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Chapter 0

Introduction

0.1 Why asymptotic theory ?

Let X1, . . . , Xn be independent and identically distributed random variables with common
probability distribution P ∈ P where P is a subset of the set of probability measures.
Suppose we want to estimate a parameter θ = θ(P ) of this distribution. To this end, we
would like to �nd an estimator θ̂n = Tn (X1, . . . , Xn) of θ. Here Tn is a measurable mapping.

To assess accuracy of θ̂n, the two following questions are natural.

� Do we have convergence (in probability, almost surely, in quadratic mean...) of θ̂n to
θ as n→ ∞ ?

� Can we exhibit a convergence rate? For instance, which kind of sequence (rn)n of
positive real numbers, diverging to in�nity, entails that

lim sup
n→∞

rnE
(∣∣∣θ̂n − θ

∣∣∣2) <∞?

And can we exhibit a non-degenerate limiting distribution for
√
rn

(
θ̂n − θ

)
, which is

useful for constructing con�dence intervals and statistical tests?

For studying these problems, general limit theorems are available and many results exist
for quite sophisticated statistical models. On the other hand, asymptotic theory is not
suitable for evaluating the quality of the estimator for a �xed value of n. Non-asymptotic
statistics can then be useful. However, getting accurate non-asymptotic results often requires
to work with simpler models, especially if our aim is to obtain sharp constants. In this sense,
both theory are complementary.

The aim of this course is to present some general classes of statistical models for which
a nice asymptotic theory can be obtained. In the following sections, we introduce some
examples of estimators which will be studied in the next chapters.

5



0.2 Parametric M-estimators

A parametric estimator is obtained as a solution of a minimization problem

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

mθ(Xi),

for some Θ ⊂ Rd and mθ : Rk → R is a measurable mapping for every θ ∈ Θ. Note that
we implicitly assume that such an argmin exists. When it is not unique for some ω ∈ Ω, we
assume that θ̂n(ω) is one of the possible argmin.

We provide some speci�c examples below.

1. Maximum likelihood estimators (MLE) corresponds to the case mθ(x) = − log pθ(x)
where P = {pθ · µ : θ ∈ Θ}, µ is a measure of reference (e.g. counting measure on N,
Lebesgue measure on Rk) and νθ := pθ · µ denotes the probability measure de�ned by
νθ(A) =

∫
A
pθdµ for any A ∈ B(Rk), the Borel sigma-�eld of Rk. For instance,

� the exponential distribution corresponds to pθ(x) = θ exp(−θx) for θ > 0 and µ is
the Lebesgue measure on R+. A generalization is given by the gamma distribution
with parameters θ1, θ2 > 0, for which pθ(x) = xθ1−1θθ12 e

−θ2x/Γ(θ1). Here Γ(z) =∫∞
0
xz−1 exp(−x)dx for z > 0.

� The Poisson distribution with parameter θ > 0 has the probability density pθ :
x 7→ e−θθx/x! with respect to the counting measure on N.

� The case pθ(x) = exp
(
ϕ(θ)TS(x)− Z(θ)

)
for some measurable mapping S : Rk →

Rℓ and mappings ϕ : Θ → Rℓ, Z : Θ → R with ϕ(θ)T denoting the transpose of the
column vector ϕ(θ) corresponds to the exponential family which contains the two
previous examples as special cases as well many other such that the multivariate
Gaussian distributions).

2. Regression estimators with Xi = (Yi, Zi) ∈ R × Rp satisfying Yi = rθ(Zi) + εi with
(Z1, ε1), . . . , (Zn, εn) i.i.d. such that E (εi|Zi) = 0. It is often assumed that rθ(Z1) and
ε1 are square integrable and the least squares estimator (LSE) of θ is de�ned by

θ̂n = argmin
θ∈Θ

1

n

n∑
i=1

(Yi − rθ(Xi))
2 .

Linear regression corresponds to the case rθ(Zi) = ZT
i θ where θ is vector of Rp.

When the probability distribution P of the pair (Zi, εi) is not assumed to be an element
of a parametric family, the model is usually called semi-parametric (i.e. the probability
distribution of the observations can be described by a �nite-dimensional parameter θ
and an in�nite-dimensional parameter P ). However, in our context, it will be possible
to estimate θ independently from P .
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Regression models can be extended to dependent data (Yt, Zt)1≤t≤n where t denotes the
time. Sometimes Zt = Yt−1 and the model is said to be autoregressive. Autoregressive
models are widely used in many areas, e.g. for analyzing prizes dynamics in �nance,
the evolution of temperatures, species dynamics in ecology...

3. A binary regression model with Yi taking values in {0, 1} and Xi taking values in Rd

can be obtained setting
P (Yi = 1|Zi = z) = F

(
zT θ
)
,

where F is a cumutative distribution function and θ ∈ Rd is an unknown parameter.
When F (u) = exp(u)

1+exp(u)
, we call this model a logistic regression model and when

F (u) =

∫ u

−∞

exp(−x2/2)√
2π

dx,

we call it a probit regression model. Many practical applications can be considered.
For instance, in epidemiology, Yi takes the value 1 if the patient i has a given disease
(e.g. cancer) and Zi is a vector containing some information for the patient (e.g. age,
weight, smoking or not...). It is possible to consider conditional likelihood estimation
from the conditional distribution of Yi given Zi = z, which is given by

pθ (y|z) = F
(
zT θ
)y (

1− F
(
zT θ
))1−y

, (y, z) ∈ {0, 1} × Rd.

The condition Maximum Likelihood Estimator (MLE) is given by

θ̂n = argmax
θ∈Rd

n∏
i=1

pθ (Yi|Zi)

= argmax
θ∈Rd

1

n

n∑
i=1

{
Yi log

(
F
(
ZT

i θ
))

+ (1− Yi) log
(
1− F

(
ZT

i θ
))}

.

0.3 Measurability of M-estimators

Let (Ω,A,P) be a probability space and θ̂n = argminθ∈ΘMn(θ) where for any θ ∈ Θ, Mn(θ)
is a random variable. A crucial example concerns the caseMn(θ) = Sn (θ,X1, . . . , Xn) where
Sn is a measurable real-valued mapping on a suitable product space and X1, . . . , Xn are
random variables taking values the same measurable space (typically Rk) . The case

Sn (θ,X1, . . . , Xn) =
1

n

n∑
i=1

mθ(Xi),

is of special interest.
We start with a very simple result ensuring measurability of M-estimators. The unique-

ness assumption is not easy to check and the compactness of Θ is a limitation. We will
consider a more general result just after but without giving a proof.
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Proposition 1. If Θ is a compact subset of Rd, the mapping θ 7→Mn(θ) is a.s. continuous
over Θ (i.e. there exists Ω′ ∈ A such that P (Ω′) = 1 and for all ω ∈ Ω′, the mapping
θ 7→ Mn(θ)ω is continuous over Θ) and there exist θ̂n : Ω → Θ such that for all ω ∈ Ω′ and

all θ ∈ Θ \
{
θ̂n(ω)

}
, Mn

(
θ̂n

)
ω
< Mn(θ)ω. If θ1 ∈ Θ, we set θ̂n(ω) = θ1 for ω ∈ Ω \ Ω′.

Then θ̂n is measurable.

Proof of Proposition 1. Let A be an open subset of Rd. It is enough to show that{
θ̂n ∈ A

}
is a measurable set which is true as soon as

{
θ̂n ∈ A

}
∩ Ω′ is a measurable set.

Then {
θ̂n ∈ A

}
∩ Ω′ =

{
min
θ∈Θ\A

Mn(θ) > min
θ∈Θ

Mn(θ)

}
∩ Ω′.

Indeed, the set Θ \ A is a compact subset of Rd (as the intersection between a compact set
and a closed set) and if ω ∈ Ω′, the continuous mapping θ 7→ Mn(θ)ω reaches its minimum

over Θ \ A. By de�nition of θ̂n, the minimal value is larger than minθMn(θ)ω = Mn

(
θ̂n

)
ω
.

Additionally, for any compact set K included in Θ, minθ∈K Mn(θ) is a random variable.

Indeed, one can writeminθ∈K Mn(θ) = infθ∈K̃ Mn(θ) where K̃ is �nite or in�nite or numerable
subset of K. For instance, one can set

K̃ =
{
x
(k)
i , 1 ≤ i ≤ pk, k ∈ N∗

}
, K ⊂ ∪pk

i=1B

(
x
(k)
i ,

1

k

)
,

where the x
(k)
i 's are suitable points in K. Finally, we have shown that the set{

min
θ∈Θ\A

Mn(θ) > min
θ∈Θ

Mn(θ)

}
∩ Ω′

is a measurable set which leads to the result.□
We next give a more general result which is applicable in a quite general framework,

provided that the random function is continuous with respect to the parameter of interest.
A proof of the following result can be found in Niemiro (1992), Corollary 1.

Theorem 1. Suppose that Mn(θ) = Sn (θ,X1, . . . , Xn) with θ 7→ Sn (θ,X1, . . . , Xn) contin-
uous a.s. on Θ, (x1, . . . , xn) 7→ Sn (θ, x1, . . . , xn) measurable for any θ ∈ Θ and

Γ (X1, . . . , Xn) :=

{
θ′ ∈ Θ : Sn (θ

′, X1, . . . , Xn) = inf
θ∈Θ

Sn (θ,X1, . . . , Xn)

}
is almost surely non empty. Then there exists

θ̂ = ∆n (X1, . . . , Xn) = argmin
θ∈Θ

Mn(θ) ∈ Γ (X1, . . . , Xn)

with Λn measurable.

To apply the previous result, one can simply check the condition on Γ (X1, . . . , Xn) by
considering the behavior of Mn(θ) when ∥θ∥ → ∞.
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0.4 Kernel density estimation

We now give a classical example in non-parametric estimation. Here θ(P ) is simply the
probability density of the probability measure P . The parameter space Θ is now a subset of
the family of probability densities with respect to the Lebesgue measure λk on Rk. We do
not want to make a parametric assumption on Θ, but only suitable regularity conditions (e.g.
continuity, di�erentiability...). The idea for estimating the common probability density f of
some identically distributed random variables X1, . . . , Xn taking values in Rk, is to use the
properties of convolution products. Let us consider another probability densityK : Rk → R+

that will be called a kernel and for some h > 0, let us de�ne Kh(x) = h−kK (x/h) for x ∈ Rk.
Note that Kh is also a probability density. We know that the convolution product Kh ∗ f
de�ned by

Kh ∗ f(x) =
∫
Rk

Kh(x− y)f(y)λk(dy), x ∈ Rk

approximates f (for instance in L1) when h→ 0. Since f is unknown, we use the empirical
distribution Pn = 1

n

∑n
i=1 δXi

and de�ne

f̂h(x) =

∫
Rk

Kh(x− y)Pn(dy) =
1

n

n∑
i=1

Kh (x−Xi) .

We then see that Ef̂h(x) = Kh ∗f(x). The bias for estimating f(x) is de�ned by Kh ∗f(x)−
f(x) and we have to choose h as small as possible to decrease the bias. However the variance
of f̂h(x) generally increases when h becomes small. Later in this course, we will see the the
variance is of order (nhk)−1. Then a suitable choice h = hn has to be made in practice.

Standard examples of kernels are the Gaussian kernel K(x) = (2π)−k/2 exp
(
−∥x∥2

2

)
or

the indicator kernel K(x) = 2−k1∥x∥∞≤1 where ∥x∥∞ = max1≤i≤d |xi|. Note that for this

second kernel, f̂h(x) denotes the proportion of observations inside the ball B∞(x, h) ={
y ∈ Rk : ∥y − x∥∞ ≤ h

}
divided by the volume of the ball. This gives another intuition

for using such estimator for the probability density and explains why the hyper-parameter
h is called the �bandwidth�.

0.5 Non-parametric regression estimation

In this section we assume that Yi = r(Zi) + εi, 1 ≤ i ≤ n, with r(Z1) and ε1 integrable
and E [εi|Zi] = 0 a.s. We only observe Xi = (Zi, Yi) for 1 ≤ i ≤ n and we do not assume
that r : Rd → R is contained in a predetermined parametric family of functions. A standard
estimator for r is the Nadaraya-Watson estimator with

r̂h(z) =
n−1

∑n
i=1 YiKh (z − Zi)

n−1
∑n

i=1Kh (z − Zi)
, z ∈ Rd,

where h > 0 is a bandwidth and K is a kernel. Note that the denominator of r̂h(z) is
precisely an estimator of the density fZ of the random vector Z at point z. If we assume
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that the pair (Y1, Z1) has a density fY,Z with respect to the Lebesgue measure on R × Rd,
one can note that

r(z) = E [Y1|Z1 = z] =

∫
R yfY,Z(y, z)dy

fZ(z)
.

Then

E [Y1Kh(z − Z1)] =

∫
R
y

∫
Rk

Kh(z − z′)fY,Z(y, z
′)dz′dy ≈

∫
yfY,Z(y, z)dy = fZ(z)r(z),

which justi�es the use of such estimator for estimating r(z).
There exist other methods based on the same idea of local averaging.
For instance, the k nearest neighbors (kNN) estimator of r(z) is de�ned by

r̂(z) =
1

k

n∑
i=1

1{∥z−Zi∥≤τ̂n,k(z)}Yi, τ̂n,k(z) = inf

{
τ ≥ 0 :

n∑
i=1

1{∥z−Zi∥≤τ} ≥ k

}
.

Note that τ̂n,k(z) corresponds to the kth smallest value of ∥z − Zi∥, 1 ≤ i ≤ n. We then
simply average the values of Yi for which Zi is among the kNN of z in the sample.

Note that this estimator depends on k and of a norm. For the norm, one can take the
Euclidean norm but not only. We remind that all the norms are equivalent on Rd. For k, the
intuition is that a small value of k will lead to a small bias but to a large variance (we localize
a lot the average) while a large value of k will produce a large bias and a small variance (the
average is over a large number of variables and we do not localize su�ciently). This hyper-
parameter k plays the same role as the bandwidth for the Nadaraya-Watson estimator. Note
that r̂(z) is similar to this estimator with the indicator kernel and a random bandwidth.

Let us mention that both estimators can be used when Yi takes values in {0, 1} (we use the
term classi�cation instead of regression) and produce estimators of r(z) = P (Y1 = 1|Z1 = z).

For classifying a new observation Zn+1 (for which the label Yn+1 is not known) with the
nearest-neighbor approach, one simply predict 1 if r̂ (Zn+1) ≥ 1/2 (i.e. if there is a majority
of 1 in the kNN of Zn+1) and 0 otherwise.
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Chapter 1

Complements on stochastic convergence

1.1 Reminders

Let (Ω,A,P) be a probability space. On the space Rk endowed with its Borel sigma-�eld
B
(
Rk
)
, we denote by ∥ · ∥ an arbitrary norm (using the same notation whatever the value

of k). A sequence of random variables (Yn)n∈N taking values in Rk converges

1. almost surely (a.s.) to Y if ∃ Ω̃ ∈ A with P
(
Ω̃
)
= 1 and ∀ω ∈ Ω̃, limn→∞ Yn(ω) =

Y (ω),

2. in probability to Y if ∀ ϵ > 0, limn→∞ P (∥Yn − Y ∥ > ϵ) = 0,

3. in distribution (or weakly, or in law) to Y if for all mapping h : Rk → R continuous
and bounded, limn→∞ E [h(Yn)] = E [h(Y )].

We use the respective notations Yn
a.s.→ Y , Yn

p→ Y and Yn ↪→ Y for the a.s. convergence,
convergence in probability and convergence in distribution.

The following result ensures the stability of the three convergence properties after com-
position with a continuous mapping.

Theorem 2 (Continuous mapping theorem). Let Yn and Y be some random vectors taking

values in Rk such that Yn
a.s.→ Y (resp. Yn

p→ Y , Yn ↪→ Y ) and f : Rk → Rℓ a mapping,
continuous at any point of C ∈ B

(
Rk
)
such that P (Y ∈ C) = 1. Then f(Yn)

a.s.→ f(Y ) (resp.

f(Yn)
p→ f(Y ), f(Yn) ↪→ f(Y )).

Proof. It is obvious for the almost sure convergence. For the convergence in probability,
let ϵ > 0 and k be a positive integer. Set

Bk =

{
x ∈ C : ∃ y ∈ Rk s.t. |x− y| < 1

k
and |f(x)− f(y)| > ϵ

}
.
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We have ∩k≥1Bk = ∅ by continuity of f and Bk+1 ⊂ Bk. Then

{∥f(Yn)− f(Y )∥ > ϵ} ⊂
{
∥Yn − Y ∥ ≥ 1

k

}
∪ {Y ∈ Bk} ∪ {Y /∈ C} .

Indeed if Y (ω) ∈ C and ∥f(Yn(ω) − f(Y (ω))∥ > ϵ, we have either Y (ω) ∈ Bk or ∥Yn(ω) −
Y (ω)∥ ≥ 1

k
. We then get

P (∥f(Yn)− f(Y )∥ > ϵ) ≤ P
(
∥Yn − Y ∥ ≥ 1

k

)
+ P (Y ∈ Bk) + P (Y /∈ C) .

Since P (Y /∈ C) = 0 and Yn
p→ Y , we have

lim
n

P (∥f(Yn)− f(Y )∥ > ϵ) ≤ P(Y ∈ Bk).

Since limk P(Y ∈ Bk) = 0 by the continuity properties of the measure, we get the result.
For the convergence in distribution, the proof will be given after the next result.

1.2 Portmanteau lemma

In what follows, for a Borel set A of Rk, we denote by ∂A the boundary of the set A. It is
de�ned by ∂A = A\ Å where A is the closure of A (that is the smallest closed set containing
A) and Å is the interior of A (that is the largest open set included in A).

Lemma 1 (Portmanteau lemma). The following assertions are equivalent.

1. Yn ↪→ Y .

2. For every mapping f : Rk → R Lipschitz and bounded, limn E [f(Yn)] = E [f(Y )].

3. If F is a closed set, limn P (Yn ∈ F ) ≤ P (Y ∈ F ).

4. If O is an open set, limn P (Yn ∈ O) ≥ P (Y ∈ O).

5. If A ∈ B
(
Rk
)
is a continuity set for PY , i.e. P (Y ∈ ∂A) = 0, then limn P (Yn ∈ A) =

P (Y ∈ A).

Proof. 1.⇒ 2. follows from the fact that a Lipschitz function is also continuous.

Let us show that 2. ⇒ 3. For ϵ > 0, let fϵ(y) =
(
1− d(y,F )

ϵ

)
+
(where x+ = max(x, 0)).

We remind that the distance d(y, F ) = inff∈F ∥y− f∥ is always attained for some f0 ∈ F . It
is automatic to check that 1F (y) ≤ fϵ(y), limϵ→0 fϵ(y) = 0 if y /∈ F and fϵ(y) = 1 if y ∈ F .
Moreover for y, y′ ∈ Rk,

|fϵ(y)− fϵ(y
′)| ≤ ∥y − y′∥

ϵ
.
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The mapping fϵ is Lipschitz and bounded and then limn E [fϵ(Yn)] = E [fϵ(Y )]. We then get

lim
n

P (Yn ∈ F ) ≤ lim
n

E [fϵ(Yn)] = E [fϵ(Y )] .

We conclude by letting ϵ → 0, using the dominated convergence theorem which leads to
limϵ→0 E [fϵ(Y )] = P (Y ∈ F ).

