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Notation
We consider a finite labeled population U = {1, . . . , N} with some vari-
able of interest y. We are interested in some parameter θ, such as:

a total : ty =
∑
k∈U

yk

a pop c.d.f. : FN (t) =
1

N

∑
k∈U

1(yk ≤ t).

A random sample S is selected in U by means of some sampling de-
sign p(·). We note π = (π1, . . . , πN )> the vector of first-order inclusion
probabilities.

The Horvitz-Thompson (HT) estimator

t̂yπ =
∑
k∈U

yk
πk
Ik (1)

is design-unbiased for ty, with I = (I1, . . . , IN )> the vector of sample
membership indicators.



Balanced sampling

Balanced sampling
Contributions: 6+2 papers

G. Chauvet, Y. Tillé (2006). A fast algorithm of Balanced Sampling. Computational Statis-
tics.

G. Chauvet, Y. Tillé (2007). Application of Fast SAS Macros for Balancing Samples to the
Selection of Addresses. Case Studies in Business, Industry, and Government Statistics.

G. Chauvet (2009). Stratified Balanced Sampling. Survey Methodology.

G. Chauvet, D. Bonnery, J.C. Deville (2011). Optimal inclusion probabilities for balanced
sampling. JSPI.

G. Chauvet (2012). On a characterization of ordered pivotal sampling. Bernoulli.

F.J. Breidt, G. Chauvet (2012). Penalized Balanced Sampling. Biometrika.

G. Chauvet, D. Haziza et E. Lesage (201X). Examining some aspects of balanced sampling
in surveys. In revision for Statistica Sinica.

G. Chauvet, A. Ruiz-Gazen (201X). A comparison of pivotal sampling and unequal proba-
bility sampling with replacement. Submitted.
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Balanced sampling

Principle

The accuracy of HT-estimators relies on auxiliary information, frequently
incorporated by using some form of balanced sampling.

Suppose that a q-vector xk is known at the design stage for any k ∈ U .
A sampling design p(·) is balanced on xk if

∀s ⊂ U p(s) > 0⇒ t̂xπ(s) = tx. (2)

The balancing equation (2) is equivalent to∑
k∈U

xk
πk

(Ik − πk) = 0 ⇔ A (I − π) = 0 (3)

where A =

(
x1
π1
, . . . ,

xN
πN

)
. Balanced sampling may be performed by

means of the cube method [DT04]: random walk from π to I so that (3)
is approximately satisfied.
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Balanced sampling

General procedure for the cube method

Initialize at π(0) = π. Next, at time t = 0, · · · , T :
1 Flight phase: if there exists u(t) ∈ Ker(A) s.t. u(t) 6= 0 and
uk(t) = 0 if πk(t) is an integer:

1 take any such u(t) and the largest values λ∗1(t) and λ∗2(t) s.t.

0 ≤ π(t) + λ∗1(t)u(t) ≤ 1 and 0 ≤ π(t)− λ∗2(t)u(t) ≤ 1.

2 Take π(t+ 1) = π(t) + δ(t) with

δ(t) =

{
λ∗1(t)u(t) with proba. λ∗2(t)/{λ∗1(t) + λ∗2(t)},
−λ∗2(t)u(t) with proba. λ∗1(t)/{λ∗1(t) + λ∗2(t)}.

2 Landing phase: otherwise, drop the last column from A and go
back to Step 1.

Alternatively, a rejective method can be used [H81; F09; CHL14].
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Balanced sampling

Motivation

Suppose that the variable of interest y follows the linear model

yk = β>xk + εk ⇒ t̂yπ = β>t̂xπ + t̂επ. (4)

Balanced sampling withdraws the variability of the first term in (4).

Minimizing a variance approximation of [DT05], [CBD11] propose a
choice of the πk’s which reduces the variability of the second term in
(4).

[BC11] studied the case when y may be described by a linear mixed
model. They proposed a penalized balanced sampling method, where
a ranking of the balancing variables is used to limit the balancing error.
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Balanced sampling

A fast procedure for balanced sampling

At any step t of the cube method, the search for a vector in the kernel
of A may be time-consuming. A faster solution is:

to extract from A the sub-matrix At whose columns are associated
to the q + 1 first units in U that are still at stake,
to find a vector v(t) in Ker(At), which is complemented with zeros
for the rest of the columns in A.

