s expansions in u at u = 0 are asymptotically equivalent in
equations (a.13) and (a.14). Let us expand:
—pl=w’ pv 1
=T a1 - w)” Zcz : (a.15)
If we multiply the LHS of this above equation times by (cu+1— ) , we get the RHS of (a.11),

and, if we multiply it by u, we get the RHS of (a.12). Thus the i—th coefficient of the expansion

of E[ Xy 1uXt] is ac;_1 + (1 — a)¢;, whereas that of E[a” ! X;u™¢] is ¢;_;. Thus it suffices to

show that when i goes to infinity, we have: —=

radius of convergence of expansion (a.15) is equal to 1.

A7 Proof of Proposition 7

Let us first show that the distribution of (X, X;4+1) is within the domain of attraction of a
certain bivariate a—stable vector (Y, Y:i11), where process (Y;) is a noncausal a—stable linear
AR(1) process. For a deterministic sequence a,, that goes to infinity when n goes to infinity (at

a rate to be determined later), we consider the scaled sample average:

(X51)+X£2)+~~+X(”) X+ X+t Xﬁﬂ)
an, ’ an, ’
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where (Xt(i),Xt(j_)l),i =1,...n, are i.i.d. copies of (X¢, X¢4+1). By applying equation (a.10), the

Laplace transform of this vector is equal to:

np

1—a”

{E[e’ﬁXﬁﬁxf“]} = exp {nﬁ(l — e W/anyy [1— (ae™v/a 41— a)e_”/a"]}, Yu, v.

1/v

Straightforward, but tedious algebra, shows that, for a,, = n'/”, which goes to infinity in n, the

RHS of the above equality converges to:

exp ( — pu” — (oau + v)”). (a.16)

1—a¥

Thus the joint distribution of (X, X¢+1) belongs to the domain of attraction of some a—stable
distribution with Laplace transform given by equation (a.16) [see e.g. Resnick and Greenwood
(1979)]. The spectral measure of the limiting distribution has two point masses at (1,0) and
(ﬁ, ﬁ).% Then we apply Thm 4 of Resnick and Greenwood (1979) and conclude that

process (X;) satisfies Proposition 7.

A8 Proof of Lemma 5

The equivalence between 7) and i) is a consequence of Schweer (2015).

Let us show that conditions ) and 4ii) are equivalent. Recall that X;i1 — €z41 = Xt — €41,
and that X; — €41 and €, are independent by definition (23). Then using a characterization
theorem of the Poisson distribution [see the Theorem in Moran (1952)], X¢11 — €141 = Xt — €41
is Binomial conditional on X; if and only if X; — €1 and €11 are Poisson, or equivalently if
and only if process (X;) is Poisson INAR(1).

For the equivalence between conditions ) and iv), we have by definition:

Xt
€41 = €41 + Xpp1 — Xy = Xpp1 — Z Zit, (a.17)
i1

26 Alternatively, we recognize that the limit (a.16) is the Laplace transform of (Yz,Yiy1), where (Y3) is a linear
noncausal a—stable AR(1) process defined by:

Y = oYy + &,

where & is i.i.d., independent of the future values Yit1,..., and follows a—stable distribution, with Laplace
transform Ele™%ét] = exp(—pBu”), for all w > 0. By Fries (2018), Thm 2.2, this latter process satisfies the
proposition.
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where the Z;it’s are independent of X;;1. On the other hand, we have:
Xi41
Xt = €41+ Z Zi,

=1

where é;41 is independent of X;;;. Thus €41 and X; are independent if and only if X;y1 —
>im1 ' ZF, and le:tl“ 7}, are independent. A simple calculation shows that the joint p.g.f. of

these two variables is equal to:
Xeg1—Y ikl zp, NNtz X
E[u * =1 Tty laizt “f} = E{[av + (1= a)u]™t|.

By a similar argument as in Proposition 2, this latter p.g.f. is multiplicatively separable if and
only if the p.g.f. of X; is Poisson.

Finally, let us prove the equivalence between conditions ) and v) by using the calendar time
conditional p.m.f. [eq. (24)]. X¢+1 — €141 and €47 are independent, if and only if their joint

p.g.f. is separable. Using equation (a.17), we can easily check that this p.g.f. is equal to:
E[uXt+1—criycer1] = E|[(au + (1 — a)v] X+,

By the same argument as in Appendix A3, this p.g.f. is separable if and only if X;; is Poisson.

B Conditional p.m.f. for general noncausal INAR(1) pro-

cesses

B1 The stationary distribution

Let us first show under what conditions a general noncausal INAR(1) process has a computable

p.g.f.. We have:

ER] = [ g(au+ 1 af) = exp [Zh(o/u 41— o/‘)}, vu € [0,1], (b.1)
i=0 =0
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where h is the log p.g.f. of &. Thus, if A has a simple Taylor’s expansion everywhere?” in [0, 1],

we can expand each term h(a‘u + 1 — o) around u = 0 and obtain the Taylor’s expansion of

log E[u™¢]:
]E[uXt] = exp {i i h(k)(l _ az) (aiu)k}
k!
i=0 k=0
= exp {co +cru+ cgu® + -+ epu + O(u"“)], (b.2)

where all coefficients ¢;,j = 0,...,n can be computed in closed form and we choose an order n

such that the probability of X; being larger than n is negligible. Then we have:

Proposition 9.