3.⇔ 4. It is obvious since the complement of an open set (resp. a closed set) is a closed
set (resp. an open set) and for any real-valued sequence (xn)n, limn(−xn) = − limn xn.

3.+ 4.⇒ 5. We note that

P
(
Y ∈ A

)
≥ lim

n
P
(
Yn ∈ A

)
≥ lim

n
P (Yn ∈ A) ≥ lim

n
P (Yn ∈ A) ≥ lim

n
P
(
Yn ∈ Å

)
≥ P

(
Y ∈ Å

)
.

Since the continuity property ensures that P
(
Y ∈ A

)
= P

(
Y ∈ Å

)
= P (Y ∈ A), we get

lim
n

P (Yn ∈ A) = lim
n

P (Yn ∈ A) = P (Y ∈ A) ,

which shows the result.

5. ⇒ 1. Let f : Rk → R be a continuous and bounded mapping. Without loss of
generality, we will assume that 0 < f < 1 (otherwise one can always replace f by αf + β
with (α, β) ∈ R2 to get this property). We use the formula

E [f(Yn)] =

∫ 1

0

P (f(Yn) > t) dt =

∫ 1

0

P
(
Yn ∈ f−1 ((t,∞))

)
dt.

By continuity of f , we know that f−1 ((t,∞)) is an open set (as the reciprocal image of an
open set by a continuous mapping) and f−1 ([t,∞)) is a closed set (as the reciprocal image
of a closed set by a continuous mapping). Then

f−1 ((t,∞)) ⊂ f−1 ([t,∞)) .

We deduce that

∂f−1 ((t,∞)) ⊂ f−1 ([t,∞)) \ f−1 ((t,∞)) = {f = t} .

We know that A = {t ∈ R : P (f(Y ) = t) > 0} is �nite or in�nite but numerable. Indeed
A = ∪n≥1An with An = {t ∈ R : P (f(Y ) = t) ≥ 1/n} and An is necessarily �nite (otherwise
P cannot be a probability measure). We conclude that for all t /∈ A, we have

P
(
Yn ∈ f−1(t,∞)

)
→ P

(
Y ∈ f−1(t,∞)

)
.

From the dominated convergence theorem, we conclude that limn E [f(Yn)] = E [f(Y )].□
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End of the proof of the continuous mapping theorem. Here, we assume that Yn ↪→
Y . We use the point 3. of the portmanteau lemma. Let F be a closed set. We have

{f(Yn) ∈ F} =
{
Yn ∈ f−1(F )

}
⊂
{
Yn ∈ f−1(F )

}
.

Moreover, we have the inclusion f−1(F ) ⊂ f−1(F )∪Cc. Indeed, if limn yn = y with f(yn) ∈ F ,
either y ∈ C and then limn f(yn) = f(y) is in F because F is closed or y /∈ C.

We then conclude that

lim
n

P (f(Yn) ∈ F ) ≤ lim
n

P
(
Yn ∈ f−1(F )

)
≤ P

(
Y ∈ f−1(F )

)
≤ P

(
Y ∈ f−1(F )

)
+ P (Y /∈ C) = P (f(Y ) ∈ F ) .

The second inequality follows from an application of point 3. of the Portmanteau lemma to
the sequence (Yn)n (direct sense). We then conclude that f(Yn) ↪→ f(Y ) from point 3. of
the Portmanteau lemma (reciprocal sense).□

1.3 Slutsky's lemma

Theorem 3. Let c be vector of Rk and (Yn)n and (Zn)n be two sequences of random vectors
taking values in Rk.

1. We have Yn
p→ c if and only if Yn ↪→ c.

2. If Yn ↪→ Y and ∥Yn − Zn∥
p→ 0, then Zn ↪→ Y .

3. If Yn ↪→ Y and Zn
p→ c, then (Yn, Zn) ↪→ (Y, c).

Note. Point 3. of the previous theorem is often called Slutsky's lemma. An example
of application is the estimation of an unknown parameter in the expression of a weakly
converging sequence. For instance, let X1, . . . , Xn be i.i.d. with E(X1) = m and Var (X1) =

σ2 ∈ (0,∞). Set Xn = 1
n

∑n
i=1Xi. From the central limit theorem, we have

√
n
σ

(
Xn −m

)
↪→

N (0, 1). Let σ̂2 = 1
n

∑n
i=1

(
Xi −Xn

)2
. We know that σ̂2 p→ σ2 (an even a.s. from the strong

law of large numbers). From Slutsky's lemma and the continuous mapping theorem, we get√
n
σ̂

(
Xn −m

)
↪→ N (0, 1). One can then deduce a con�dence interval of a given asymptotic

level for the mean of the distribution when the variance is unknown.

Proof

1. Note �rst that the convergence in probability always entails the convergence in dis-
tribution. Suppose then that Yn ↪→ c. For any ϵ > 0, we get from point 3. of the
Portmanteau lemma,

lim
n

P (Yn /∈ B(c, ϵ)) ≤ P (c /∈ B(c, ϵ)) = 0.
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This shows that Yn
p→ c.

2. Let f : Rk → R be a Lipschitz and bounded mapping, with Lipschitz constant L > 0.
Set ∥f∥∞ = supx∈Rk |f(x)|. For any δ > 0, we have

|E [f(Yn)− f(Zn)]| ≤ 2∥f∥∞P (∥Yn − Zn∥ > δ) + sup
∥y−z∥≤δ

|f(x)− f(y)|

≤ 2∥f∥∞P (∥Yn − Zn∥ > δ) + Lδ.

We get limn |E [f(Yn)− f(Zn)]| ≤ Lδ. Since δ > 0 can be arbitrarily small, the result
follows from the point 2. of the Portmanteau lemma.

3. We use the previous point since (Yn, c) ↪→ (Y, c) (it can be checked using the general

de�nition of convergence in distribution) and ∥(Yn, Zn)− (Yn, c)∥
p→ 0.

1.4 Stochastic o and O

De�nition 1. The sequence (Yn)n is said to be bounded in probability if for any ϵ > 0, there
exists M > 0 such that supn∈N P (∥Yn∥ > M) ≤ ϵ. We then note Yn = OP(1).

Notes

1. If there exists a constant L > 0 such that ∥Yn∥ ≤ L a.s. (bounded sequence), then
Yn = OP(1).

2. If Yn = Y for any n, then Yn = OP(1).

3. Yn = OP(1) if and only if for all ϵ > 0, there existsM > 0 such that limn P (∥Yn∥ > M) ≤
ϵ.

The following result is sometimes used to show convergence in distribution.

Theorem 4 (Prokorov). 1. If Yn ↪→ Y , then Yn = OP(1).

2. If Yn = OP(1) then there exists a subsequence
(
Ynj

)
j
converging in distribution.

Proof

1. Let ϵ > 0 and M > 0 such that P (∥Y ∥ ≥M) ≤ ϵ (note that limM→∞ P (∥Y ∥ ≥M) =
0). Using the point 3. of the Portmanteau lemma, we have limn P (∥Yn∥ ≥M) ≤
P (∥Y ∥ ≥M) ≤ ϵ.

2. The second point is much more di�cult to get. See for instance Van der Vaart (2000),
pp. 8− 9 or Billingsley (2013), Theorem 5.1.
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Notation. The convergence in probability Yn
p→ 0 is also denoted by Yn = oP(1). Of course

Yn = oP(1) ⇒ Yn = OP(1).

Rules of calculus. One can show that the following rules are valid. oP(1)+oP(1) = oP(1),
OP(1) +OP(1) = OP(1), oP(1)OP(1) = oP(1), (1 + oP(1))

−1 = OP(1).

Comparison of random sequences. For a sequence (Rn)n of real-valued random vari-
ables, we say that Yn = oP(Rn) if Yn = RnZn with Zn = oP(1) and Yn = OP(Rn) if Yn = RnZn

with Zn = OP(1). We obtain the following new rules of calculus oP(Rn) = RnoP(1),
OP(Rn) = RnOP(1) and oP (OP(1)) = oP(1).

Lemma 2. Let R : Rk → R be a measurable mapping such that R(0) = 0 and Yn = oP(1)
taking values in Rk. For any p > 0,

1. if R(h) = o (∥h∥p) when h→ 0 then R(Yn) = oP (∥Yn∥p),

2. if R(h) = O (∥h∥p) when h→ 0 then R(Yn) = OP (∥Yn∥p).

Proof. Let g : Rk → R be the mapping de�ned by g(0) = 0 and g(h) = R(h)/∥h∥p if
h ̸= 0. Note that under the assumption of point 1., g is continuous at 0. The equality
R(Yn) = ∥Yn∥pg(Yn) is valid in both cases.

1. The continuous mapping theorem ensures that g(Yn) = oP(1) if Yn = oP(1).

2. In the second case, we use the bound

P (|g(Yn)| > M) ≤ P (∥Yn∥ > K) + P (∥Yn∥ ≤ K, |g(Yn)| > M) .

By the assumption on R, one can take K small enough and M large enough such that
the second probability is equal to 0. Then limn P (|g(Yn)| > M) ≤ limn P (∥Yn∥ > K) =
0 which shows that g(Yn) = OP(1).□

1.5 δ−method

Let O be an open subset of Rk.

Theorem 5. Let ϕ : O → Rm be a di�erentiable mapping at point θ ∈ O and Tn : Ω → O a
random vector such that rn(Tn − θ) ↪→ T with rn → ∞. Then

rn (ϕ(Tn)− ϕ(θ)) ↪→ Jϕ(θ) · T

where Jϕ(θ) =
(

∂ϕi

∂xj
(θ)
)
1≤i≤m
1≤j≤k

.
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Proof. Using a Taylor expansion at order 1, we have

ϕ(θ + h) = ϕ(θ) + Jϕ(θ)h+ o (∥h∥) .

Since rn(Tn − θ) = OP(1), we get Tn − θ = 1
rn
OP(1) = oP(1) and Tn

p→ θ. From the previous
lemma, we get ϕ(Tn) = ϕ(θ) + Jϕ(θ) · (Tn − θ) + oP (∥Tn − θ∥). We then get

rn (ϕ(Tn)− ϕ(θ)) = Jϕ(θ)rn(Tn − θ) + rn∥Tn − θ∥oP(1).

Since rn∥Tn − θ∥ = OP(1) (from our assumptions), we obtain

rn (ϕ(Tn)− ϕ(θ)) = Jϕ(θ)rn(Tn − θ) + oP(1)

and the result follows from the continuous mapping theorem and Slutsky's lemma.□

Example. Consider

S2 =
1

n

n∑
i=1

(
Xi −Xn

)2
=

1

n

n∑
i=1

X2
i −X

2

n = X2
n −X

2

n.

Set µi = EX i
1 for any positive integer i. Suppose that µ1 = 0, set σ2 = µ2 − µ2

1 = µ2 and

ϕ(x, y) = y − x2. Then Jϕ(x, y) = (−2x, 1). Setting Tn =
(
Xn, X2

n

)
, we have

√
n (Tn − (0, µ2)) ↪→ N2

(
(0, 0),

(
µ2 µ3

µ3 µ4 − µ2
2

))
.

We deduce that √
n
(
S2 − σ2

)
↪→ N

(
0, µ4 − µ2

2

)
.

If µ1 ̸= 0, one can replace µi by E [(X1 − µ1)
i] to get a similar result.

Note. If the �rst derivative of ϕ vanishes, it is still possible to study a higher-order Taylor
expansion to get the asymptotic distribution of ϕ(Tn). For instance, using a Taylor expansion
of order 2, one can show that if E(X1) = 0 and E (X2

1 ) = 1,

−2n
(
cos
(
Xn

)
− 1
)
↪→ χ2(1).
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Chapter 2

Examples of convergence of estimators

2.1 M-estimators

An M−estimator θ̂n is a minimizer of a random function θ 7→Mn(θ) that can be computed
using realizations of n random variables or random vectors X1, . . . , Xn. More precisely,

θ̂n = argmin
θ∈Θ

Mn(θ),

where Θ is the set of possible parameters. In this paragraph, we will only consider �nite-
dimensional parameter spaces, i.e. Θ ⊂ Rd for some d ≥ 1. Extension to more general metric
spaces is possible. For simplicity, we will always assume that an in�mum or a minimizer of a
random function is measurable. A more thorough discussion of measurability problems has
been given in the introduction chapter.

In this section, we denote by ∥ · ∥ an arbitrary norm on Rd of Rk. B(x, ϵ) will denote the
corresponding open ball of center x and radius ϵ, i.e. B(x, ϵ) =

{
y ∈ Rd : ∥y − x∥ < ϵ

}
.

2.1.1 Consistency of M−estimators

The �rst result is very simple to state and already ensures weak consistency of a sequence
of M-estimators (i.e. convergence in probability to the minimizer of a limit criterion).

Theorem 6. Assume that there exists a non random mapping M : Θ → R such that

1. supθ∈Θ |Mn(θ)−M(θ)| = oP(1).

2. For all ϵ > 0, supθ∈Θ:∥θ−θ0∥≥ϵM(θ) > M(θ0).

Then θ̂n
p→ θ0 (weak consistency).

Note. The �rst assumption of this theorem is an assumption of uniform convergence which
is often used for studying consistency of M-estimators. The second assumption is an assump-
tion of "good" separation of M(θ0) = infθ∈ΘM(θ).
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Proof. Let ϵ > 0. From our second assumption, there exists η > 0 such that ∥θ − θ0∥ >
ϵ⇒M(θ)−M(θ0) > η. Moreover we have Mn

(
θ̂n

)
≤Mn(θ0) and

M
(
θ̂n

)
−M(θ0) =M

(
θ̂n

)
−Mn

(
θ̂n

)
+Mn

(
θ̂n

)
−Mn(θ0)+Mn(θ0)−M(θ0) ≤ 2 sup

θ∈Θ
|Mn(θ)−M(θ)| .

We then get

P
(
∥θ̂n − θ0∥ > ϵ

)
≤ P

(
M
(
θ̂n

)
≥M(θ0) + η

)
≤ P

(
2 sup

θ∈Θ
|Mn(θ)−M(θ)| > η

)
.

We conclude using the �rst assumption.□

Note. If the �rst assumption of the previous theorem is replaced by supθ∈Θ |Mn(θ)−M(θ)| a.s.→
0, then we have strong consistency, i.e. θ̂n

a.s.→ θ0. This a consequence of the inclusion{
∥θ̂n − θ0∥ > ϵ

}
⊂
{
2 sup

θ∈Θ
|Mn(θ)−M(θ)| > η

}
.

Details are omitted.

We now are interested in checking the uniform convergence property in the special case
where Mn(θ) =

1
n

∑n
i=1mθ(Xi) when Θ is compact. The following result is an example of

uniform law of large numbers.

Lemma 3. Suppose that Θ is compact, X1, . . . , Xn i.i.d., θ 7→ mθ(x) continuous for PX1−almost
all x and E [supθ∈Θ |mθ(X1)|] <∞. Then supθ∈Θ |Mn(θ)−M(θ)| a.s.→ 0.

Proof. For δ > 0 and x ∈ Rk, set

w∆(x) = sup {|mθ+h(x)−mθ(x)| : θ, θ + h ∈ Θ, ∥h∥ ≤ ∆} .
w∆(x) is the modulus of continuity of θ 7→ mθ(x) at point x. Using the dominated conver-
gence, we have lim∆→0 E [w∆(x)] = 0. Since Θ is compact, one can �nd θ1, . . . , θℓ ∈ Θ such
that Θ ⊂ ∪ℓ

i=1B (θi,∆). Let θ ∈ B (θi,∆) for some i = 1, . . . , ℓ. Then

|Mn(θ)−Mn(θi)| ≤
1

n

n∑
i=1

w∆(Xi)
∆→0→ E [w∆(X1)] a.s.

using the law of large numbers. We get

|Mn(θ)−M(θ)| ≤ |Mn(θ)−Mn(θi)|+ |Mn(θi)−M(θi)|+ |M(θi)−M(θi)|

≤ 1

n

n∑
i=1

w∆(Xi) + max
1≤i≤ℓ

|Mn(θi)−M(θi)|+ E [w∆(X1)] .

Using the law of large numbers (note that the maximum in the right-hand side only depends
on a �nite number of points), we then get

lim
n

|Mn(θ)−M(θ)| ≤ 2E [w∆(X1)] a.s.

We conclude by letting ∆ → 0.□
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Note. In the compact case, strong consistency can be reduced to a deterministic problem:
the convergence of a sequence of minimizers when we have uniform convergence of the ob-
jective functions. Let fn : Θ → R be a continuous mapping de�ned on a compact set Θ
and such that ∥fn − f∥Θ := supθ∈Θ |fn(θ)− f(θ)| n→∞→ 0. Suppose that f(θ0) < f(θ) for all
θ ̸= θ0. Then the uniform convergence ensures that f is continuous and the compactness as-
sumption guarantees that θn = argminθ fn(θ), n ≥ 1, has a subsequence (θϕn)n≥1 converging
to some point θ∗ ∈ Θ. Moreover,

|fϕn (θϕn)− f (θ∗)| ≤ ∥fϕn − f∥Θ + |f (θϕn)− f (θ∗)| n→∞→ 0.

Since fϕn (θϕn) ≤ fϕn(θ0), by letting n → ∞, f (θ∗) ≤ f(θ0). We deduce that θ∗ = θ0. One
can deduce that limn→∞ θn = θ0 (a sequence in a compact set converges if and only if it has
a unique cluster point).

The previous discussion leads to the following result.

Theorem 7. Let X1, . . . , Xn be i.i.d. random vectors. Suppose that

1. Θ is compact,

2. for PX1−almost all x, the mapping θ 7→ mθ(x) is continuous on Θ and E [supθ∈Θ |mθ(X1)|] <
∞,

3. θ 7→M(θ) is minimized only in θ0.

Then θ̂n
a.s.→ θ0.

Note. The second assumption ensures the continuity of the mapping θ 7→M(θ) (using the
theorem of continuity under the sign integral).

2.1.2 Application to maximum likelihood estimators (MLE)

When PX1 = pθ0 · µ, the maximum likelihood estimator can be seen as a M-estimator cor-

responding to mθ(x) = − log pθ(x)
pθ0 (x)

. Note that the division by pθ0 is considered only for

theoretical reasons, in practice θ 7→ − log pθ(x) is used. The aim of this part is to give a
su�cient (and necessary) for the third assumption needed for applying Theorem 7.

We �rst introduce an important quantity for measuring the closeness of two probability
measures P = p · µ and Q = q · µ. The Kullback-Leibler divergence is between P and Q is
de�ned by

K(P,Q) =

∫
p>0

p log(p/q)dµ if µ ({q = 0, p > 0}) = 0,

otherwise we set K(P,Q) = ∞.

Lemma 4. We have K(P,Q) ≥ dH(P,Q)
2 :=

∫ (√
p−√

q
)2
dµ.
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Proof. We assume that µ ({q = 0, p > 0}) = 0 otherwise K(P,Q) = ∞ and the result is
obvious. We �rst note that∫

p>0

p (log(p/q))− dµ =

∫
p>0

q

(
p

q
log

p

q

)
−
dµ <∞.