This led to the Macro Fastcube [CT06; CT07] and to the stratified bal-
anced sampling procedure [C09]. Applications include:

selection of the rotation groups of the New Census [B12],
sampling the PSUs for the Master Sample [CF09],
selection of areas in the Labour Force Survey [L09].
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Balanced sampling

Pivotal sampling

When xk = πk (fixed-size sampling), the fast procedure leads to pivotal
sampling [DT98] based on duels between units. This sampling algo-
rithm possesses some nice properties, including:

computable second-order inclusion probabilities πkl, obtained by
[C12] from an exact coupling with Deville’s systematic sampling
[D88];
better efficiency than multinomial sampling [CRG14], which entails
that the HT-estimator is consistent in mean-square under some
mild assumptions [C14];
asymptotic normality for the HT-estimator [CD09].
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Treatment of item non-response

Treatment of item non-response
Contributions: 3+3 papers

G. Chauvet, J.C. Deville, D. Haziza (2011). On balanced random imputation in surveys.
Biometrika.

G. Chauvet, D. Haziza (2012). Fully efficient estimation of coefficients of correlation in the
presence of imputed data. Canadian Journal of Statistics.

D. Haziza, C-O. Nambeu, G. Chauvet (2014). Doubly robust imputation procedures for
populations containing a large amount of zeroes in surveys. Canadian Journal of Statistics.

H. Chaput, G. Chauvet, D. Haziza, L. Salembier, J. Solard (201X). Joint imputation pro-
cedures for categorical variables with application to the French Wealth Survey. Second
revision for JRSS C.

H. Boistard, G. Chauvet, D. Haziza (201X). Consistency of the estimated distribution func-
tion with missing data under a non-response model. In revision for Scandinavian Journal of
Statistics.

G. Chauvet, J.C. Deville, D. Haziza (201X). Adapting the Cube algorithm for balanced ran-
dom imputation in surveys. Submitted.
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Treatment of item non-response

Introduction

Item non-response occurs when some variables of interest (but not all)
are missing for some unit k ∈ S. Imputation is typically used to com-
pensate for item non-response.

We focus on simple imputation methods [H09] where some missing
value yk is replaced by some artificial value y∗k. We will use the fol-
lowing assumptions:

the units answer independently
⇒ Pr(rk = rl = 1) = Pr(rk = 1)× Pr(rl = 1);
there exists κ > 0 such that Pr(rk = 1) > κ for any k ∈ S;
the data are MAR: E(yk|zk, rk = 1) = E(yk|zk, rk = 0)
for a vector of auxiliary variables zk known for k ∈ S.
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Treatment of item non-response

Imputed estimators

The imputed estimators of the total ty and of the c.d.f. FN (t) are

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)y∗k,

F̂I(t) =
1

N̂

∑
k∈S

dkrk1(yk ≤ t) +
1

N̂

∑
k∈S

dk(1− rk)1(y∗k ≤ t).

Many imputation mechanisms can be motivated by some imputation
model

m : yk = f(zk;β) + σv
1/2
k εk, (5)

⇒ I : y∗k = f(zk; B̂r)(+σ̂v
1/2
k ε∗k). (6)

We take f(zk;β) = z>k β to simplify. With/without the random residual
ε∗k, we obtain random/deterministic regression imputation.
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Treatment of item non-response

Random regression imputation

The vector of parameters β is estimated by

B̂r =

(∑
k∈S

ωkrkv
−1
k zkz

>
k

)−1∑
k∈S

ωkrkv
−1
k zkyk, (7)

where ωk is an imputation weight attached to unit k.

In case of random regression imputation (RRI), it is natural to select the
ε∗k’s from the observed residuals with prob. Pr (ε∗k = el) =

ωl∑
j∈s ωjrj

.