PX, = 0] 0o 0 0 0 1
PX, = 1] ) x 0 0 - 0] |0
= exp(co) } % o 1 0 --- 0 01l. (b.3)
PX, = n — 1] =
i P[X; =n] | e 1 roa 0 [ 0]

Proof. Let us remark that for any count variable X;, we have:
E[u™] =Y P[X; = nJu".
n=0

In other words, the stationary p.m.f. of X; can be obtained by Taylor-expanding the correspond-

ing p.g.f. More precisely, by equation (b.2), we have:

E[uXt] = exp [co +cau+---+cpu” + O(u"“)} (b.4)
= exp(co) Z(clu o epu™) 4+ O(u™th. (b.5)
j=0

Then we obtain recursively, for each j, the expansion of (cju + - - - + c,u™)? up to order n using

27 A large family of distributions satisfying this condition is the compound Poisson distributions, or equivalently
infinitely divisible count distributions. Schweer and Weiss (2014) have shown that for these compound Poisson
distributions, the p.m.f. of the stationary distribution can also be obtained through a recursive equation.

43



the following Lemma due to Lu (2018):

Lemma 6. For any coefficients v;,i = 0,...,n, the (n + 1) first coefficients of polynomial

(Z?Zl vju)*, where k = 0,...n, are given by the column vector:

- -k - 4
0 0 0 0 1
M 0 0 0 0
Y2 m 0 0 01, Vk=0,..,n (b.6)
Y -1 c-om 0] | 0]

By this lemma and coefficient matching, we get the p.m.f. of the stationary distribution, that
is equation (b.3).
O

Although the above algorithm involves a Taylor’s expansion, it is an exact formula for the
marginal p.g.f. Indeed the Taylor’s expansion of the p.g.f. of a count distribution provides the
exact value of the p.m.f.

Moreover, compared to standard matrix multiplications, the successive powers of the Toeplitz

matrix in the lemma can be computed much more quickly since:

— ~k — -
0 0 0 0 0 0 0 0
72 ’71 0 oo 0 = r)/27k ,-Yl,k‘ O « e O

L Tn In—1 0 N1 0 ] | Vn,k In—1k - Y1 0 ]
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for any integer k, where the sequence (vy; ) satisfies the recursion:

Yi,k+1 =0

Y2,k+1 = V1,71

Yrk+1 = Yn—1,k71 + Yn—2,kV2 + -+ Y1,6Vn—1-

In other words, the updating step involves at most the computation of n coefficients.
Finally, although equations (b.1) and (b.2) are derived for INAR(1) processes, that is when
Z;1+1's are Bernoulli distributed in equation (23). The case of general affine count processes

with non-binary Z; ;41’s is similar, but slightly more complicated [see Lu (2018) for more details].

B2 Examples

Let us now give the expression of (¢;)5°, for some examples of (causal or noncausal) INAR(1)

processes.

Example 4 (Negative binomial (NB) error). Let us assume that & is NB distributed, with p.g.f.:

. (1=p)”

E[Ua] (1 _pu)ya

where parameter p €]0,1[. Then the p.g.f. of the stationary distribution of the process is:

E[u*Xt] = exp (Z v[log(1 — p) — log(1 — p + pa’ — paiu)})
i=0

= 3 —p) — log(1 — a’) —log(1 — Lu

= exp (V;[log(l p) ~log(l —p+ pa’) ~log(l - 37— ——= )])

_ S k

7exp(u2[log(1— p) —log(1 — p + pa’) ) (fyzzkl p—f—poﬂ] u)
i=0 =0 k=1

= exp (VZ[log(l— p) — log(1 — p + pa’) ) ( Z/ZZ él goipaz]kuk).
i=0 k=1 i=0
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Thus we have:
co = vy [log(1—p) —log(1 —p+pa’)],
i=0

| pat k
=— e vk > 1.
Ck V;(kl_mw) : >

Example 5 (Poisson-inverse Gaussian (PIG) error). The negative binomial distribution can be
viewed as a mixture of Poisson distributions with a gamma mixing distribution. Willmot (1987)
introduced an alternative, mixed Poisson distribution with inverse Gaussian mixing distribution.
The resulting distribution is called PIG?® and is better suited for highly over-dispersed count

distribution. Below we plot a simulated trajectory of the noncausal PIG INAR(1) process.

so

><[1:500]
ao

2o

Icex
Figure B1: Simulated trajectory of a noncausal PIG INAR(1) process.

Let us now derive the p.m.f. of the stationary distribution. First, the p.g.f. of the error

distribution is:
E[u] = exp [%(1 —V1+25— 2ﬁu)].

28See also Zhu and Joe (2009) for an extension called Generalized PIG.
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Hence the p.g.f. of the stationary distribution is given by:

E[uXt] = exp (% Z[l — \/1 + 26 — 2B(ciu+ 1 — ai)])
1=0
— e (B30 - mm])
i=0
o0 - %) ' o k 2 ;
:eXp(%Z(l—m)exp[fg mz<_l)(1+ﬁ;éal)k k]’
=0 i=0 1 2
where the binomial coefficient (f%) is defined by: (f%) = ﬁ%ﬁvwﬁ and T(-) is the
Gamma function. Thus
co =5 > (1 VI+25a),
=0
=3 Vi ) 2 ez
/ Bz —3/ 1+2Bai’

Then the corresponding p.m.f. is obtained by expanding the exponential function and by
coefficient matching.

B3 The corresponding conditional p.m.f.

Finally, once the marginal p.m.f. is computed, it suffices to apply Proposition 9 to compute the

calendar time conditional p.m.f.
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