Indeed the negative part of x 7→ x log(x) is bounded. If
∫
p>0

p
(
log p

q

)
+
dµ = ∞, one can

deduce that K(P,Q) ≥ dH(P,Q)
2. Otherwise, using the inequality log(x) ≤ 2 (

√
x− 1) for

all x ≥ 0, we get∫
p>0

p log
p

q
dµ = −

∫
p>0

p log
q

p
dµ

≥ −2

∫
p>0

p
(√

q/p− 1
)
dµ

= −2

∫
√
pqdµ+ 2

= dH(P,Q)
2.□

Notes. From the previous lemma, one can notice that K ≥ 0 and K(P,Q) = 0 if and only
if p = q. However K is not symmetric and does not satisfy the triangular inequality. K is
then not a distance. However, dH is a distance called Hellinger distance. From the previous
lemma, a small divergence entails proximity between the two probability measures. We
defer the reader to Tsybakov (2004) for some additional properties of the Kullback-Leibler
divergence as well as some comparisons with other metrics between probability measures.

Proposition 2. Suppose that for any θ ∈ Θ, µ ({pθ = 0}) = 0 and for any θ ̸= θ0,
µ ({pθ ̸= pθ0}) > 0. Then M has a unique minimizer at point θ0.

Proof. Observe that M(θ) = E [mθ(X1)] = K (Pθ0 , Pθ) and from the previous lemma, we
have M(θ) ≥ 0 = M(θ0) and M(θ) = 0 = M(θ0) implies dH(Pθ, Pθ0) = 0 which in turn
implies that pθ = pθ0 µ−almost everywhere.□

Note. Proposition 2 with Theorem 7 can be used to prove consistency of MLE when
the state space is compact. Note that the assumptions of Proposition 2, which guaranty
identi�cation of the parameter, are quite weak. Additionally to the existence of a common
support for all the densities, it is simply necessary to assume that two di�erent parameters
do not lead to the same probability density (up to some set of null measure for µ).

2.1.3 A more general result in the σ−compact case

It is possible to relax the compactness assumption which is crucial in Theorem 7.
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Theorem 8. Suppose that Θ = ∪k≥0Θ̊k where Θk is a compact subset of Rd and Θk ⊂ Θk+1.
Suppose furthermore that the following conditions are satis�ed.

1. The mappings Mn and M are a.s. continuous on Θ.

2. θ0 is the unique minimizer of M .

3. For any k ∈ N, limn→∞ supθ∈Θk
|Mn(θ)−M(θ)| = 0 a.s.

4. There exists θ̂n = argminθ∈ΘMn(θ) such that for all ω ∈ Ω, there exists a compact
K = K(ω) such that θ̂n(ω) ∈ K for all n ≥ 1.

Then θ̂n
a.s.→ θ0.

Proof. We start by noticing that any compact subset K of Θ is automatically included in
a compact set Θk for some integer k. If not, one can always �nd a sequence (xk)k in K such
that xk /∈ Θk. But there then exists a cluster point x of the sequence in K and since x ∈ Θ̊ℓ

for some integer ℓ, one can conclude that xk′ ∈ Θ̊ℓ ⊂ Θk′ for large k
′ which is a contradiction.

Now, let ω ∈ Ω and K(ω) compact such that θ̂n(ω) ∈ K(ω) for all n ≥ 1. Since
K(ω) ⊂ Θk(ω) for some integer k(ω) and θ0 ∈ Θj for another integer j, we use the uniform
convergence of θ 7→Mn(θ)ω toM on the set Θmax(j,k(ω)) as well as the deterministic argument
presented before the statement of Theorem 7 to conclude.□

The example of geometric median Let Θ = Rd for d ≥ 2 and X1, . . . , Xn i.i.d. and
taking values in Θ. Suppose that E∥X1∥ < ∞ where ∥ · ∥ denotes the Euclidean norm. Let
us de�ne

θ̂n = argmin
θ∈Θ

Mn(θ), Mn(θ) =
1

n

n∑
i=1

∥Xi − θ∥.

It is easy to check the inequalities |Mn(θ)−Mn(θ
′)| ≤ ∥θ−θ′∥ and |M(θ)−M(θ′)| ≤ ∥θ−θ′∥.

Moreover, the uniform convergence of Mn is valid on any compact subset of Θ.
Next one can note that an argmin θ̂n always exists because lim∥θ∥→∞Mn(θ) = ∞. For a

given θ∗ ∈ Θ, any argmin satis�es the inequalities

∥θ̂n − θ0∥ ≤ 1

n

n∑
i=1

∥Xi − θ̂n∥+
1

n

n∑
i=1

∥Xi − θ∗∥ ≤ 2

n

n∑
i=1

∥Xi − θ∗∥ → 2E∥X1 − θ∗∥ <∞.

This shows the condition 4. of Theorem 8 and conditions 1. and 3. are also satis�ed.
It remains to check condition 2. A median, i.e. θ0 = argminθ∈ΘM(θ), always exists. This

is a consequence of the continuity of M and

argmin
θ∈Θ

M(θ) = arg min
θ:∥θ∥≤2E∥X1∥

M(θ).

To show uniqueness of θ0, we will assume that the support of the measure PX1 is not included
in a line D, i.e. P (X1 ∈ Θ \ D) > 0. If θ1 and θ2 are two medians, let D be the line joining
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these two distinct points. Let λ ∈ (0, 1). If x /∈ D, we have ∥x − (1 − λ)θ1 − λθ2∥ <
(1− λ)∥x− θ1∥+ λ∥x− θ2∥ and the inequality is large if x ∈ D. We conclude that

M ((1− λ)θ1 + λθ2) < (1− λ)M(θ1) + λM(θ2) =M(θ1),

which contradicts the de�nition of θ1. Then condition 2. of Theorem 8 is also satis�ed.

2.1.4 Z-estimators

We call θ̂n a Z-estimator if Zn

(
θ̂n

)
= 0 or more generally Zn

(
θ̂n

)
= oP(1), where

Zn(θ) =
1

n

n∑
i=1

zθ(Xi), θ ∈ Θ.

This estimator is meaningful when the target θ0 ∈ Θ satis�es E [zθ0(X1)] = 0.

Examples

1. When zθ(x) = ṁθ(x) (notation for the gradient of θ 7→ mθ(x)), a Z-estimator is an
example of M-estimator since we simply want to vanish the gradient of the objective
function Mn for �nding θ̂n = argminθ∈ΘMn(θ).

2. It can happen that Zn is not the derivative of a di�erentiable mapping. For instance, if
zθ = sign (x− θ) where sign(u) = 1u>0 −1u<0, θ̂n is called the median. Alternatively,
a median can be de�ned from the M-estimator such that mθ(x) = |x − θ|. Both
estimators enjoy similar properties.

3. We next give a Z-estimator based on the idea of instrumental variable in Econometrics.
Suppose that

Yi = θ0,1 + θ0,2Xi + θ0,3Zi + εi, 1 ≤ i ≤ n,

where εi is independent from (Xi, Zi) and E(εi) = E(Zi) = 0. But only (Xi, Yi) is
observed. For instance, Yi can represent the income of an individual, Xi the number
of years of education and Zi the qualities of the individual. If Xi and Zi are not
independent, E(Yi|Xi) ̸= θ0,1 + θ0,2Xi and the least-squares method does not apply.
The idea is to �nd an "instrument" uncorrelated with (Zi, εi), for instance the salary
of the parents. We then get the two following equalities

E(Yi) = θ0,1 + θ0,2E(Xi), E(YiWi) = θ0,1E(Wi) + θ0,2E(XiWi).

We then set
zθ(y, x, w) = (y − θ1 − θ2x, y − θ1w − θ2xw) .

If the covariance between W1 and X1 is di�erent from 0, the determinant of the matrix(
1 E(X1)

E(W1) E(W1X1)

)
is di�erent form 0 and one can identify θ0.
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We next give a result analogue to Theorem 6 for Z-estimators. The proof is similar and
then omitted. Theorem 7 can be also stated for Z-estimators.

Theorem 9. Suppose that

1. supθ∈Θ ∥Zn(θ)− Z(θ)∥ = oP(1),

2. For all ϵ > 0, infθ∈Θ:∥θ−θ0∥>ϵ ∥Z(θ)∥ > ∥Z(θ0)∥ = 0.

Then any sequence of Z-estimators is weakly consistent.

2.1.5 Asymptotic normality for M-estimation

In this subsection, we consider Mn(θ) = 1
n

∑n
i=1mθ(Xi). For x ∈ Rk, the gradient vector

and the Hessian matrix of the mapping θ 7→ mθ(x) at point θ will be denoted by ṁθ(x) and
m̈θ(x) respectively.

Theorem 10. We suppose that the following assumptions hold true.

1. Θ is a compact subset of Rd and θ0 ∈ Θ̊.

2. The point θ0 is the unique minimizer of the mapping θ 7→ E [mθ(X1)] and supθ∈Θ |mθ(X1)|
is integrable.

3. For all x, θ 7→ mθ(x) is two times continuously di�erentiable and there exists a neigh-
borhood Vθ0 of θ0 such that supθ∈Θ ∥m̈θ0(X1)∥is integrable.

4. ṁθ0(X1) is square integrable and Wθ0 := E [m̈θ0(X1)] is invertible.

Then √
n
(
θ̂n − θ0

)
↪→ Nd

(
0,W−1

θ0
Vθ0W

−1
θ0

)
,

where Vθ0 = E
[
ṁθ0(X1)ṁθ0(X1)

T
]
.

Note. Observe that the assumptions of Theorem 10 guaranty that E [ṁθ0(X1)] is the gra-
dient at point θ0 of the mapping θ 7→ E [mθ(X1)] and then Vθ0 = E

[
ṁθ0(X1)ṁθ0(X1)

T
]
.

Proof of Theorem 10 The assumptions of Theorem 10 contain that of Theorem 8. Then
θ̂n

a.s.→ θ0.
The idea is to make a Taylor expansion of the following form

0 ≈ Ṁn

(
θ̂n

)
= Ṁn(θ0) + M̈n (θ0) ·

(
θ̂n − θ0

)
+ oP

(
1/
√
n
)

= Ṁn(θ0) +Wθ0 ·
(
θ̂n − θ0

)
+ oP

(
1/
√
n
)
.
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From the central limit theorem, we have
√
nṀn(θ0) ↪→ Nd (0, Vθ0). We will then deduce that

√
n
(
θ̂n − θ0

)
= −W−1

θ0

√
nṀn(θ0) + oP(1) (2.1)

and the result will follow from Slutsky's lemma. To prove (2.1), we start by noticing that

for P−almost all ω, there exists n0(ω) such that for n ≥ n0(ω), Ṁn

(
θ̂n(ω)

)
ω
= 0 because

limn→∞ θ̂n(ω) = θ0 and θ̂n(ω) ∈ Θ̊ if n is large enough.

We deduce that Ṁn

(
θ̂n

)
= oP (1/

√
n) (and even oP(rn) for any rn → 0).

The Taylor-Lagrange formula at order 1 gives for 1 ≤ i ≤ d,

∂Mn

∂θi

(
θ̂n

)
=
∂Mn

∂θi
(θ0) +

d∑
j=1

∂2Mn

∂θi∂θj

(
θ̃(i)n

)
·
(
θ̂n,j − θ0,j

)
for some θ̃

(i)
n ∈ [θ0, θ̂n]. Using vectors, we conclude that

Ṁn

(
θ̂n

)
= Ṁn(θ0) + Sn

(
θ̂n − θ0

)
, Sn =

(
∂2Mn

∂θi∂θj

(
θ̃(i)n

))
1≤i,j≤d

. (2.2)

From the third assumption, which guarantees a uniform law of large numbers on Vθ0 and the
almost sure convergence of θ̂n, one can easily show that Sn = Wθ0 + oP(1). Now (2.1) can be
obtained from (2.2) and the invertibility of Wθ0 if we show that

√
n
(
θ̂ − θ0

)
= OP(1). (2.3)

To show (2.3), we start by noticing that there exist η, c > 0 such that if H is a matrix of
size d× d such that ∥H∥ ≤ η then ∥ (Wθ0 +H)−1 ∥ ≤ c. We then get

P
(√

n∥θ̂n − θ0∥ > M
)

≤ P (∥Sn −Wθ0∥ > η) + P
(
∥Sn −Wθ0∥ ≤ η,

√
n∥θ̂n − θ0∥ > M

)
= p1,n + p2,n.

We already know that limn→∞ p1,n = 0. Moreover,

p2,n ≤ P
(
∥Sn −Wθ0∥ ≤ η,

√
n∥Sn

(
θ̂n − θ0

)
∥ > M/c

)
≤ P

(√
n∥Ṁn(θ0) + oP(1/

√
n)∥ > M/c

)
.

But
√
n∥Ṁn(θ0) + oP(1/

√
n)∥ = OP(1) and then supn≥1 p2,n can be made arbitrarily small if

M is large enough. This shows (2.3) and completes the proof.□

We mention without proof another result for asymptotic normality that does require
θ 7→ mθ(x) to be di�erentiable in a neighborhood of θ0 but transfers this smoothness to its
expectation M . Contrarily to the previous one, this result can be applied to the median,
i.e. mθ(x) = |x − θ|. See https://perso.univ-rennes1.fr/bernard.delyon/param.pdf,
Theorem 15, p. 45.
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Theorem 11. Suppose that the following assumptions hold true.

1. Θ is a compact of Rd and θ0 ∈ Θ̊.

2. There exists a measurable mapping N : Rk → R+ such that |mθ(x)−mθ′(x)| ≤
N(x)∥θ − θ′∥ with E [N(X1)

2] <∞.

3. θ 7→ mθ(X1) is a.s. di�erentiable at point θ0 and ṁθ0(X1) is square integrable.

4. The mapping M is two times continuously di�erentiable with θ0 as unique minimizer.

Then, √
n
(
θ̂n − θ0

)
↪→ Nd

(
0, M̈(θ0)

−1E
[
ṁθ0(X1)ṁθ0(X1)

T
]
M̈(θ0)

−1
)
.

2.1.6 Maximum likelihood estimators

Here mθ(x) = − log pθ(x). Under the assumptions of Theorem 10 or Theorem 11, we have
the weak convergence

√
n
(
θ̂n − θ0

)
↪→ Nd

(
0, M̈(θ0)

−1E
[
ṁθ0(X1)ṁθ0(X1)

T
]
M̈(θ0)

−1
)
.

The quantity

I (θ0) =: E
[
ṁθ0(X1)ṁθ0(X1)

T
]
= E

[
ṗθ0(X1)ṗθ0(X1)

T

pθ0(X1)2

]
is called Fisher information (at point θ0).

Lemma 5. Suppose that ṗθ0(X1)/pθ0(X1) is square integrable. If there exists a neighborhood
Vθ0 of θ0 such that the mapping θ 7→ pθ(x) is two times continuously di�erentiable on Vθ0

(µ−almost everywhere) and
∫
supθ∈Vθ0

∥p̈θ0(x)∥µ(dx) <∞, then

I(θ0) = E [m̈θ0(X1)] = E
[
− p̈θ0(X1)

pθ0(X1)
+
ṗθ0(X1)ṗθ0(X1)

T

pθ0(X1)2

]
.

Proof. To show the result, it is su�cient to prove that

E
[
p̈θ0(X1)

pθ0(X1)

]
=

∫
p̈θ0(x)µ(dx) = 0. (2.4)

To this end, we apply the theorem of derivation under the sign integral. For the �rst integra-
bility assumption, we know that E [∥ṗθ0(X1)∥/pθ0(X1)] =

∫
∥ṗθ0(x)∥µ(dx) <∞. Moreover

sup
θ∈Vθ0

∥ṗθ(x)∥ ≤ ∥ṗθ0(x)∥+ sup
θ∈Vθ0

∥p̈θ0(x)∥ × |Vθ0| ,

where |Vθ0| denotes the diameter of Vθ0 . We then get
∫
supθ∈Vθ0

∥ṗθ(x)µ(dx) < ∞. Finally,

the theorem of derivation applies to θ 7→
∫
pθ(x)µ(dx) = 1 and (2.4) is valid.□
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Note. If θ̂n,MLE denotes the MLE, under appropriate conditions, we get

√
n
(
θ̂n,MLE − θ0

)
↪→ Nd

(
0, I(θ0)

−1
)
.

It is possible to show that I(θ0)
−1 is the smallest asymptotic variance among the M-estimators

for which the assumptions of Theorem 10 are valid (in fact, optimality of the MLE holds
true under more general assumptions but this is outside the scope of this course). We �rst
introduce a non-total order relation on the set of symmetric non-negative de�nite matrices
of size d× d,

A ⪯ B ⇔ xTAx ≤ xTBx, x ∈ Rd.

Note �rst that under our regularity assumptions∫
ṁθ0(x)pθ0(x)µ(dx) = 0, θ0Θ̊.

Taking the derivative with respect to θ0 ∈ Θ̊ in the previous equality∫
m̈θ0(x)pθ0(x)µ(dx) +

∫
ṁθ0(x)ṗθ0(x)

Tµ(dx) = 0.

From this identity, if x, y ∈ Rd, we get

xTE [m̈θ0(X1)] y = −E
[
xT ṁθ0(X1)

ṗθ0(X1)
T

pθ0(X1)
y

]
≤

√
E [xT ṁθ0(X1)ṁθ0(X1)Tx] · E

[
yT
ṗθ0(X1)ṗθ0(X1)T

pθ0(X1)2
y

]
,

where we applied the Cauchy-Schwarz inequality. Setting x = W−1
θ0
z and y = I(θ0)

−1z for
some z ∈ Rd, we get

zT I(θ0)
−1z ≤

√
zTW−1

θ0
Vθ0W

−1
θ0
z ×

√
zT I(θ0)−1z

and then
zT I(θ0)

−1z ≤ zTW−1
θ0
Vθ0W

−1
θ0
z.

In particular for any z ∈ Rd, the asymptotic variance of the linear combination zT θ̂n,MLE is

smaller than zT θ̂n where θ̂n is anotherM−estimator. This justi�es the asympotic optimality
property of the MLE under suitable regularity conditions.

2.1.7 Model selection. Akaike information criterion

Usually, for M-estimators, we have several natural submodels that we want to select. For
instance, in the case of a regression model with p predictors available, the true model could
write as

Yi =
∑
j∈M0

θ0,jXj,i + εi, 1 ≤ i ≤ n,
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where M0 is a subset of {1, . . . , p}. In this case, we may want to select the good subset of
predictors M0. In the general case of M-estimators, we have a �nite collection of models M
and we have a �nite number of estimators θ̂n,M = argminθ∈ΘM Mn(θ) where ΘM denotes the
parameter space corresponding to a submodel M. Set θ0,M = argminθ∈Θ0,M M(θ) and M0

such that θ0,M0 = argminMM (θ0,M). Note that in the case of nested models, i.e. M0 ⊂ M,
θ0,M can be identi�ed to θ0,M0 and this vector will be simply denoted by θ0.

A �rst idea to estimate M0 would be to minimize M 7→ Mn

(
θ̂n,M

)
but unfortunately

the selected model M is generally much larger than M0 (over�tting problem). It could be

then more interesting to minimize M 7→M
(
θ̂n,M

)
but M is unknown.