THEOREM (CDH09)
Assume that the random residuals ε∗i are selected independently with
replacement from the set of observed residuals. Then under mild as-
sumptions: EmpqI

∣∣∣F̂I(t)− FN (t)
∣∣∣ −→n→∞ 0.
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Treatment of item non-response

Balanced random imputation

When the total ty is estimated, the imputed estimator may be written as

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)(z>k B̂r) + σ̂
∑
k∈S

dk(1− rk)(v
1/2
k ε∗k).

The imputation variance is eliminated if∑
k∈S

dk(1− rk)(v
1/2
k ε∗k) = 0. (8)

[CDH09] proposed an adaptation of the cube method to select the ran-
dom residuals ε∗k so that the balancing equation (8) is approximately
satisfied.

THEOREM (CDH09)
Assume that the random residuals ε∗i are selected by means of
the Cube method s.t. (8) holds. Then under mild assumptions:
EmpqI

∣∣∣F̂I(t)− FN (t)
∣∣∣ −→n→∞ 0.
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Doubly robust imputation

Under the Non-Response Model approach (NM), the response proba-
bility pk ≡ p(zk;α) is modeled and estimated. [BCH14] considered the
mean imputation model within classes, where U is divided into disjoint
imputation cells U1, . . . , UG:

m : yk ∼ (µg, σ
2
g), k ∈ Ug.

I : y∗k = yl for l ∈ Sr ∩ Ug with P(y∗k = yl) =
ωl∑

j∈Sg ωjrj
.

THEOREM (BCH14)

Assume that ωk = dk
1−p̂k
p̂k

, where p̂k = p(zk; α̂) and α̂ is a consistent
estimator of α. Then under mild assumptions :
EmpqI |F̂I(t)− FN (t)| −→n→∞ 0 under the IM approach,
EpqI |F̂I(t)− FN (t)| −→n→∞ 0 under the NM approach.



Treatment of item non-response

Taylor-made imputation methods

In practice, the imputation regression model may not be appropriate.
For example, if the study variable contains a large number of zeroes, it
seems natural to postulate

m : yk =

{
z>k β + σkεk w.p. φk,
0 w.p. 1− φk,

⇒ I : y∗k =

{
z>k B̂φr w.p. φ̂k,
0 w.p. 1− φ̂k.

[HNC14] proposed doubly robust balanced imputation methods for es-
timating ty under this imputation model.

[CH11] considered balanced imputation methods to preserve the corre-
lation between continuous variables. [CCHSS11] considered balanced
hot-deck methods to preserve the correlation between categorical vari-
ables, with application to the French Wealth Survey.
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Coupling Methods

Coupling methods
Contributions: 1 paper + 2 works in progress

G. Chauvet (201X). Coupling Methods for multistage sampling. Submitted.

G. Chauvet, J.C. Deville (201X). Asymptotic Results for Deville’s Systematic Sampling.

G. Chauvet, J. Opsomer (201X). Coupling Methods for two-phase sampling.
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Coupling Methods

Overview of the chapter

1 Introduction: what is a coupling?
2 Multistage sampling:

A coupling algorithm between SI/BE sampling
Asymptotic normality of the HT-estimator

3 Multistage sampling:
A coupling algorithm between SI/SIR sampling
Validity of a bootstrap method
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Coupling Methods

Introduction
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Coupling Methods

Introduction

The dependence in the selection of units may be complex, which makes
limiting results quite difficult to prove. In some cases, we can resort to
coupling methods [T00] to link a sampling design under study to a close,
simpler sampling design.