In the rest of the discussion, suppose that M ⊃ M0 and for simplicity write θ̂n instead
of θ̂n,M. We remind that under some assumptions, if M ⊃ M0,

√
n
(
θ̂n − θ0

)
↪→ N|M|

(
0,W−1

θ0,MVθ0,MW−1
θ0,M

)
,

where |M| denotes the number of free parameters in model M. Under some regularity
conditions, we have

M
(
θ̂n

)
= M(θ0) + Ṁ(θ0)

(
θ̂n − θ0

)
+

1

2

(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
+ oP(1/n)

= M(θ0) +
1

2

(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
+ oP(1/n),

Mn

(
θ̂n

)
= Mn(θ0) + Ṁn(θ0)

(
θ̂n − θ0

)
+

1

2

(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
+ oP(1/n),

Ṁn(θ0) = Ṁn

(
θ̂n

)
− M̈n(θ0)

(
θ̂n − θ0

)
+ oP

(
1/
√
n
)
.

We then get

Mn

(
θ̂n

)
=Mn (θ0)−

1

2

(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
+ oP(1/n)

and �nally

M
(
θ̂n

)
− τn =Mn

(
θ̂n

)
+
(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
+ oP(1/n), (2.5)

with τn =M(θ0)−Mn(θ0) not depending on M ⊃ M0. Since

argmin
M

M
(
θ̂n,M

)
= argmin

M

{
M
(
θ̂n,M

)
− τn

}
,

we see from (2.5) thatMn

(
θ̂n,M

)
under estimateM

(
θ̂n,M

)
−τn. In AIC criterion, we replace

the correcting term
(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
by its expectation and we let n→ ∞. Using

the Gaussian limiting distribution, we get

E
(
θ̂n − θ0

)T
Wθ0,M

(
θ̂n − θ0

)
≈ 1

n
Tr
(
Vθ0,MW−1

θ0,M
)
.
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For the MLE
Tr
(
Vθ0,MW−1

θ0,M
)
= |M| .

In this case, we de�ne

M̂ = argmin
M

{
Mn

(
θ̂n,M

)
+

|M|
n

}
[AIC criterion].

In the case of a general M-estimator, it is necessary to estimate Vθ0,M and Wθ0,M.

2.1.8 Additional results for convex objective functions

We now consider the case of convex objective functions θ 7→Mn(θ). In this case, asymptotic
results are easier to state.

We �rst start with a useful result showing that pointwise convergence of convex functions
entails uniform convergence on compact subsets. The following technical lemma is given
without proof. See Tyrrell Rockafellar (1970), Theorem 10.8.

Lemma 6. Let U be an open and convex subset of Rd and (fn)n∈N a sequence of convex
functions from U to R. If there exist a convex function f : U → R and a dense subset
D ⊂ U such that limn→∞ fn(x) = f(x) for all x ∈ D, then (fn)n∈N converges to f uniformly
on any compact subset of U .

Corollary 1. Suppose that all the assumptions of Lemma 6 are valid. Additionally, suppose
that f has a unique minimizer x∗ ∈ U . Then if n is large enough, fn is lower-bounded,
reaches its minimal value and the sequence of argmin converges to x∗.

Proof. Let ϵ > 0 such that K := B (x∗, ϵ) ⊂ U , where B (x∗, ϵ) = {x ∈ U : ∥x− x∗∥ ≤ ϵ}.
From Lemma 6, we have rn := supx∈K |fn(x)− f(x)| n→∞→ 0. We remind that a convex
function de�ned on an open subset of Rd is always continuous. Since the boundary of K,
∂K, is compact (as a closed subset of K compact), we have δ := infx∈∂K (f(x)− f(x∗)) > 0.
This is due to the fact that f(x) > f(x∗) for any x ∈ ∂K and to the continuity of f . We are
now going to show that infU fn = infK fn is n is large enough. Since K is compact and fn
continuous, we will have infK fn is reached at a point xn ∈ K. Let y ∈ U \K. There exists
λ ∈ (0, 1) such that x = λx∗ + (1− λ)y ∈ ∂K. Then the following inequalities hold true.

fn(x
∗) ≤ f(x∗) + rn ≤ f(x) + rn − δ ≤ fn(x) + 2rn − δ ≤ λfn(x

∗) + (1− λ)fn(y) + 2rn − δ.

If n is large enough, 2rn − δ < 0 and then the previous inequalities yield to fn(x
∗) < fn(y).

We conclude that infU fn = infK fn = fn(xn) for some xn ∈ K and ∥xn − x∗∥ ≤ ϵ if n is
large enough.□

We now go back to the problem of consistency of M-estimators.

Theorem 12. Let Θ be an open and convex of Rd. Suppose that the three following assump-
tions hold true.
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1. The sequence (Mn)n is a sequence of convex random functions converging point by point
on a dense subset of Θ to a deterministic convex function M a.s. (resp. in probability).

2. There exists a sequence
(
θ̂n

)
n≥1

of near-argmin of (Mn)n≥1, in the sense that θ̂n −

infΘMn
n→∞→ 0 a.s. (resp. in probability).

3. θ0 is the unique minimizer of M .

Then θ̂n converges a.s. (resp. in probability) to θ0.

Notes

1. If the sequence of convex functions (Mn)n≥1 converges pointwise to function M : Θ →
R, thenM is automatically convex. This is true in the deteministic case and then auto-
matic for a.s. convergence. For the convergence in probability, use the a.s. convergence
along a subsequence to conclude the convexity of the limit.

2. The existence of a near-argmin can be useful in some examples when Θ is unbounded.
See below for the logistic regression.

Proof of Theorem 12. The almost sure convergence is a consequence of Corollary 1. In
particular, taking an arbitrary dense subset D of Θ, it can be shown that for P−almost all
ω ∈ Ω, for all θ ∈ D, limn→∞Mn(θ)ω =M(θ).

For the convergence in probability, we remind that Zn
p→ Z if and only if for any subse-

quence of (Zn)n, there exists a subsubsequence converging to Z a.s. (remind that convergence
in probability entails almost sure convergence of a subsequence). Let Mn = Mϕ(n) a subse-

quence of Mn and (sj)j≥1 dense in Θ. We have Mn(sj)
p→ M(sj) for all j ≥ 1. Let ℓ be a

positive integer. There then exists an integer nℓ such that for all 1 ≤ j ≤ ℓ,

P
(∣∣Mnℓ

(sj)−M(sj)
∣∣ > 1/ℓ

)
≤ 2−ℓ.

One can assume that nℓ ≤ nℓ+1. We deduce that for all ϵ > 0 and j ≥ 1,

∞∑
ℓ=1

P
(∣∣Mnℓ

(sj)−M(sj)
∣∣ > ϵ

)
<∞.

From the Borel-Cantelli lemma, we have for any j ≥ 1, Mnℓ
(sj)

a.s.→ M(sj) a.s. Since the
set of point of a.s. convergence is numerable, one can deduce that for P−almost all ω ∈ Ω,
limn→∞Mnℓ

(sj)ω =M(sj) for any j ≥ 1. We then deduce form Corollary 1 that θ̂ϕ(nℓ)
a.s.→ θ0.

This concludes the proof.□
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Examples

1. The geometric median. Let θ̂n = argminθ∈Θ
1
n

∑n
i=1 ∥Xi − θ∥, Θ = Rd. Here Mn and

M are convex. We recover the convergence of θ̂n to θ0 obtained in the previous section,
provided that θ0 is the unique argmin of θ 7→M(θ) = E (∥X1 − θ∥).

2. Logistic regression. Let (Xi, Yi) ∈ Rd × {0, 1}, 1 ≤ i ≤ n, some i.i.d. pairs of random
variables such that P (Yi = 1|Xi = x) = F

(
xT θ0

)
with F (z) = (1 + exp(−z))−1. Here

Θ = Rd. One can include an intercept term in the linear combination XT
i θ0, (i.e. the

�rst component of Xi is equal to 1). Let

gx,y(θ0) = P (Yi = 1|Xi = x) = F
(
xT θ0

)y (
1− F

(
xT θ0

))1−y
.

We set
mθ(Yi, Xi) = − log gXi,Yi

(θ) = −YiXT
i θ + log

(
1 + exp(XT

i θ)
)
.

The corresponding M-estimator corresponds to the conditional MLE because it is based
on the maximization of the logarithm of the conditional density of (Y1, . . . , Yn) given
(X1, . . . , Xn). Note that

m̈θ(y, x) =
xxT exp(xT θ)

1 + exp(xT θ)
.

We deduce that M̈n(θ) is a positive semi-de�nite matrix. Hence the convexity of Mn.
To show thatM is well de�ned, we only have to check integrability of mθ(Y1, X1). This
is satis�ed as soon as E (∥X1∥) <∞.

We now check under which condition θ0 is the unique argmin of M . To this end, one
can check that

M(θ)−M(θ0) =

∫
KL

(
B
(
F (θTx), F (θT0 x)

))
dPX1(x),

where KL
(
B
(
F (θTx), F (θT0 x)

))
denotes the Kullback-Leibler divergence between the

Bernoulli distributions with respective parameters F (θTx) and F (θT0 x). Hence we get
M(θ) ≥ M(θ0) and the equality only holds if F (θTx) = F (θT0 x) for PX1−almost all
x. Since F is one-to-one, we get M(θ) = M(θ0) if and only if θTX1 = θT0X1 a.s. We
conclude that θ0 is the unique minimizer of M if and only if the components of X1 are
linearly independent.

The most di�cult problem is to check the second assumption of Theorem 12. Existence
of the MLE does not hold when data coming from Yi = 1 and Yi = 0 are separated
by an hyperplane of Rd. See Albert and Anderson (1984) for a precise statement.
However, for a �xed ω, Corollary 1 ensures that θ 7→Mn(θ)ω has a minimizer θ̂n(ω) if
n is large enough. A sequence of near-argmin then exists.

We now consider asymptotic normality of minimizers of convex criteria. We �rst consider
a simple result which is not di�cult to prove. A much more general result will be given
without proof at the end of the subsection. The results below is formulated for Mn(θ) =∑n

i=1mθ(Xi), without the 1/n normalization.
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Theorem 13. Let Mn be a convex random mapping de�ned on Rd with θ̂n as near-argmin.
Suppose that for any z ∈ Rd,

Mn

(
θ0 + z/

√
n
)
−Mn(θ0) =

1

2
zTV z + UT

n z + En + rn(z),

with V symmetric, positive de�nite, non random and rn(z) = oP(1), Un = OP(1).
Then

√
n
(
θ̂n − θ0

)
= arg min

z∈Rd

{
1

2
zTV z + UT

n z + En

}
+ oP(1)

= −V −1Un + oP(1).

Moreover if Un ↪→ U then
√
n
(
θ̂n − θ0

)
↪→ −V −1U .

Proof of Theorem 13 Let

Dn(z) =Mn

(
θ0 + z/

√
n
)
−Mn(θ0), Dn(z) =

1

2
zTV z + UT

n z + En.

The mapping Dn (resp. Dn) is convex and has a minimizer
√
n
(
θ̂n − θ0

)
(resp. Zn :=

−V −1Un). The mapping z 7→ Dn(z) − UT
n z − En is also convex and converges pointwise to

z 7→ zTV z in probability. From Lemma 6 and a subsequence argument, one can deduce that
the convergence is uniform on compact sets. As a consequence, rn = Dn −Dn converges in
probability to 0, uniformly on compact sets. More precisely, for any compact subset K of
Rd, supz∈K |rn(z)| = oP(1).

In what follows, we set Kn = B (Zn, ε), Rn = supz∈Kn

∣∣Dn(z)−Dn(z)
∣∣ and

∆n = infz∈∂Kn

{
Dn(z)−Dn (Zn)

}
, where ∂Kn denotes the boundary of Kn. Observe

that Kn is a random compact subset of Rd because the center of the ball is a random
variable. Note also that ∆n > 0 a.s. The proof will be based on the following lemma.

Lemma 7. Let ω ∈ Ω. If ∆n(ω) > 2Rn(ω) and Dn(y)ω < infzDn(z)ω + ∆n(ω) − 2Rn(ω),
then y ∈ Kn(ω).

Proof of Lemma 7 If y /∈ Kn(ω), there exists x ∈ ∂Kn(ω) such that x = λZn(ω)+(1−λ)y
for some λ ∈ (0, 1). We then get the following upper-bounds.

Dn (Zn(ω))ω ≤ Dn (Zn(ω))ω +Rn(ω)

≤ Dn(x)ω +Rn(ω)−∆n(ω)

≤ Dn(x)ω + 2Rn(ω)−∆n(ω)

≤ λDn (Zn(ω))ω + (1− λ)Dn(y)ω + 2Rn(ω)−∆n(ω).

Using our assumptions, we then get

Dn (Zn(ω))ω ≤ Dn(y)ω +
2Rn(ω)−∆n(ω)

1− λ
< Dn(y)ω + 2Rn(ω)−∆n(ω) < Dn (Zn(ω))ω .

This yields to a contradiction.□
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End of the proof of Theorem 13. From Lemma 7, we get the following inclusion

An := {∆n > 2Rn}∩
{
Dn

(√
n
(
θ̂n − θ0

))
< infDn +∆n − 2Rn

}
⊂
{
∥
√
n(θ̂n − θ0)− Zn∥ ≤ ε

}
.

It is enough to prove that limn→∞ P(An) = 1; this will prove that
√
n
(
θ̂n − θ0

)
−Zn = oP(1)

and the conclusion of the theorem will follow from Slutsky's lemma. Now let h ∈ Rd such
that ∥h∥ = ε. We have

Dn (Zn + h)−Dn(Zn) =
1

2
hTV h.

We conclude that

∆n = inf
∥h∥=ε

1

2
hTV h =

1

2
λ−ε

2,

where λ− > 0 is the smallest eigenvalue of V . Next for κ > 0, we have

P (Rn > κ) ≤ P (∥Zn∥ > M) + P (∥Zn∥ ≤M,Rn > κ) := αn + βn.

Since Zn = OP(1), one can chooseM large enough so that supn≥1 αn is arbitrarily small. For
such a M ,

βn ≤ P

(
sup

∥z∥≤M+ε

∣∣Dn(z)−Dn(z)
∣∣ > κ

)
n→∞→ 0.

We conclude that Rn = oP(1) and then P (∆n ≤ 2Rn)
n→∞→ 0. Finally, since

√
n
(
θ̂n − θ0

)
is

a near argmin of Dn,

P
(
Dn

(√
n
(
θ̂n − θ0

))
≥ infDn +∆n − 2Rn

)
n→∞→ 0

and we automatically get P(Ac
n)

n→∞→ 0, which concludes the proof.□

Examples

1. Theorem 13 applies to logistic regression. It is simply necessary to make a Taylor ex-
pansion at order 2. If E∥X1∥2 <∞ and the coordinates of X1 are linearly independent
random variables, one can set V = E [m̈θ0(X1)] and Un = 1√

n

∑n
i=1 ṁθ0(Xi).

2. Let us apply the result to the median in the univariate case, i.e. mθ(x) = |x − θ|.
We assume here that X1, . . . , Xn are i.i.d. with a density f which is continuous and
positive at point θ0 := inf {x ∈ R : F (x) ≥ 1/2}, where F is the cumulative distribution
function corresponding to f . In this case θ0 = argminθ∈R E [|X1 − θ|] is the unique
minimizer and satis�es P(X1 ≤ θ0) = P (X ≥ θ0) = 1/2. See http://www.stat.yale.
edu/~pollard/Papers/convex.pdf for additional results and examples. We have

mθ0+t(x)−mθ0(x) = D(x)t+R(x, t),
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with D(x) = 1x≤θ0 − 1x>θ0 and

R(x, t) =

{
2(t+ θ0 − x)1θ0<x≤θ0+t if t > 0,
2(y − t− θ0)1θ0+t<y≤θ0 if t < 0

Of course R(x, 0) = 0. We then get

Mn

(
θ0 + z/

√
n
)
−Mn(θ0) =

1√
n

n∑
i=1

D(Xi)z +
n∑

i=1

E
[
R(Xi, z/

√
n)
]

+
n∑

i=1

{
R(Xi, z/

√
n)− E

[
R(Xi, z/

√
n)
]}
.

One can show that E [R(Xi, t)] = f(θ0)t
2+o(t2) and E [R(Xi, t)

2] = 4
3
|t|3f(θ0)+o(|t|3).

This shows that rn(z) =
∑n

i=1 {R(Xi, z/
√
n)− E [R(Xi, z/

√
n)]} satis�es E[rn(z)2] =

o(1) and then rn(z) = oP(1) for any z ∈ R. Moreover

n∑
i=1

E
[
R(Xi, z/

√
n)
]
= f(θ0)z

2 + o(1).

An application of Theorem 13 yields to
√
n
(
θ̂n − θ0

)
↪→ N

(
0, 1

4f(θ0)2

)
.

Finally, let us mention a more general result showing that minimizers of convex random
functions always converge in distribution provided that the �nite-dimensional distributions
converges to that of a random convex function possessing a unique minimizer. The proof of
the following theorem, which can be found under a more general framework in Kato (2009),
is based on a representation theorem which allows to derive convergence in distribution from
a.s. convergence. See http://www.stat.yale.edu/~pollard/Books/Iowa/Iowa-notes.

pdf, Theorem (9.4) for a statement of the representation theorem.

Theorem 14. Suppose that z 7→ gn(z) are random convex functions de�ned on Rd such that
ẑn = argminz∈Rd gn(z) and z 7→ g∞(z) is another random convex function with a unique
argmin z∞. Then if for any z1, . . . , zk ∈ Rd,

(gn(z1), . . . , gn(zk)) ↪→ (g(z1), . . . , g(zk)) ,

we have ẑn ↪→ z∞.

Typically, one can apply Theorem 14 to some criterion of type gn(z) =Mn (θ0 + z/
√
n)−

Mn (θ0), but it is now not required to get a quadratic expansion as formulated in the state-
ment of Theorem 13. We will apply this result in the next section.
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2.2 An example of penalized regression method. LASSO

type estimators

In this section, we consider a regression model of the form

Yi = xTi θ0 + εi, 1 ≤ i ≤ n,

with ε1, . . . , εn i.i.d. with E (ε1) = 0 and E (ε21) = σ2 < ∞. We consider a non-random
design here, i.e. x1, . . . , xn are deterministic. For some γ ≥ 1, we set

θ̂n = arg min
θ∈Rd

Ln(θ), Ln(θ) =
n∑

i=1

(
Yi − xTi θ

)2
+ λn

d∑
j=1

|θj|γ,

where λn > 0 is a hyperparameter selected by the user.
One can show that �nding solutions of this penalized regression problem is equivalent to

minimize θ 7→
∑n

i=1

(
Yi − xTi θ

)2
under the constraint ∥θ∥γ ≤ Rn with a one-to-one corre-

spondence between λn and Rn. Here ∥θ∥γ =
(∑d

j=1 |θj|γ
)1/γ

. The most popular choices are

γ = 1 (LASSO regression) and γ = 2 (ridge regression) and are useful respectively if many
components of the true θ0 vanish or when the covariates are collinear.

We will investigate the asymptotic properties of penalized regression estimators when d
is �xed and n → ∞. Fu and Knight (2000) investigated these properties also for the case
γ ∈ (0, 1), though the arguments are no more based on convexity. We will use following
assumption.

A1 There exists a positive-de�nite matrix C such that Cn := 1
n

∑n
i=1 xix

T
i

n→∞→ C.

A2 We have max1≤i≤n
∥xi∥√

n
= o(1).

Note. When the design is a realization ofX1, . . . , Xn i.i.d.,A1-A2 are satis�ed if E [∥X1∥2] <
∞ and E

(
X1X

T
1

)
is positive de�nite (or equivalently the coordinates of X1 are linearly in-

dependent). Indeed A1 is a consequence of the law of large numbers. Moreover

∥Xi∥2

n
≤

∥Xi∥21∥Xi∥≤M

n
+

∥Xi∥21∥Xi∥>M

n

≤ M2

n
+

1

n

n∑
j=1

∥Xj∥21∥Xj∥>M .

From the law of large numbers, we then get limn

∑n
i=1

∥Xi∥2
n

≤ E
[
∥X1∥21∥X1∥>M

]
which goes

to 0 as M → ∞. In such a case, working with a deterministic design is equivalent to work
with the conditional distribution of (Y1, . . . , Yn) given X1 = x1, . . . , Xn = xn. The advantage
of working with a non-random design is the level of generality, since the sequence (xi)i≥1 is
not required to be the realization of a sequence of i.i.d. random variables.

For consistency, we have the following result.
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Theorem 15. Suppose that Assumptions A1-A2 hold true. If λn/n → λ0, then θ̂n
p→

argminθ∈Rd L(θ) with

L(θ) = (θ − θ0)
T C (θ − θ0) + λ0

d∑
j=1

|θj|γ.

In particular, when λ0 = 0 (i.e. λn = o(n)), then argminθ∈Rd M(θ) = θ0.

We then conclude that λn = o(n) is a necessary and su�cient condition to ensure con-
sistency of the penalized regression estimator.

Proof of Theorem 15. The convex mapping Ln/n converges pointwise in probability to
L+ σ2. Moreover L is strictly convex and lim∥θ∥→∞ L(θ) = ∞ (since C is positive de�nite),
then it has a unique minimizer. The result is then a consequence of Theorem 12. Note that
a minimizer of Ln always exists because lim∥θ∥→∞ Ln(θ) = ∞. □

For the asymptotic normality, we have the following result.

Theorem 16. Suppose that Assumptions A1-A2 holds true and that λn/
√
n

n→∞→ λ0 ≥ 0.

1. If γ > 1, then

√
n
(
θ̂n − θ0

)
↪→ Nd

(
−C−1λ0γ

2
(sign(θ0,j)|θ0,j|γ−1)1≤j≤d, σ

2C−1

)
.

2. If γ = 1,
√
n
(
θ̂n − θ0

)
↪→ argminz∈Rd V (z) where

V (z) = −2zTW + zTCz + λ0

d∑
j=1

{
zjsign(θ0,j1θ0,j ̸=0 + |zj|1θ0,j=0

}
and W follows the distribution Nd (0, σ

2C).

Note. The asymptotic distribution of the ordinary least-squares estimator (i.e. with λn =
0) is Nd (0, σ

2C−1). Indeed, we have

θ̂n = arg min
θ∈Rd

1

n

n∑
i=1

(
Yi −XT

i θ
)2

=

(
1

n

n∑
i=1

xix
T
i

)−1
1

n

n∑
i=1

xiYi

and

√
n
(
θ̂n − θ0

)
=

(
1

n

n∑
i=1

xix
T
i

)−1
1√
n

n∑
i=1

xiεi.
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As stated in the beginning of the proof of Theorem 16, we have

1√
n

n∑
i=1

xiεi ↪→ Nd

(
0, σ2C

)
and from A1 and Slutsky's lemma, we deduce that

√
n
(
θ̂n − θ0

)
↪→ Nd (0, σ

2C−1). This is

also the asymptotic distribution for penalized regression estimators when λ0 = 0. However,
the case λ0 > 0 is interesting for getting additional properties. Let us consider the case
γ = 1. One can show that when d − r coe�cients vanish for the true model, then the
asymptotic distribution of the penalized regression estimator put a positive mass to 0 for the
corresponding coordinates. Set β = θ0. Without loss of generality, assume that βr+1 = · · · =
βd = 0 and βi ̸= 0 for 1 ≤ i ≤ r (otherwise one can always index the variables accordingly).
Set also E = (Ci,j)1≤i,j≤r, F = (Ci,j)r+1≤i≤d,1≤j≤r, s(β) = (sign(βj))1≤j≤r,W1 and z1 the �rst
r components of W and z and W2, z2 their last d− r components. One can show that z with
z2 = 0 is a solution for minimizing V if and only if the inequalities −λ0

2
1 ≤ Fz1 −W2 ≤ λ0

2
1

hold true component by component, 1 being the vector of Rd with all coordinates equal to
1, and z1 = E−1

(
W1 − λ0

2
s(β)

)
. This clearly happens with a positive probability. A more

interesting property would be to show that the LASSO estimator recovers asymptotically
the zero coe�cients. Under some conditions, this property is true for a �xed p but also in a
high-dimensional framework when p grows with n. See Zhao and Yu (2006).

Proof of Theorem 16. We have

Ln

(
θ0 + z/

√
n
)
− Ln(θ0) = zTCnz −

2√
n

n∑
i=1

εix
T
i z

+ λn

d∑
j=1

{∣∣∣∣θj + z√
n

∣∣∣∣γ − |θj|γ
}
.

Moreover, zTCnz = zTCz+oP(1) and
2√
n

∑n
i=1 εixi ↪→ Nd (0, 4σ

2C). For the second assertion,
note that we have a sum of independent but not identically distributed random variables but
one can use the central limit theorem given by Theorem 30 in Chapter 4. Indeed, setting
Yn,i = xiεi/

√
n, we have

∑n
i=1Var (Yn,i) =

σ2

n

∑n
i=1 xix

T
i

n→→ V := σ2C. Moreover, the second
assumption of Theorem 30 is satis�ed, since ∥Yn,i∥ ≤ cn|εi| with cn = max1≤i≤n ∥xi∥/

√
n

and for ϵ > 0,
n∑

i=1

E
[
∥Yn,i∥21∥Yn,i∥>ϵ

]
≤ 1

n

n∑
i=1

xix
T
i E
[
ϵ211|ε1|>ϵ/cn

]
,

with goes to 0 as n→ ∞, using A1-A2 and the square integrability of ε1.

1. Suppose �rst that γ > 1. We have

λn

d∑
j=1

{∣∣∣∣θ0,j + z√
n

∣∣∣∣γ − |θ0,j|γ
}

n→∞→ γλ0

d∑
j=1

zj|θ0,j|γ−1sign(θ0,j).
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The result then follows from Theorem 13, with V = 2C and

Un = − 2√
n

n∑
i=1

εixi + γλ0

d∑
j=1

zj|θ0,j|γ−1sign(θ0,j).

2. Suppose next that γ = 1. We have

λn

d∑
j=1

{∣∣∣∣θ0,j + z√
n

∣∣∣∣− |θ0,j|
}

n→∞→ λ0

d∑
j=1

{
zjsign(θ0,j)1θ0,j ̸=0 + |zj|1θ0,j=0

}
.

The assumptions of Theorem 13 are satis�ed only when λ0 = 0 and we obtain a
Nd (0, σ

2C−1) asymptotic distribution. If λ0 > 0, one can use Theorem 14 with gn(z) =
Ln (θ0 + z/

√
n)−Ln (θ0). Note that V is strictly convex and lim∥z∥→∞ V (z) = ∞; there

then exists a unique minimizer.□

2.3 Kernel density estimation

In this section, we go back to the problem of kernel density estimation. Let us assume
that X1, . . . , Xn are i.i.d. random vectors, taking values in Rk and for which PX1 = f · λk
where λk is the Lebesgue measure on Rk and f ∈ F where F is a subset of the set of
probability densities on Rk. When F =

{
pθ : θ ∈ Θ ⊂ Rd

}
, we face to a parametric problem

and maximum likelihood estimation as in the previous section can be studied. However,
when we do not want to assume that F is a parametric family of probability densities, kernel
density estimation is one of the classical method to estimate the unknown density f . Let
K : Rk → R+ be a probability density and set Kh(u) = h−kK(u/h). As discussed in Chapter
0, one can de�ne a natural estimator called kernel density estimator (KDE),

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi), x ∈ Rk.

There is a tuning parameter h to choose for computing the estimator. The additional pa-
rameter, the kernel K, plays a more minor rule in KDE convergence, only a few regularity
properties are required for this kernel to compute the convergence rate of f̂h to f . The
optimal choice of h will depend on n, i.e. h = hn with limn→∞ hn = 0 but the convergence
to 0 should be not too fast. To get a better intuition about the properties of KDE, let us
assume that k = 1 and K(u)1

2
1[−1,1](u). In this case

f̂h(x) =
1
n

∑n
i=1 1x−h≤Xi≤x+h

2h
.

We then simply count the proportion of observations in the interval [x − h, x + h], which
estimates the probability P (x− h ≤ X1 ≤ x+ h) and divide this proportion by the length of
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the interval. Intuitively this should converge to f(x) if f is continuous at point x. However,
if hn ↘ 0 to fast with n, the KDE will exhibit too much variability. In contrast if hn is
too large, the KDE will be too �at. There is then a tradeo� for the choice of this tuning
parameter. Figure 2.1 illustrates this problem when K is the Gaussian kernel, i.e. K(u) =
1√
2π

exp
(
−u2

2

)
.

Figure 2.1: KDE (in red) for n = 100 standard Gaussian observations with h = 0.1 (left)
and h = 1 (right)

2.3.1 Upper-bound for the integrated mean square error

The integrated mean squared error (MSE) is de�ned by

IMSE (f) =

∫
Rk

(
f̂h(x)− f(x)

)2
dx.

Setting Bh(x) = Ef̂h(x) − f(x), the bias of the estimator at point x, we have the usual
bias/variance decomposition

IMSE (f) =

∫
Rk

Bh(x)
2dx+

∫
Rk

Var
(
f̂h(x)

)
dx.

Let us assume that every probability density f in F is two times continuously di�erentiable
and let us compute the bias Bh(x) = Ef̂h(x) − f(x). Using a Taylor expansion at order 2,
we have

Bh(x) =

∫
Rk

Kh(x− y)f(y)dy − f(x)

=

∫
Rk

K(u) (f(x− hu)− f(x)) du

=

∫
Rk

K(u)

[
−h∇f(x)u+ h2

∫ 1

0

(1− t)uT∇2f(x− thu)udt

]
du.
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In what follows, we denote by ∥ · ∥ the Euclidean norm on Rk. For a square matrix M of
size k × k, we also denote by ∥M∥ the corresponding operator norm of M , i.e. ∥M∥ =
sup∥x∥≤1 ∥Mx∥ (it coincides with the square of the spectral radius of the matrix MTM).

From the Cauchy-Schwarz inequality, we have uTMu ≤ ∥u∥2∥M∥ for every vector u of Rk.
Assuming that

∫
Rk uK(u)du = 0 (it is the case when the kernel K is symmetric), the �rst

term vanishes and applying the Cauchy-Schwarz inequality, we get

|Bh(x)|2 ≤ h4
∫
Rk

∫ 1

0

K(u)∥u∥2du×
∫
Rk

∫ 1

0

(1− t)2K(u)∥u∥2∥∇2f (x− thu) ∥2dudt.

We then get ∫
Rk

|Bh(x)|2 dx ≤ h4

3

(∫
Rk

∥u∥2K(u)du

)2 ∫
Rk

∥∇2f(x)∥2dx.

Moreover, for the variance part, we have∫
Rk

Var
(
f̂h(x)

)
dx =

1

n

∫
Rk

Var (Kh(x−X1)) dx

≤ 1

n

∫
Rk

E
(
Kh(x−X1)

2
)
dx

=
1

nhk

∫
Rk

∫
Rk

K(u)2f(x− hu)dudx

=

∫
Rk K

2(u)du

nhk
.

We then get the following result.

Theorem 17. Suppose that f is twice continuously di�erentiable on Rk with
∫
Rk ∥∇2f(x)∥2dx <

∞. Suppose furthermore that
∫
Rk uK(u)du = 0,

∫
Rk ∥u∥2K(u)du < ∞ and

∫
Rk K

2(u)du <
∞. There then exists a constant CK,f > 0 such that

IMSE (f) ≤ CK,f

(
h4 +

1

nhk

)
.

Notes

1. If we optimize the upper-bound in h > 0, we �nd that hn ∼ n− 1
4+k gives the best

rate of convergence. In this case, the convergence rate of f̂h is n
2

4+k (considering the
square root of the IMSE). One can note that the rate of convergence is slower than
the standard

√
n−rate obtained in parametric estimation. However the space F of

probability densities is of in�nite dimension here and free of any parametric assumption
that can be quite misleading in practice.
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2. Suppose that FM denotes the subset of probability densities f : Rk → R two-times
continuously di�erentiable with

∫
Rk ∥∇2f(x)∥dx ≤ M . Then it can be shown that

there exists a positive real number CM such that for any density estimator f̂ of f ,

inf
f∈FM

E
∫
Rk

(
f̂(x)− f(x)

)2
dx ≥ CMn

− 4
4+k .

This shows that KDE are rate optimal.

3. See Van der Vaart (2000), Section 24.2 and Section 24.3 for a proof of the previous
lower bound as well as an improvement of the convergence rate when f can be assumed
to be m−times continuously di�erentiable with m > 2.

4. In practice h has to be selected from the sample, otherwise we only know that the

optimal choice is of the form h = Cn− 1
4+k with an unknown constant C > 0. There exist

many "data-driven" procedures for bandwidth selection. One of the most popular is
cross-validation. See in particular Hall (1983) and Stone (1984) for asymptotic results.
Other selection methods are possible. See Goldenshluger and Lepski (2011) for an
approach based on an estimation of the bias of KDE. A discussion about bandwidth
selection methods is outside the scope of this course.
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Chapter 3

An introduction to empirical process

theory

This chapter is a short and partial introduction to empirical process theory. Most of the ele-
ments are taken from Van der Vaart (2000), Chapter 19. More complete references are Vaart
and Wellner (2023) or Dudley (2014). The lecture notes available at http://www.stat.

columbia.edu/~bodhi/Talks/Emp-Proc-Lecture-Notes.pdf are accessible and provide a
list of interesting applications. In particular, Section 3.4.2 is taken from these notes.

3.1 Uniform weak convergence of random functions

Let X1, . . . , Xn be some i.i.d. random vectors taking valued in Rk and with common prob-
ability distribution P . Let Pn be the empirical measure associated to a sample X1, . . . , Xn

taking values in Rk, i.e. Pn = 1
n

∑n
i=1 δXi

. For a measurable mapping f : Rk → R, set
Pnf = 1

n

∑n
i=1 f(Xi) and Pf = E [f(X1)]. If F denotes a set of measurable functions

f : Rk → R (called a class of functions in what follows), {Pnf : f ∈ F} is called an empirical
process.

In this chapter, our aim will be two-fold.

1. First we are interested in the almost sure converge of supf∈F |Pnf − Pf | to 0. When
this convergence occurs, we will say that that the class F is P−Glivenko-Cantelli. It
is clear that if F contains a �nite number of elements, then it is P−Glivenko-Cantelli
as soon as P |f | < ∞ for all f ∈ F . This is a simple consequence of the strong law of
large numbers. In Chapter 2, we have seen that the class {fθ : θ ∈ Θ} is P-Glivenko-
Cantelli as soon as Θ is a compact subset of Rd, with θ 7→ fθ(x) continuous on Θ
for all x ∈ Rk and x 7→ supθ∈Θ |fθ(x)| is P−integrable. When f(x) = 1x≤t, setting
Fn(t) =

1
n

∑n
i=1 1Xi≤t and F (t) = P ((−∞, t]), it is also widely known that

lim
n→∞

sup
t∈R

|Fn(t)− F (t)| = 0 a.s.

showing the class of half-line intervals is P−Glivenko Cantelli for any P . In this
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chapter, we will derive more general conditions to get uniform convergence from a
measure of complexity of the class F .

2. We will also study the weak convergence of the random element
{Gnf :=

√
n (Pnf − Pf) : f ∈ F} as an element of ℓ∞ (F). Here ℓ∞ (F) denotes the

set of mappings g : F 7→ R such that ∥g∥F := supf∈F |g(f)| < ∞. This will ensure
that for every continuous and bounded function h : ℓ∞ (F) → R,

lim
n→∞

E [h (Gn)] = E [h (G)] (3.1)

for a random element G taking values in ℓ∞ (F). For example, using a suitable function

h (e.g. h = h̃ (∥g∥F) with h̃ : R 7→ R continuous and bounded), this convergence will
ensure the weak convergence of ∥Gn∥F to ∥G∥F . Such a convergence will be interesting
for non-parametric testing for instance.

When f1, . . . , fℓ ∈ F are such that Pf 2
i < ∞ for 1 ≤ i ≤ ℓ, the multivariate central

limit theorem ensures that

(Gnf1, . . . ,Gnfℓ) ↪→ Nℓ (0,Σ) ,

where the covariance matrix of the limiting Gaussian vector is de�ned by

Σ(i, j) = Cov (fi(X1), fj(X1)) .

Then a good candidate for G is a Gaussian process, i.e. a process {Gf : f ∈ F} for
which any �nite-dimensional marginal vector (Gf1, . . . ,Gfℓ) is a Gaussian vector, with
mean 0 and covariance matrix (Pfifj − Pfi · Pfj)1≤i,j≤ℓ. But this �nite-dimensional
convergence property only ensures (3.1) for some speci�c functions h, i.e. h(Gn) =
g (Gnf1, . . . ,Gnfℓ) for a continuous and bounded function g : Rℓ → R. When F is not
numerable, this is not su�cient to ensure convergence (3.1) for an arbitrary continuous
and bounded function h.

To get an intuition on why convergence for �nite-dimensional distributions is not suf-
�cient for convergence in a uniform sense, let us consider the following elementary
example. Consider ℓ∞([0, 1]) and the Dirac masses δxn where xn : [0, 1] → R is de�ned
by xn(1/n) = 1 and xn(t) = 0 if t ∈ [0, 1] \ {1/n}. Then δxn convergences weakly to δ0
for �nite-dimensional distributions but since ∥xn∥[0,1] = 1, one cannot expect conver-
gence to 0 for the uniform topology. The same problem holds in empirical processes
theory.

When Gn converges in distribution to G, we will say the class F is P−Donsker.

3.1.1 Outer probabilities and expectations

There are often some problems of measurability of Gn taken as a random element in ℓ∞ (F).
For instance, take the simple example of the indicator functions F =

{
1(−∞,t] : t ∈ R

}
and

consider Ω = R, X1(ω) = ω and

{P1f : f ∈ F} = {1X1≤t : t ∈ R} .
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Here ℓ∞ (F) can be identi�ed to ℓ∞ (R). Let S be a subset of R which is not a Borel set and
G = ∪s∈SBs, where

Bs =

{
g ∈ ℓ∞(R) : sup

u∈R
|g(u)− 1u≥s| < 1/2

}
.

Then G is an open set and then a Borel subset of ℓ∞(R). However

{ω ∈ Ω : 1ω≤· ∈ G} = S

because supu∈R |1ω≤u − 1s≤u| = 1s ̸=ω. Then P1 is not measurable as an element of ℓ∞ (F).
To circumvent measurability problems, we will consider an extension of the weak conver-

gence notion using outer probability measures. This extension is presented to get a rigorous
presentation of the results, it can be skipped for a �rst reading.