We look for a random vector (Xt, Zt)
> such that:

1 Xt has an appropriate marginal law (e.g., that of the HT estimator
N−1t̂yπ under the sampling design);

2 Zt has a marginal law which is simpler to study;
3 Xt and Zt are close: E(Xt − Zt)2 is smaller than the rate of con-

vergence of Xt.
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Coupling Methods

Introduction (2)

LEMMA

Let Xt and Zt denote two random variables such that E(Xt) = E(Zt).
Assume that

V (Xt) = O(at) and E(Xt − Zt)2 = o(at),

where at −→
t→∞

0. Then

V (Zt)

V (Xt)
−→
t→∞

1. (9)

Also, if
√
at{Zt − E(Zt)} −→

L
X0, then

√
at{Xt − E(Xt)} −→

L
X0.
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Coupling Methods

Framework for multistage sampling

We consider a finite population U = {1, . . . , N} of N sampling units.
The units are grouped inside NI Primary Sampling Units u1, . . . , uNI .
We are interested in estimating the population total

Y =
∑
k∈U

yk =
∑
ui∈UI

Yi with Yi =
∑
k∈ui

yk,

for some variable of interest y. We note µY = N−1I
∑

ui∈UI Yi.

We denote by Ŷi an unbiased estimator of Yi, with design variance

Vi = V (Ŷi).
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Coupling Methods

Framework for multistage sampling (2)

We consider the asymptotic framework of [IF82]:
The population U belongs to a nested sequence {Ut} of finite pop-
ulations with increasing sizes Nt.
The vector of values yUt = (y1t , . . . , yNt)

> belongs to a sequence
{yUt} of Nt-vectors.

The subscript "t" is suppressed in the sequel.

In the population UI = {u1, . . . , uNI} of PSUs:
a first-stage sample SI is selected according to some sampling
design pI(·),
if ui ∈ SI , a second-stage sample Si is selected in ui by means of
any sampling design (census, stratified sampling, multistage sam-
pling, ...).

G. Chauvet (ENSAI) Sampling and Estimation in Surveys HDR Defense 24 / 45



Coupling Methods

Assumptions

We assume:
Invariance of the second-stage designs: the second stage of
sampling is independent of SI ,
Independence of the second-stage designs: the second-stage
designs are independent from one PSU to another, conditionally
on SI .

We will also make use of the following assumptions:
H1: NI −→

t→∞
∞ and nI −→

t→∞
∞.

H2: There exists a constant C1 and δ > 0 such that

N−1I

∑
ui∈UI

E|Ŷi|2+δ < C1.
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Coupling Methods

Central limit theorem
for multistage sampling
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Coupling Methods

Bernoulli sampling of PSUs

Suppose that the first-stage sample SBEI is selected by Bernoulli sam-
pling (BE) with NI independent Bernoulli trials. The HT estimator is

Ŷ BE =
NI

nI

∑
ui∈SBEI

Ŷi.

Under assumptions (H1) and (H2), we have∑
ui∈SBEI

(
Ŷi − µY

)
√
V
[∑

ui∈SBEI

(
Ŷi − µY

)] −→
L
N (0, 1).

If the first-stage sample SI is selected by means of simple random sam-
pling without replacement (SI), the HT estimator is denoted as

Ŷ =
NI

nI

∑
ui∈SI

Ŷi.
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Coupling Methods

The coupling procedure

Step 1: Draw SBEI ∼ BE(UI ;nI). Denote by nBEI its random size.
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Coupling Methods

The coupling procedure

Step 2: If nBEI = nI ,

BE
IS

I
BE
I nn =
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Coupling Methods

The coupling procedure

Step 2: If nBEI = nI , take SI = SBEI .

BE
II SS =

I
BE
I nn =
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Coupling Methods

The coupling procedure

Step 2: If nBEI > nI ,

BE
IS

I
BE
I nn >
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Coupling Methods

The coupling procedure

Step 2: If nBEI > nI , draw SI ∼ SI(SBEI ;nI).

BE
II SS ⊂

I
BE
I nn >
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Coupling Methods

The coupling procedure

Step 2: If nBEI < nI ,

BE
IS

I
BE
I nn <
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Coupling Methods

The coupling procedure

Step 2: If nBEI < nI , take SI = SBEI ∪ SI(UI \ SBEI ;nI − nBEI ).