Let (Ω,A,P) be a probability space, (G, d) a metric space (for example G = ℓ∞ (F) and
d(g, g′) = ∥g − g′∥F), X : Ω → G a random element and f : G→ R a mapping, we de�ne

E∗ [f(X)] = inf {E(U) : U : Ω → R measurable , U ≥ f(X),E(U) exists } .

The terminology E(U) exists means E (U+) <∞ or E (U−) <∞ where U+ = max(U, 0) and
U− = max(−U, 0). We also have the following de�nition of an outer probability of a subset
B ⊂ Ω,

P∗(B) = inf {P(A) : A ∈ A, B ⊂ A} .
One can show that P∗(X ∈ C) = E∗ [1X∈C ] for a subset C of G. See Vaart and Wellner
(2023), chapter 1.2 for the main properties of outer probabilities and expectations. There
also exists a notion of inner probability of a subset B ⊂ Ω,

P∗(B) = sup {P(A) : A ∈ A, A ⊂ B} .

The notions of convergence are now as follows. The limit X : Ω → G will be always
assumed to be measurable in what follows.

De�nition 2. Let Xn : Ω → G, n ≥ 1, be a sequence of random elements and X : Ω → G a
measurable mapping.

1. We say that (Xn)n converges in probability to X if for every ϵ > 0, limn→∞ P∗ (d (Xn, X) > ϵ) =
0.

2. We say that (Xn)n converges weakly to X if for every continuous and bounded mapping
h : G→ R, limn→∞ E∗ [h(Xn)] = E [h(X)].

3. We say that (Xn)n converges a.s. to X if d(Xn, X) ≤ ∆n with ∆n measurable and
limn→∞ ∆n = 0 a.s.

We then extend Portmanteau lemma in an arbitrary metric space using outer probabili-
ties. The proof is very similar to the lemma proved in the �rst chapter of the course and is
omitted.
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Lemma 8. Let Xn : Ω → G, n ≥ 1, be a sequence of random elements and X : Ω → G a
measurable mapping. The following statements are equivalent.

1. For every continuous and bounded mapping h : G→ R, limn→∞ E∗ [h(Xn)] = E [h(X)].

2. For every Lipschitz and bounded mapping h : G→ R, limn→∞ E∗ [h(Xn)] = E [h(X)].

3. For every open subset O of G, lim inf P∗ (Xn ∈ G) ≥ P (X ∈ G).

4. For every closed subset F of G, lim supP∗ (Xn ∈ F ) ≤ P (X ∈ F ).

5. For every Borel subset B of G such that P (X ∈ δB) = 0, limn→∞ P∗ (Xn ∈ B) =
P (X ∈ B).

Analogues of Slutsky's lemma and the continuous mapping theorem follow similarly. In
the rest of the chapter, you can forgot the P∗ of P∗ notations and consider that
they are simply equal to P (even if it is not true in theory).

3.1.2 A criterion for convergence in distribution

Since convergence of �nite-dimensional distributions is not su�cient for convergence in dis-
tribution in the space ℓ∞ (F), we introduce an additional condition which guarantees this
weak convergence. In the next result T denotes an arbitrary set.

Theorem 18. A sequence Zn : Ω → ℓ∞(T ) converges weakly to a tight measurable random
element Z : Ω → ℓ∞(T ) if the two following conditions are satis�ed.

1. For t1, . . . , tk ∈ T , (Zn(t1), . . . , Zn(tk)) converges in distribution in Rk.

2. For every ϵ, η > 0, there exist a partition T1, . . . , Tk of T such that

lim sup
n→∞

P∗

(
max
1≤j≤k

sup
s,t∈Tj

|Zn(t)− Zn(s)| ≥ ϵ

)
≤ η.

Notes

1. The notion of tight random element will be de�ned in the Appendix section 3.5.

2. The second assumption 2. in Theorem 18 plays the rule of an asymptotic equicontinuity
condition. It means that one can always �nd a suitable partition of the index set T in
such a way that the maximal increment of Zn in the elements of this partition can be
arbitrary small in probability.

3. The proof of Theorem 18 requires additional notions that are discussed in Section 3.5.
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3.2 Bracketing numbers, entropy and uniform limit the-

orems

Let X1, . . . , Xn be some i.i.d. random vectors taking values in Rk. We denote by P their
common probability distribution. For any real number r ≥ 1, we denote by Lr(P ) the set of
measurable mapping f : Rk → R such that

∫
|f |rdP <∞.

We �rst introduce the entropy with bracketing which is useful to measure the complexity
of a class of measurable functions F . For two measurable functions u and v from Rk to
R such that u ≤ v, the set of all functions f : Rk → R such that u ≤ f ≤ v is called
a bracket and is denoted by [u, v]. For ε > 0, an ε−bracket [u, v] in Lr(P ) is a bracket
such that P (v−u)r ≤ εr. The bracketing number N[] (ε,F , Lr(P )) is the minimal number of
ε−brackets needed to cover F . Of course, the bracketing number increases when ε decreases.
Note the the functions u and v need not to be elements of F (but they have to be in Lr(P )).
The entropy with bracketing is de�ned as the logarithm of the bracketing number.

The next result guarantees that a �nite entropy implies uniform convergence.

Theorem 19. Suppose that N[] (ε,F , L1(P )) < ∞ for all ε > 0. Then F is P−Glivenko-
Cantelli.

Note. Of course if N[] (ε,F , Lr(P )) <∞ for some r > 1, then N[] (ε,F , L1(P )) <∞.

Proof of Theorem 19. Let ε > 0 and [uℓ, vℓ], 1 ≤ ℓ ≤ k, some ε−brackets covering F .
This means that F ⊂ ∪k

ℓ=1[uℓ, vℓ] and P (vℓ − uℓ) ≤ ε. Set g1,n = max1≤ℓ≤k |Pnuℓ − Puℓ| and
g2,n = max1≤ℓ≤k |Pnvℓ − Pvℓ|. For f ∈ [uℓ, vℓ], we have the following inequalities.

−ε− g1,n ≤ Pnuℓ − Puℓ + Puℓ − Pvℓ ≤ Pnf − Pf ≤ Pnvℓ − Pvℓ + Pvℓ − Puℓ ≤ g2,n + ε.

This yields to
sup
f∈F

|Pnf − Pf | ≤ max (g1,n, g2,n) + ε.

We then get
limn sup

f∈F
|Pnf − Pf | ≤ ε.

This concludes the proof.□
We now turn out to a result which guarantees a uniform central limit theorem. Finiteness

of the entropy is not su�cient for this. We require the root of the entropy to be integrable
for r = 2. We then de�ne

J[] (δ,F , L2(P )) =

∫ δ

0

√
logN[] (ε,F , L2(P ))dε.

Note that �niteness of J[] (δ,F , L2(P )) for a particular value of δ entails �niteness of
J[] (δ

′,F , L2(P )) for any δ
′ > 0. In this case, the entropy is always �nite for r = 2 and then

for r = 1; the class F is P−Glivenko-Cantelli.
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The following theorem is proved in Section 3.5. It is based on the criterion for weak
convergence in ℓ∞ (F), Theorem 4 and on a control of the expectation of ∥Gn∥F , given in
Lemma 10.

Theorem 20 (Donsker). Suppose that J[] (1,F , L2(P )) <∞. Then F is P−Donsker.

Note. There also exists another standard notion of entropy, the entropy based on uni-
form covering numbers, which leads to interesting Glivenko-Cantelli or Donsker classes. See
Van der Vaart (2000), Chapter 19 with an introduction to the speci�c case of VC classes of
functions, widely encountered in empirical processes theory are which are de�ned through
combinatorial properties. We will note discuss this alternative entropy notion in this course.

3.2.1 A few examples

Parametric classes. We revisit the example F = {fθ : θ ∈ Θ} where Θ is a compact
subset of Rd, θ 7→ fθ(x) is continuous over Θ for all x and F := supθ∈Θ |fθ| is integrable with
respect to P .

Let θ∗ ∈ Θ and Bδ be an open ball with center θ∗ and radius δ. Set uδ = infθ∈Bδ
fθ and

vδ = supθ∈Bδ
fθ. From the dominated convergence theorem, we get

lim
δ↘0

P
(
vδ − uδ

)
= P

(
lim
δ↘0

(
vδ − uδ

))
= 0.

There then exists δ = δ (θ∗, ε) such that P
(
vδ − uδ

)
≤ ε. If Θ ⊂ ∪k

i=1B (θi, δ(θi, ε)), then

F ⊂ ∪k
i=1

[
uδii , v

δi
i

]
and N[] (ε,F , L1(P )) < ∞. However, we have no control on the size of

the bracketing numbers.
Suppose now that there exists a measurable function m : Rk → R such that Pm < ∞

and
|fθ1(x)− fθ2(x)| ≤ m(x)∥θ1 − θ2∥.

If Θ ⊂ ∪k
ℓ=1B (θℓ, ε), let uℓ = fθℓ − εm and vℓ = fθℓ + εm. For θ ∈ B (θℓ, ε), note that f ∈

[uℓ, vℓ] and the brackets cover F . Moreover, P (vℓ−uℓ) ≤ 2εPm. ThenN[] (2εPm,F , L1(P )) ≤
k. To get the minimal value of k, we will suppose that ∥ · ∥ corresponds to the in�nite norm.
If it is not the case, there always exists L > 0 s.t. ∥ ·∥ ≤ L∥ ·∥∞ and replacing m by Lm, our
assumptions are satis�ed for the in�nite norm. For the in�nite norm, if diam(Θ) denotes the
diameter of Θ and ε < diam (Θ), the number of open balls of radius ε covering F is bounded
by 2 (diam (Θ)/ε)d and one can obtain a covering of Θ with centers in Θ if we multiply the
radius by 2. We then get the bound

N[] (2εPm,F , L1(P )) ≤ K (diam (Θ)/ε)d ,

where the constant K only depends on d and Θ. Then F is P−Glivenko-Cantelli. A similar
analysis can be conducted with brackets in L2(P ), as soon as Pm2 and Pf 2

θ are �nite for
θ ∈ Θ. The bracketing numbers are still bounded by ε−d, up to a constant and F is also a
P−Donsker class.
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Distribution function. Let F =
{
1(−∞,t] : t ∈ R

}
. Here

sup
f∈F

|Pnf − Pf | = sup
t∈R

|Fn(t)− F (t)| .

Let us introduce the brackets [1(−∞,ti−1],1(−∞,ti)] with −∞ = t0 < t1 < · · · < tk = ∞ chosen
such that F (t−i ) − F (ti−1) ≤ ε for 1 ≤ i ≤ k. For s ∈ R, we set F (s−) = limx↗s F (x). To
this end, one can use the generalized inverse of the cumulative distribution function,

F−1(t) = inf {x ∈ R : F (x) ≥ t} , t ∈ (0, 1)

and set ti = F−1(iε)(ε). Indeed, we have the inequalities F (F−1(t)) ≥ s and F (F−1(t−)) ≤ t
for any t ∈ (0, 1). We have

N[] (ε,F , L1(P )) ≤ [1/ε] + 1 ≤ 2/ε

and F is P−Glivenko-Cantelli. Since

P
(∣∣1(−∞,ti) − 1(−∞,ti−1]

∣∣2) = F
(
t−i
)
− F (ti−1) ≤ ε =

√
ε
2
.

we get N[] (ε,F , L2(P )) ≤ 4/ε2 and F is also P−Donsker. To summarize these important
results, we give them as a corollary.

Corollary 2. We have supt∈R |Fn(t)− F (t)| a.s.→ 0. Moreover
√
n (Fn − F ), as a random

element in ℓ∞ (F), converges in distribution to a zero mean Gaussian process GF with co-
variance EGF (s)GF (t) = F (min(s, t))− F (s)F (t) for s, t ∈ R.

When P is the uniform distribution over [0, 1], we have EGF (s)GF (t) = min(s, t)− st for
0 ≤ s, t ≤ 1. The corresponding Gaussian process has the same probability distribution as
the Gaussian process {Ut := Bt − tB1 : 0 ≤ t ≤ 1}, where {Bt : t ≥ 0} is a Gaussian process
called Brownian motion, that is a centered Gaussian process with covariance EBtBs =
min(s, t), s, t ≥ 0. The process {Ut : 0 ≤ t ≤ 1} is called Brownian bridge. For a general
distribution function F , one can check that GF has the same probability distribution as the
process

{
UF (t) : 0 ≤ t ≤ 1

}
which is called F−Brownian bridge.

A "bigger" class of functions. Donsker classes can be obtained as soon as the entropy
logN[] (ε,F , L2(P )) can be bounded by Cε−2+δ with some δ > 0. The previous classes
of functions were small, because the entropy was of order log(1/ε). Consider the class of
Lipschitz functions F = {f : [0, 1] → [0, 1] : |f(x)− f(y)| ≤ |x− y|}. Let ε > 0 and ai = iε,
for i ∈ Z. Setting Ai = (ai−1, ai]∩ [0, 1] for 1 ≤ i ≤ k where k is the �rst integer greater than
1/ε, we consider some functions of the form u =

∑k
i=1 aℓi1Ai

where ℓi ∈ Z for i = 1, . . . , k.
Let f ∈ F and set si the integer part of f(ai−1)/ε. If x ∈ Ai, we have

ε(si − 1) ≤ f(ai−1)− ε ≤ f(x) ≤ f(ai−1) + ε ≤ ε(si + 2).

Moreover, the Lipschitz properties of f guaranty that si−2 ≤ si+1 ≤ si+2. We deduce that
f is an element of a bracket [u, v] with u =

∑k
i=1 aℓi1Ai

and v =
∑k

i=1 aℓi+31Ai
with ℓi+1 ∈

{ℓi − 2, ℓi − 1, ℓi, ℓi + 1, ℓi + 2}. The number of such brackets, which have size controlled
by 3ε for the in�nite norm, is smaller the 1

ε
51/ε (up to a constant). This is smaller that

exp (C/ε) for a suitable C > 0. This class is then P− Donsker for any P .
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Additional examples can be found in Vaart and Wellner (2023) and Van der Vaart
(2000), Chapter 19.

3.3 Maximal inequalities

In this section, our aim is to control the expectation E∗∥Gn∥F . We start with a useful
exponential inequality.

Proposition 3 (Bernstein inequality). Let Y1, . . . , Yn be some i.i.d. random variables, cen-
tered and bounded by M . Set v = E (Y 2

1 ) and Sn =
∑n

i=1 Yi. For any x > 0, we have

P (Sn ≥ x) ≤ exp

(
− x2

2(vn+Mx)

)
.

Proof. For any λ > 0, we get from the Markov inequality,

P (Sn ≥ x) ≤ e−λxE
(
eλSn

)
= e−λx

[
E
(
eλY1

)]n
.

Using our notations, we will use the following bound. For any integer k ≥ 2,

E
(
Y k
1

)
≤ vMk−2.

Now let λ < M−1. Using the Taylor expansion of the exponential function and the fact that
E(X1) = 0, we deduce the following upper-bounds.

E
(
eλY1

)
=

∞∑
k=0

λk

k!
E
(
Y k
1

)
≤ 1 +

∑
k≥2

(λM)k
v

2M2

= 1 +
vλ2

1− λM
.

Using the inequality (1 + x)n ≤ exp(nx), we get

P (Sn ≥ x) ≤ e−λx

(
1 +

vλ2

1− λM

)
≤ e−λx+ nvλ2

2(1−λM) .

We next minimize the mapping

f : λ 7→ −λx+ nvλ2

2(1− λM)
.

The derivative vanishes at points

λ± =
1

M

1± 1√
1 + 2mx

nv

 .
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Only the root λ− is smaller than 1/M . Moreover, using the inequality
√
1 + x ≤ 1 + 1

2
x for

x ≥ 0, we get

λ− ≤ λ̃ :=
1

M

[
1− 1

1 + Mx
nv

]
.

Taking λ = λ̃ instead of λ−, we get exp (f(λ)) = − x2

2(nv+Mx)
, which ends the proof.□

For the deviation of the empirical process, we deduce the following result. For a measur-
able mapping g : Rk → R, we denote by ∥g∥∞ the in�nite norm of g.

Corollary 3. Let f be a bounded measurable function. We have for any x > 0,

P (|Gnf | ≥ x) ≤ 2 exp

(
− x2

2 (Pf 2 + 2x∥f∥∞/
√
n)

)
.

Proof of Corollary 3. Use the bounds

P (|Gnf | ≥ x) ≤ P (Gnf ≥ x) + P (Gn(−f) ≥ x)

and apply the Bernstein inequality to Yi = g(Xi)−Pg√
n

for g = ±f which is bounded by

2∥f∥∞/
√
n.□

We next use the previous result to bound the expectation of the suprema of empirical
processes. We �rst consider

∥Gn∥F = sup
f∈F

|Gnf |

when the family F is �nite, i.e. |F| <∞.

Lemma 9. Let F be a �nite class of measurable and bounded functions. There then exists
C > 0, not depending on F , n and P such that

E∥Gn∥F ≤ C

{
maxf∈F ∥f∥∞√

n
log (1 + |F|) + max

f∈F

√
Pf 2

√
log (1 + |F|)

}
.

Proof of Lemma 9. Let f ∈ F and set a = 4∥f∥∞/
√
n and b = 2Pf 2. De�ne Af =

Gnf1|Gnf |>b/a and Bf = Gnf1|Gnf |≤b/a. From Corollary 3, we get for x > 0,

P (|Af | > x) ≤ P (|Gnf | > max(x, b/a))

≤ 2 exp

(
− max(x, b/a)2

b+ amax(x, b/a)

)
≤ 2 exp

(
−max(x, b/a)

2a

)
≤ 2 exp

(
− x

2a

)
and

P (|Bf | > x) ≤ P (|Gn(f)| > x)1x≤b/a ≤ 2 exp

(
− x2

b+ ax

)
1x≤b/a ≤ 2 exp

(
−x

2

2b

)
.
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Next setting for p = 1, 2, ϕp(x) = exp(xp)− 1, we deduce that

Eϕ1

(
|Af |
4a

)
= E

∫ |Af |/4a

0

exdx =

∫ ∞

0

P (|Af | > 4xa) exdx ≤ 1

and similarly Eϕ2

(
|Bf |√
6b

)
≤ 1. Since ϕp is convex and non-negative, we get from Jensen's

inequality,

ϕ1

(
Emax

f∈F

|Af

4a

)
≤ Eϕ1

(
max
f∈F

|Af

4a

)
≤ E

∑
f∈F

ϕ1

(
|Af |
4a

)
≤ |F| .

Similarly,

ϕ2

(
Emax

f∈F

|Bf√
6b

)
≤ |F|.

The proof follows by applying the triangular inequality

E∥Gn∥F ≤ E sup
f∈F

|Af |+ E sup
f∈F

|Bf |

≤ 4aE sup
f∈F

|Af |
4a

+
√
6bEmax

f∈F

|Bf |√
6b
.

and the inverse of the mapping ϕp to the previous inequalities.□

We now consider an arbitrary class F possessing an envelope function, i.e. there exists
a function F : Rk → R such that supf∈F |f(x)| ≤ F (x) for x ∈ Rd. It is possible as soon a
supf∈F |f(x)| <∞ for any x ∈ Rk.

Lemma 10. Let F be a class of measurable functions f : Rk → R with envelope F and such
that supf∈F Pf

2 ≤ δ2. Set a(δ) = δ/
√

logN[] (δ,F , L2(P )). There then exists C̃ > 0, not
depending on F , n and P , such that

E∗∥Gn∥F ≤ C̃
{
J[] (δ,F , L2(P )) +

√
nP ∗F1F>

√
na(δ)

}
.

Proof of Lemma 10. For technical reasons, we assume that δ ≤ 1/8. If we prove the
lemma with such a δ, one can always apply the bound to the pair (δ,F/α) (for a given
α > 1) to get the bound for the pair (αδ,F).

Since |Gnf | ≤
√
n(PnF + PF ), we have

E∗ sup
f∈F

|Gnf |1F>
√
na(δ) ≤ 2

√
nPF1F>

√
na(δ).

It then remains to bound pn := E∗ supf∈F |Gnf |1F≤
√
na(δ). If Fn =

{
f1F≤

√
na(δ)

}
, we have

N[] (δ,Fn, L2(P )) ≤ N[] (δ,F , L2(P )). For simplicity, we will identify Fn and F and assume
that all the elements of F are bounded by

√
na(δ).
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Next, again for technical reasons that will appear latter in the proof, we �x a positive
integer q0 such that 4δ ≤ 2−q0 ≤ 8δ. This is possible because δ ≤ 1/8. We have the lower
bound

J[] (δ,F , L2(P )) ≥
∑

q≥q0+3

∫ 2−q

2−q−1

√
N[] (s,F , L2(P ))ds (3.2)

≥ 1

2

∑
q≥q0+3

2−q
√

logNq (3.3)

≥ c
∑
q≥q0

2−q
√
logNq, (3.4)

where Nq = N[] (2
−q,F , L2(P )) for any non-negative integer q and c is a universal constant.

We have used that Nq ≤ Nq+1. Now if Iq,i := [uq,i, vq,i], 1 ≤ ℓ ≤ Nq, is a covering of F
such that P (vq,i − uq,i)

2 < 2−2q, we set ∆qi = vq,i − uq,i. Replacing Iq,i by Fq1 = Iq,1 and
Fqi = Iq,i \ ∪i−1

j=1Iq,j for i = 2, . . . , Nq. We then get a partition Pq = {Fqi : 1 ≤ i ≤ Nq} of F
for all q ≥ q0.

Without loss of generality, we assume that the partitions are nested, i.e. we will assume
that Pq+1 is a re�nement of Pq which means that for i = 1, . . . , Nq+1, there exists j ∈
{1, . . . , Nq} such that F(q+1)i ⊂ Fqj. If it is not the case, at each stage q ≥ 0, one can
replace Fqi by all the intersections of the form Fqi ∩F(q−1)j for all possible values of j. This
operation will give a partition of cardinal at most N q = Nq0 · · ·Nq at stage q, instead of Nq.
However, we note that

∑
q≥q0

2−q

√
logN q ≤

∞∑
q=q0

2−q

q∑
p=q0

√
logNp =

∞∑
p=q0

√
logNp2

−p = 2
∑
p≥q0

2−p
√

logNp.

We then conclude that there exists a sequence of nested partitions Pq =
{
Fqi : 1 ≤ i ≤ N q

}
,

q ≥ q0, such that for a universal constant c,

J[] (δ,F , L2(P )) ≥ c
∑
q≥q0

2−q

√
logN q, sup

f,g∈Fqi

|f − g| ≤ ∆qi, P∆2
qi < 2−2q. (3.5)

It now remains to bound E∗∥Gn∥F by
∑

q≥q0
2−q

√
logN q up to a constant. To this end

for any q ≥ q0 and 1 ≤ i ≤ N q, we consider an arbitrary element fqi ∈ Fqi and we set

πqf = fqi, ∆qf = ∆qi if f ∈ Fqi.

The principle will be to use an argument called chaining. In order to apply Lemma 9,
we will introduce the di�erences Dq+1f := πq+1f − πqf for approximating f . Note that
{Dqf : f ∈ F} is a �nite set but |Dq+1f | ≤ ∆qf and ∆qf is not necessarily a bounded
function. This is why we will only consider the di�erences Dq+1f(x) for x in the event

Aqf =
{
∆q0f ≤

√
naq0 , . . . ,∆qf ≤

√
naq
}
,
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where aq = 2−q/
√

logN q+1 are chosen to get the desired upper bound from Lemma 9. We

will then get

f(x)− πq0f(x) =
∑

q≥q0+1

Dqf1Aq−1f + f(x)− πq1(x)f(x),

where q1(x) is the �rst index p (possibly in�nite) for which x ∈ Bpf = Ap−1f∩{∆pf >
√
nap}.

But note that either x ∈ ∩q≥q0Aqf and then x /∈ Bqf for all q ≥ q0 + 1 or there exists a
unique integer p = q1(x) such that x ∈ Bpf and x /∈ Bqf for q ̸= p and x /∈ Aqf for q ≥ p.
Note also that from our choice of q0, we have 2a(δ) ≤ aq0 and then x ∈ Aq0f .

This allows to write the decomposition

f − πq0f =
∑

q≥q0+1

Dqf1Aq−1f +
∑
q≥q0

(f − πqf)1Bqf .

We then get

∥Gn∥F ≤ sup
f∈F

|Gnπq0f |+
∑

q≥q0+1

sup
f∈F

∣∣GnDqf1Aq−1f

∣∣+ ∑
q≥q0+1

sup
f∈F

∣∣Gn (f − πqf)1Bqf

∣∣
:= U1 + U2 + U3.

� For U1, we apply Lemma 9, noticing that |πq0f | ≤
√
naq0 and P (|πq0f |2) < δ by

assumption. We get

U1 ≤ C

{
aq0 log(1 +N q0) + δ

√
log(1 +N q0)

}
.

Since δ ≤ 2−q0−2 and using the de�nition of aq, the right-hand side in the previous
inequality can be clearly bounded by

∑
q≥q0

2−q
√

logNq up to a universal constant.

� For the second term U2, we note that |Dqf | ≤ ∆q−1 ≤
√
naq−1 on the set Aq−1f and

P (|Dqf |2) ≤ 2−q+1 by the de�nition of our nested partitions. Moreover there are at
most N q functions Dqf and at most N q−1 indicator functions 1Aqf . The number of

functions is then bounded here by N q ×N q−1 ≤ N
2

q. Lemma 9 leads to

U2 ≤ C

{ ∑
q≥q0+1

aq−1 log(1 +N
2

q) +
∑

q≥q0+1

2−q+1

√
log(1 +N

2

q)

}
.

Once again, U2 can be bounded by
∑

q≥q0
2−q

√
logN q up to a universal constant.

� Finally, we bound U3. Since our partitions are nested, we have |f−πqf | ≤ ∆qf ≤ ∆q−1f
which is bounded by

√
naq−1 on the event Bqf . Moreover P (f −πqf)2 ≤ P (∆q−1f)

2 ≤
2−2(q−1) and the number of functions in the supremum is at most N

2

q, as in the previous
case, we obtain the same bound as for U2, which completes the proof.□
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3.4 Two applications of empirical process theory

3.4.1 Goodness-of-Fit Statistics

Let X1, . . . , Xn be i.i.d. random variables taking values in R. Our aim is to test if the data
are generated from a probability distribution P contained in a speci�c set of probability
measures. In what follows, for a function f : R → R, we denote by ∥f∥∞ := supt∈R |f(t)| its
in�nite norm.

We start with the case of a single probability measure. More precisely, our aim is to
test H0: P = P0 versus H1: P ̸= P0 where P0 is a prescribed probability measure. We
denote by F0 the cumulative distribution function (cdf) of X1. Two popular statistics are
S1 :=

√
n∥Fn − F0∥∞ (Kolmogorov-Smirnov) and S2 = n

∫
(Fn − F0)

2 dF0 (Cramér-von
Mises).

Theorem 21. We have S1 ↪→ ∥GF0∥∞ and S2 ↪→
∫
G2

F0
dF0 where GF0 is a Gaussian process,

with mean 0 and covariance Cov (GF0(s),GF0(t)) = F0 (min(s, t))− F0(s)F0(t).

Proof of Theorem 21. The two mappings z → ∥z∥∞ and z 7→
∫
z2dF0, de�ned on

ℓ∞(R) are continuous and the result follows from Corollary 2 and the continuous mapping
theorem.□

Notes

1. Suppose that F0 is continuous. In this case, one can show that the limiting distributions
of the two statistics S1 and S2 do not depend on F0. Here are two arguments.

� We have the representation GF = PF where {Ut : t ∈ [0, 1]} is a Brownian bridge.
In this case ∥GF0∥∞ = ∥U∥∞ does not depend on F0. It is also possible to show

that
∫∞
−∞ UF0(x)dF0(x) =

∫ 1

0
Utdt. This equality is clear when F0 is continuously

di�erentiable (in this case x 7→
∫ F0(x)

0
Utdt is a primitive of x 7→ UF0(x)F

′
0(x)), but

it can be also generalized to any continuous cdf F0.

� One can also show directly that the distribution of S1 and S2 do not depend on
F0. To this end, one can use the generalized inverse of the cdf F0, i.e.

F−1
0 (u) = inf {x ∈ R : F0(x) ≥ u} , u ∈ (0, 1).

and the representation Xi = F−1
0 (Ui) where U1, . . . , Un are i.i.d. random variables

uniformly distributed over [0, 1]. The fundamental equivalence

F−1
0 (u) ≤ x⇔ u ≤ F0(x)

can be used. We then get Fn(t) = 1
n

∑n
i=1 1Ui≤F0(x) and the distribution of

S1 = ∥Gn∥∞ or S2 =
∫
G2

ndF0 are the same as for uniformly distributed ran-
dom variables. One can then simulate approximately the quantiles of S1 and
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S2 (this requires the simulations of several samples of n variables uniformly dis-
tributed, to use them to compute several realizations of Si (i = 1, 2) and then the
associated empirical distribution).

2. When F0 is continuous, the limiting distributions of S1 and S2 are respectively ∥U∥∞
and

∫ 1

0
Utdt, where {Ut : 0 ≤ t ≤ 1} is a Brownian bridge. The probability distributions

of these two random variables are tabulated. Additionally, it is possible to derive the
following expression.

P (∥U∥∞ > x) = 2
∞∑
j=1

(−1)j+1 exp
(
−2j2x2

)
, x > 0.

For testing H0 versus H1, we reject the null hypothesis at level α for large values of S1

(or S2) using the quantile of order 1−α obtained either from these limiting distributions
or from the simulation procedure given in the previous point.

For adequation tests, it is often more relevant to test adequacy with respect to a family
of probability distributions PΘ := {Pθ : θ ∈ Θ}, for instance a parametric distribution such
as the Gaussian, Pθ = N (θ1, θ2) for θ = (θ1, θ2) ∈ R × R∗

+. Here we suppose that Θ is a
subset of Rd. Suppose that we want to test H0: P ∈ PΘ vs H1: P /∈ PΘ. If we have an
estimator θ̂n for the true parameter θ0, under H0, we have the following decomposition

Pn − Pθ̂ = Pn − Pθ0 −
(
Pθ̂n

− Pθ0

)
≈ Pn − Pθ0 − Ṗθ0

(
θ̂n − θ0

)
,

where Ṗθ0 denotes the derivative of θ 7→ Pθ at point θ0 (for a topology on the set of probability
measures to precise). We then observe two kinds of �uctuation, one for the empirical process
and another one coming from the estimation error. To derive the asymptotic distributions of
the previous statistics in this context, we have to study the limiting behavior of

√
n (Pn − Pθ̂).

The two following assumptions will be used when H0 is considered to be valid.

H1 There exists a measurable mapping ψθ0 : R → Rd with E [ψθ0(X1)] = 0 and E [∥ψθ0(X1)∥2] <
∞ and such that

√
n
(
θ̂n − θ0

)
=

1√
n

n∑
i=1

ψθ0(Xi) + oP(1).

H2 The mapping θ 7→ Pθ is di�erentiable at point θ0, as an application from Θ to ℓ∞ (F),
where F is a class of Pθ0−square integrable functions and such that the assumptions
of Theorem 18 are satis�ed for Zn = (Gnf)f∈F and T = F . We denote by Ṗθ0 this

derivative. Here Gnf =
√
n (Pnf − Pθ0f).

Theorem 22. Suppose that Assumptions H1-H2 are valid and the hypothesis H0 holds true.
Then √

n
(
Pn − Pθ̂n

)
↪→
(
GPθ0

f −GPθ0
ψT
θ0
Ṗθ0f

)
f∈F

in ℓ∞ (F).
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Notes

1. Under H0, we note that the asymptotic distribution obtained Theorem 18 depends on
the parametric model as well as on the estimator used.

2. Assumption H1 is valid for MLE for instance, under the regularity assumptions dis-
cussed in the previous chapter.

3. The assumption that (Zn, T )) = (Gn,F) satis�es the assumptions of Theorem 18 can
be weakened in F is a Donsker class. As shown in the proof of Theorem 22, we have
to use convergence of the empirical process for the class G = F ∪ {ψθ0} and it is
possible to show that the union of two Donsker classes is still Donsker. See Section
2.10.2 in Vaart and Wellner (2023). However, it is more direct to show that G still
satis�es the two assumptions of Theorem 18, provided that F also satisi�es them.
When these two assumptions are satis�ed for a family of square integrable functions,
it is straightforward to show that this family is a Donsker class.

4. When F denotes the class of indicator functions, one can obtain convergence for the
corresponding Kolmogorov-Smirnov type statistics S1,Θ :=

√
n∥Fn − Fθ̂∥∞. The ex-

istence of a derivative with a uniform convergence in H2 has to be shown model by
model. Of course if Pθf =

∫
fpθdµ, the natural candidate for Ṗθ0 is the mapping

f 7→
∫
fṗθ0dµ.

Proof of Theorem 22. From H2, we have

∥Pθ0+h − Pθ0 − hT Ṗθ0∥F = o (∥h∥) .

Using H1, this yields to

√
n∥Pθ̂n

− Pθ0 − (θ̂n − θ0)
T Ṗθ0∥F =

√
n∥θ̂n − θ0∥oP(1) = oP(1).

We then get
√
n
(
Pn − Pθ̂n

)
=

√
n (Pn − Pθ0)−

√
n
(
Pθ̂n

− Pθ0

)
=

√
n (Pn − Pθ0)−

√
n
(
θ̂n − θ0

)T
Ṗθ0 + oP(1)

=
√
n (Pn − Pθ0)−

√
nPnψ

T
θ0
Ṗθ0 + oP(1).

Setting G = F ∪ {ψθ0} and

ϕθ0

(√
n (Png − Pθ0g)g∈G

)
=

√
n (Pn − Pθ0)f∈F −

√
nPnψ

T
θ0
Ṗθ0 ,

the mapping ϕθ0 is continuous and G also satis�es the assumptions of Theorem 18 (for
the second assumption, just complete the partition of F by the singleton {ψθ0}). G is
then Pθ0−Donsker. We then conclude using the continuous mapping theorem and Slutsky's
lemma.□
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3.4.2 High-dimensional regression

Here we consider the problem of prediction of a random variable Y given some predictors

X =
(
X(1), . . . , X(pn)

)T
when pn → ∞ as n→ ∞. Then X depends on n but for simplicity,

we omit this dependence. Suppose that we have a sample {(Xi, Yi) : 1 ≤ i ≤ n} with i.i.d.
random vectors distributed as (X, Y ). Our aim is to study LASSO type estimators, i.e.

θ̂n = arg min
θ∈Θn

Mn(θ), Mn(θ) =
1

n

n∑
i=1

(
Yi −XT

i θ
)2
,

where Θn = {θ ∈ Rpn : ∥θ∥1 :=
∑pn

i=1 |θi| ≤ Rn} for some values of Rn > 0. We assume that
pn is equivalent to Cnα at in�nity for some positive α and C.

Our aim is to consider the theoretical risk θ 7→ Mn(θ) := E
[
(Y −XT θ)2

]
and to �nd

conditions under which

Mn

(
θ̂n

)
−Mn(θn) = oP(1), (3.6)

when θn = argminθ∈Θn Mn(θ). When (3.6) is valid, we say that θ̂n is Θn−persistent. It
means that the theoretical risk evaluated at θ̂n is asymptotically closed to the optimal risk.

Theorem 23. For Zi = (Yi, Xi), 1 ≤ i ≤ n, set Fn(Zi) = max1≤j,k≤pn+1 |Zj,iZk,i − E (Zj,iZk,i)|

satis�es M := supn≥1 E [Fn(Z1)
2] <∞. Then for Rn = o

((
n

logn

)1/4)
, θ̂n is Θn−persistent.

Note. We do not assume the existence a correctly speci�ed linear model for this result.
In particular, the Zi's can be any i.i.d. random vectors of dimension pn + 1 satisfying the
required moment assumptions.

Proof of Theorem 23. We have the inequalities

0 ≤ Mn

(
θ̂n

)
−Mn (θn)

= Mn

(
θ̂n

)
−Mn

(
θ̂n

)
+Mn

(
θ̂n

)
−Mn (θn) +Mn (θn)−Mn (θn)

≤ 2 sup
θ∈Θn

∣∣Mn(θ)−Mn(θ)
∣∣ .

Setting

Σn =

(
1

n

n∑
i=1

Zj,iZk,i

)
1≤j,k≤pn+1

, Σn = (E (Zj,1Zk,1))1≤j,k≤pn+1

and γ =

(
−1
θ

)
, we have∣∣Mn(θ)−Mn(θ)

∣∣ =
∣∣γT (Σn − Σn

)
γ
∣∣

≤ ∥Σn − Σn∥∞∥γ∥21
≤ ∥Σn − Σn∥∞ (1 +Rn)

2 ,
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where for any matrix A, ∥A∥∞ denotes the maximum of the absolute values of the entries of
A. Using Markov's inequality, we get for ϵ > 0,

P
(
Mn

(
θ̂n

)
−Mn(θn) > ϵ

)
≤ P

(
2(Rn + 1)2∥Σn − Σn∥∞ > ϵ

)
≤ 2(Rn + 1)2

ϵ
E
[
∥Σn − Σn∥∞

]
.

Now take F = Fn = {fj,k : 0 ≤ j, k ≤ pn} with

fj,k(z) = zjzk − E (Zj,1Zk,1) , z ∈ Rpn+1.

Let Gn be the empirical process for Z1, . . . , Zn and the class of function F with enveloppe
Fn. From Lemma 10, we have for the choice δ2 = PF 2

n ,

E
[√
n∥Σn − Σn∥∞

]
= E [∥Gn∥F ]
≤ C̃

{
J[] (δ,F , L2(P )) +

√
nPFn1Fn>

√
na(δ)

}
≤ C̃

{
J[] (δ,F , L2(P )) + a(δ)−1PF 2

n

}
≤ C̃

{
J[]

(√
PF 2

n ,F , L2(P )
)
+

√
logN[]

(√
PF 2

n ,F , L2(P )
)√

PF 2
n

}
≤ 2C̃J[]

(√
PF 2

n ,F , L2(P )
)
.

Since Fn is �nite, we haveN[] (s,Fn, L2(P )) ≤ (1+pn)
2 for any s > 0. Since supn≥1 PF

2
n <∞,

we deduce that E
[
∥Σn − Σn∥∞

]
can be bounded, up to a positive constant, by

√
log pn/

√
n

which is negligible with respect to (Rn + 1)2. The proof is now complete.□

3.5 Appendix

3.5.1 Some complements in Topology and in measure theory

In this part, T denotes an arbitrary set.