I
BE
I SS ⊂

I
BE
I nn <
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CLT for SI sampling of PSUs

PROPOSITION

If SBEI and SI are selected with the coupling procedure:

E
[∑

ui∈SI

(
Ŷi − µY

)
−
∑

ui∈SBEI

(
Ŷi − µY

)]2
V
[∑

ui∈SBEI

(
Ŷi − µY

)] ≤
√

1

nI
+

1

NI − nI

Hint for the proof:

N−1I

∑
ui∈SI

(
Ŷi − µY

)
−N−1I

∑
ui∈SBEI

(
Ŷi − µY

)
= εn−1I

∑
ui∈S+

I

(
Ŷi − µY

)
,

with S+
I the surplus/complementary sample, and ε = Sign(nI − nBEI ).

Under assumptions (H1) and (H2), we have

Ŷ − Y√
V (Ŷ )

−→
L
N (0, 1).



Coupling Methods

Bootstrap
for multistage sampling
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Simple random sampling of PSUs
If the first-stage sample SI is selected by means of SI sampling, the HT
estimator is

Ŷ =
NI

nI

nI∑
j=1

Ŷ(j) ≡
NI

nI

nI∑
j=1

Zj ,

where SI is obtained in j = 1, . . . , nI without-replacement draws.

If the first-stage sample SWR
I is selected by means of simple random

sampling with replacement (SIR), the Hansen-Hurwitz estimator is

ŶWR =
NI

nI

nI∑
j=1

Ŷ(j) ≡
NI

nI

nI∑
j=1

Xj ,

where SWR
I is obtained in j = 1, . . . , nI independent draws.

The two estimators are expected to be close if the first stage sampling
rate fI = nI/NI is small.



Coupling Methods

The coupling procedure

Step 1: draw SWR
I . Denote by SdI the set of distinct PSUs in SWR

I .

WR
IS

G. Chauvet (ENSAI) Sampling and Estimation in Surveys HDR Defense 38 / 45



Coupling Methods

The coupling procedure

Step 2: each time ui ∈ SWR
I , select a second-stage sample Si[j].

WR
IS
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Coupling Methods

The coupling procedure

Step 3: initialize SI with SdI , and Si = Si[1] for ui ∈ SdI .

WR
IS

IS
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Coupling Methods

The coupling procedure

Step 4: draw a complementary sample ScI , and Si for ui ∈ ScI .

WR
IS

IS
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Coupling Methods

Plug-in estimation

For some smooth function f(·), we consider the parameter

θ = f(µY ) with µY =
1

NI

∑
ui∈UI

Yi.

Under SI or SIR sampling of PSUs, we have

µ̂Y =
1

nI

nI∑
j=1

Zj ≡ Z̄ and θ̂ = f(Z̄),

µ̂WR
Y =

1

nI

nI∑
j=1

Xj ≡ X̄ and θ̂WR = f(X̄).
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Coupling Methods

Bootstrap of PSUs

We consider the with-replacement Bootstrap (BWR) of PSUs (Rao and
Wu, 1988). The resample (X∗1 , . . . , X

∗
m)> is obtained by sampling m

times independently in (X1, . . . , XnI ), and similarly for (Z1, . . . , ZnI ).

Suppose that SWR
I and SI are selected according to the coupling pro-

cedure + assumptions (H1)-(H2) + fI → 0 + m −→
t→∞

∞. Then :

E(θ̂∗ − θ̂∗WR)2 = o(m−1) + o(n−1I ). (10)

This implies that

V (θ̂∗|Z1, . . . , ZnI )

V (θ̂∗WR|X1, . . . , XnI )
−→
Pr

1.

If the with-replacement Bootstrap provides consistent variance estima-
tion for θ̂WR, it is also consistent for θ̂.
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Coupling Methods

Work in progress

1 Treatment of item non-response
G. Chauvet, Do Paco, W., Haziza, D: Exact balanced imputation for
sample survey data.

2 Variance estimation
G. Chauvet, H. Juillard, A. Ruiz-Gazen: Variance estimation for prod-
uct sampling: an application to the ELFE survey.

3 Coupling methods
G. Chauvet, J.C. Deville: Asymptotic Results for Deville’s Systematic
Sampling.
G. Chauvet, J. Opsomer: Coupling methods for two-phase sampling.
Extension of the results presented to unequal probability sampling
of PSUs.
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Coupling Methods
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