De�nition 3. A mapping ρ : T × T → R+ is said to be a semimetric if

1. For every (x, y) ∈ T × T , ρ(x, y) = ρ(y, x).

2. For every x ∈ T , ρ(x, x) = 0.

3. For every (x, y, z) ∈ T 3,
ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

When ρ(x, y) = 0 ⇒ x = y, a semimetric is called a metric and (T, ρ) a metric space.
Otherwise, (T, ρ) is called a semimetric space.
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De�nition 4. Let (T, ρ) be a semimetric space. For every (x, r) ∈ T × [0,∞), Bρ(x, r) =
{y ∈ T : ρ(x, y) < r} is called an open ball. A space T with a semimetric ρ is said to be
totally bounded if for any ϵ > 0, T can be covered by �nitely many open balls of radius ϵ. A
subset A ⊂ T is said totally bounded if for any ϵ > 0, A can be covered by �nitely many open
balls of radius ϵ.

There are some important links between the notions of totally bounded, completeness
and compactness. If (T, ρ) is a metric space, than it is compact if and only if it is complete
and totally bounded. Moreover if (T, ρ) is a complete metric space, then A ⊂ T is totally
bounded if and only if its closure A is compact. The following space will be important in
what follows.

De�nition 5. Let (T, ρ) a semimetric space. The space of uniformly continuous functions
f : T → R is denoted by UC(T, ρ). We recall that

f ∈ UC (T, ρ) ⇐⇒ lim
δ→0

sup
(x,y)∈T 2:ρ(x,y)<δ

|f(x)− f(y)| = 0.

De�nition-Proposition 1. Let (T, ρ) be a semimetric space. We denote by ℓ∞(T ) the space
of bounded functions f : T → R equipped with the uniform norm ∥f∥T = supx∈T |f(x)|. If
(T, ρ) is also totally bounded, we have UC(T, ρ) ⊂ ℓ∞(T ). Moreover the space UC(T, ρ),
equipped with the uniform norm, is separable and complete.

By separable, we mean that there exists a sequence (gn)n∈N of elements of UC(T, ρ)
such that for any f ∈ UC (T, ρ), infn≥0 ∥f − gn∥T = 0. A totally bounded metric space is
separable. The space ℓ∞(T ) is not separable when T is not a �nite set.

Proof Let f ∈ UC (T, ρ) and �x δ > 0 such that |f(x)− f(y)| ≤ 1 when ρ(x, y) ≤ δ. Fix
also x1, . . . , xk ∈ T such that T ⊂ ∪k

i=1Bρ(xi, δ). Then if ρ(x, xi) < δ, |f(x)− f(xi)| ≤ 1.
We deduce that

∥f∥T ≤ 1 + max
1≤i≤k

|f(xi)|

and then f ∈ ℓ∞(T ).
Completeness of the space UC(T ; ρ) follows from standard arguments already used for

proving completeness of spaces of continuous functions.
Separability will not be proved here. It follows from the Stone-Weierstrass theorem with

a proof analogue to prove separability of the space of continuous real-valued functions de�ned
on a compact metric space. □

De�nition 6. A probability measure P on a metric space (G, d) is said to be tight if for any
ϵ > 0, there exists a compact subset Kϵ of G such that P (G \Kϵ) ≤ ϵ.

The previous de�nition means that a tight probability measure has a mass that con-
centrates on compact subsets. If G = Rk and d is a distance de�ned by an arbitrary
norm on G, than every probability measure P is tight. This is a consequence of the
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compactness property of closed balls. Indeed if Bd(0, r) = {y ∈ G : d(y, 0) ≤ r}, we have
limr→∞ P

(
G \Bd(0, r)

)
= 0 from the lower-continuity property of the measure (alternatively

the dominated convergence theorem) and one can choose a compact subset Kϵ = Bd(0, rϵ)
for rϵ large enough. One can extend the tightness property (which is not automatic in spaces
of in�nite dimensions) to more general spaces.

Proposition 4. If (G, d) is a separable and complete metric space, then every measure P is
tight.

Proof of Proposition 4 Let ϵ > 0 and k be a positive integer. From separability, if (gi)i∈N
is a dense subset of G and Ak,i = Bd (gi, 1/k), then G = ∪i∈NAk,i. Let now nk = nk(ϵ) be an
integer such that P (∪nk

i=0Ak,i) > 1− ϵ/2k. If Kϵ denotes the closure of ∩k≥1 ∪nk
i=0 Ak,i, which

is a totally bounded set, we obtain a compact subset of G. Moreover

P (G \Kϵ) ≤
∑
k≥1

P (G \ ∪nk
i=0Ak,i) ≤

∑
k≥1

ϵ/2k = ϵ

and the proof is complete.□

3.5.2 Kolmogorov's extension theorem

We will need the following important theorem about the existence of a random process
de�ned from a family of �nite-dimensional distributions. Let E = RN∗

be the set of real-
valued sequences indexed by the set of positive integers. On E, we consider the sigma-�eld
E generated by the cylinder set, i.e. the set C of the form

C = {(xn)n≥1 ∈ E : x1 ∈ A1, . . . , xk ∈ Ak}

for a positive integer k and some Borel subsets of R, A1, . . . , Ak. A proof of the following
result can be found in Durrett (2019), Theorem A.3.1.

Theorem 24 (Kolmogorov's extension theorem). Assume that for each n ≥ 1, πn is a
probability measure on Rn and such that for A1, . . . , An ∈ B(R),

πn (A1 × · · · × An) = πn+1 (A1 × · · · × An × R) (3.7)

There then exists a unique probability measure π on (E, E) such that for every integer n ≥ 1
and A1, . . . , An ∈ B(R),

π ((xk)k≥1 ∈ E : x1 ∈ A1, . . . , xn ∈ An) = πn (A1 × · · · × An) .

To construct a random element taking values in E, one can use the canonical construction.
We simply set Ω = E, A = E andXn(ω) = ωn (the coordinate mapping) for every n ≥ 1. One
can note that the cylinder sigma-�eld E is the smallest sigma-�eld making the coordinate
mappings measurable. The �rst application of this result is a rigorous construction of a
sequence of i.i.d. random variables with marginal probability distribution µ (in this case,
πn = µ⊗n, the product of measures).
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3.5.3 Proof of Theorem 18

The aim of the proof is to construct a limiting process Z taking values un UC(T, ρ) for a
suitable semimetric ρ making T totally bounded. From Proposition 3.7 and Proposition
4, the probability distribution of this process will be tight, as required in the statement of
Theorem 18. To this end, we will �rst construct this process Z on a numerable set of indices
T0 and extend it to T by continuity. To construct T0, for each positive integer m, we consider
a partition Tm

1 , . . . , T
m
km

such that the condition 2 is satis�ed with η = ϵ = 1/2m. Note that
if S1, . . . , Sℓ is a re�nement of a partition of a partition T1, . . . , Tk, then

max
1≤j≤ℓ

sup
s,t∈Sj

|Zn(t)− Zn(s)| ≤ max
1≤j≤k

sup
s,t∈Tj

|Zn(t)− Zn(s)|

and one can assume that Tm+1 is a re�nement of Tm (Intersect each Tm+1
j with all the Tm

i 's).

Next, take an arbitrary point tmj in Tm
j and set T0 =

{
tmj : 1 ≤ j ≤ km,m ≥ 1

}
. Note that

T0 can be enumerated with a sequence {si : i ≥ 1}. For a positive integer k, let πk be
the limiting distribution of (Zn(s1), . . . , Zn(sk)). By Kolmogorov's extension theorem, there
exists a stochastic process (Z(t))t∈T0 compatible with the π′

ks. By the portmanteau lemma,

P
(
max

j
max

s,t∈Tm
j ∩T0

|Z(t)− Z(s)| > 2−m

)
≤ lim inf

n
P
(
max

j
max

s,t∈Tm
j ∩T0

|Zn(t)− Zn(s)| > 2−m

)
≤ 2−m.

Next, we de�ne the metric ρ on T by

ρ(s, t) =
∑
m≥1

2−mρm(s, t), ρm(s, t) = min
1≤j≤km

1(s,t)/∈Tm
j ×Tm

j
.

That is ρm(s, t) = 1 if s and t are not in the same element of the partition
{
Tm
1 , . . . , T

m
km

}
and

0 otherwise and ρ(s, t) =
∑

m≥m0
2−m where m0 is the �rst integer for which s, t are located

in two di�erent elements of the partition Tm. ρ is a semimetric on T . Since the diameter of
Tm
j is

∑
j>m 2−j = 2−m, T is totally bounded for ρ. Note also that T0 is a ρ−dense subset of

T . Moreover if ρ(s, t) < 2−m, s and t are necessarily both located in the same element Tm
j .

We conclude that

P
(

max
s,tT0,ρ(s,t)<2−m

|Z(t)− Z(s)| > 2−m

)
≤ 2−m.

From the Borel-Cantelli lemma, we conclude that for almost every ω, ifm is large enough and
ρ(s, t) < 2−m, then |Z(t)ω − Z(s)ω| ≤ 2−m. This proves that the paths of {Z(t) : t ∈ T0} are
in UC(T0, ρ). By the extension theorem of uniformly continuous functions on dense subsets,
one can de�ne Z(t) for t ∈ T and the paths of {Z(t) : t ∈ T} are still in UC(T, ρ).

To end the proof, we de�ne pm : T → T by pm(t) = tmj when t ∈ Tm
j . By the assumption

1., we have Zn ◦ pm → Z ◦ pm in distribution in ℓ∞(T ). This is because pm(T ) is a �nite
set (as an exercise, check the required convergence carefully). Moreover Z ◦ pm → Z a.s.
in ℓ∞(T ) as m → ∞. Indeed, by uniform continuity of the paths, ∥Z ◦ pm − Z∥T =
supt∈T0

|Z ◦ pm(t)− Z(t)| is measurable and converges to 0. Almost sure convergence also
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entails convergence in distribution. We then get

E∗h (Zn)− Eh (Z)
= E∗h (Zn)− Eh (Zn ◦ pm) + Eh (Zn ◦ pm)− E (Z ◦ pm) + Eh (Z ◦ pm)− Eh (Z)
= E∗h (Zn)− Eh (Zn ◦ pm) + o(1).

Moreover if h : ℓ∞(T ) → R is L−Lipschitz and bounded, we have

|Eh (Zn)− Eh (Zn ◦ pm)| ≤ L2−m + 2∥h∥∞P
(
∥Zn − Zn ◦ pm∥T > 2−m

)
and from our assumptions,

lim sup
n

P
(
∥Zn − Zn ◦ pm∥T > 2−m

)
= lim

∑
n

P

(
max

j
sup

s,tnTm
j

∥Zn(t)− Zn(s)∥T > 2−m

)
≤ 2−m.

Since m can be arbitrarily big, this proves the weak convergence.□

3.5.4 Proof of Theorem 20.

To apply Theorem 18, we introduce the class G = {f − g : (f, g) ∈ F2}. Note that if F ⊂
∪k

ℓ=1[uℓ, vℓ], then G ⊂ ∪k
ℓ=1 ∪k

ℓ′=1 [uℓ − vℓ′ , vℓ − uℓ′ ], meaning that

N[] (ε,F , L2(P ))
2 ≥ N[] (2ε,G, L2(P )) ,

which implies that J[] (1,G, L2(P )) < ∞. Now let δ, η, ε > 0 and set k = N[] (δ,F , L2(P )).
Setting F1 = [u1, v1] ∩ F and for 2 ≤ ℓ ≤ k,

Fℓ =
(
[uℓ, vℓ] \ ∪ℓ−1

i=1 [ui, vi]
)
∩ F .

Then {F1, . . . ,Fk} forms a partition of F and the diameter of each element of the partition
is controlled by δ, for the L2(P ) norm. Using Lemma 10, we get

εP∗

(
max
1≤j≤k

sup
f,g∈Fj

|Gn(f − g)| > ε

)
≤ E∗

[
max
1≤j≤k

sup
f,g∈Fj

|Gn(f − g)|

]
≤ C̃

{
J[] (δ,G, L2(P )) +

√
nPF1F>a(δ)

√
n

}
≤ C̃

{
J[] (δ,G, L2(P )) + a(δ)−1PF 21F>a(δ)

√
n

}
.

Here we take
F = sup

f,g∈F
|f − g| ≤ 2 sup

f∈F
|f | ≤ 2 max

1≤ℓ≤k
{uℓ, vℓ}

which is square integrable. Choosing δ > 0 su�ciently small in such a way J[] (δ,G, L2(P )) ≤
ηε, the second assumption of Lemma 10 is satis�ed, since the second term in the last upper
bound goes to 0 with n. This shows the validity of the second assumption of Theorem 18.
The �rst assumption of �nite-dimensional convergence is automatic.□
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Chapter 4

Introduction to asymptotic theory for

stationary sequences

The aim of this chapter is to introduce some basic notions useful for studying statistical infer-
ence of some parameters when the sample X1, . . . , Xn is composed of identically distributed
but not necessarily independent random variables. This situation arises in analyzing time
series, i.e. a collection of random variables measuring the same phenomenon at di�erent
time points and for which past values will have an in�uence on the present or future val-
ues. We will restrict to random sequences called " stationary", a stronger notion than
identically distributed random variables and which means that the �nite-dimensional distri-
butions of the sequence are invariant under time shift. For instance X1, X2, . . . , Xn have the
same distribution, but (X1, X2), (X2, X3), . . . , (Xn−1, Xn) also have the same distribution,
(X1, X2, X3), (X2, X3, X4), . . . are also identically distributed and so on.

Such stationarity notion is mostly meaningful when the time points are equidistant.
Some examples concern the evolution of daily temperatures, daily stock prices, monthly
unemployment... Stationarity is a very restrictive notion since for many applications, data
exhibit a seasonal behavior, a trend evolution (e.g. on average, daily temperatures are not the
same in summer or winter and also increased during the last 50 past years) or a random walk
behavior (i.e. the Xt −Xt−1's form a stationary sequence). There exist many techniques to
transform the original data in a new sequence which will be approximately stationary (such
transformations depend on the context). We will not study this step and assume here it is
reasonable to model the observations with a stationary sequence.

Studying asymptotic statistics in this context requires to �rst generalize the law of large
number and the central limit theorems when the data are not independent. This will be our
primary goal. We will also present simple stationary models for which the theory applies.

4.1 Stationary processes indexed by Z and Bernoulli shifts

For de�ning stationary sequences of random variables, it is often more convenient to for-
mulate the theory for double-sided sequences, i.e. a sequence of random variables (Xt)t∈Z
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indexed by the set of positive and negative integers. This commodity will appear more
clearly when we will study autoregressive processes. We �rst generalize Kolmogorov's ex-
tension theorem in this setup. The following result is a simple extension of Theorem 7 in
Chapter 3. Let E = Rd. On EZ (the set of sequences indexed by Z and taking values in E),
we consider the sigma-�eld C generated by the cylinder sets

C =
{
(xt)t∈Z ∈ EZ : x−n ∈ A−n, . . . , xn ∈ An

}
,

for any n ∈ N and Borel subsets A−n, A−n+1, . . . , An of E.

Theorem 25 (Kolmogorov's extension theorem). For each n ∈ N, let µn be a probability
measure on E2n+1. We assume that for any Aj ∈ B(E), −n ≤ j ≤ n,

µn+1 (E × A−n × A−n+1 × · · ·An × E) = µn (A−n × A−n+1 × · · ·An) .

There then exists a unique probability measure µ : C → [0, 1] such that for any n ∈ N and
A−n, A−n+1, . . . , An ∈ B(E),

µ
({

(xt)t∈Z ∈ EZ : xi ∈ Ai,−n ≤ i ≤ n
})

= µn (A−n × A−n+1 × · · ·An) .

Starting from a family of probability measures µn, n ∈ N, satisfying the compatibility
conditions of the previous theorem, one can construct a compatible canonical stochastic
process (Xt)t∈Z, de�ned on Ω = EZ by Xt(ω) = ωt for t ∈ Z and ω = (ωt)t∈Z ∈ EZ.

Examples

1. When µn = ν⊗2n+1 (the product measure on E2n+1 with marginal ν), one can then
de�ne a sequence (Xt)t∈Z of i.i.d. random variables with common distribution ν.

2. Suppose that we have a homogeneous Markov chain (Xt)t∈N on a numerable subset
of E, with transition matrix P and such that the distribution of X0 is an invariant
measure. Then one can also construct a double-sided sequence (Xt)t∈Z such that the
distribution ofXt is π of any t ∈ Z and the conditional distribution ofXt|Xt−1, Xt−2, . . .
is given by P (and then only depends on Xt−1). Indeed, let

µn ({(x−n, . . . , xn)}) = π(x−n)P (x−n, x−n+1) · · ·P (xn−1, xn), (x−n, . . . , xn) ∈ E2n+1.

Using the equation πP = π, one can show that

µn ({(x−n, . . . , xn)}) =
∑

x−n−1,xn+1∈E

µn+1 ({(x−n−1, . . . , xn+1)}) .

Then Theorem 25 applies.

The next notion is the concept of stationarity.
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De�nition 7. A process (Xt)t∈Z is said to be strictly stationary (or simply stationary) if for
any positive integer h, the probability distribution of (Xt+h)t∈Z coincides with that of (Xt)t∈Z.

In the previous de�nition, the distribution of a process is thought as a probability measure
on the space EZ endowed with the cylinder sigma-�eld C. Let us mention that C is often
denoted by B(E)⊗Z.

The following result is a consequence of the monotone class theorem.

Proposition 5. A process (Xt)t∈Z taking values on E is stationary if and only if for any
k ∈ N and t ∈ Z, the distribution of the vectors (Xt, . . . , Xt+k) and (X0, . . . , Xk) are the
same.

An important operator used to formulate some properties of stationary processes is the
shift operator τ : EZ → EZ de�ned by τω = (ωt+1)t∈Z. τ is invertible with inverse τ

−1 : EZ →
EZ de�ned by τ−1ω = (ωt−1)t∈Z. If t is positive integer, we denote by τ t the composition
τ ◦ · · · ◦ τ︸ ︷︷ ︸

t

and if t is a negative integer, τ t = τ−1 ◦ · · · ◦ τ−1︸ ︷︷ ︸
−t

.

Proposition 6. A process X := (Xt)t∈Z is stationary if and only if τX and X have the
same probability distribution.

Proof of Proposition 6. The direct sense follows from the de�nition of stationarity. For
the reciprocal sense, if τX has the same distribution as X and h is a positive integer, we
have τhX = τh−1 ◦ τX and from the measurability of τh−1 : EZ → EZ, we deduce that
τhX has the same distribution as τh−1X. Iterating this, we conclude that τhX as the same
distribution as X, as required.□

Let H : EZ → E ′ := Rk′ be a measurable mapping and ε := (εt)t∈Z a sequence of i.i.d.
random variables taking values in E. We then de�ne a new process Xt = H ((εt+j)j∈Z).
This kind of process is called a Bernoulli shift. In general, the mapping H is de�ned on a
measurable subset F of EZ such that P (ε ∈ F ) = 1. One can extend H on EZ by H(x) = 0
if x ∈ EZ \ F .

Proposition 7. A Bernoulli shift is a stationary process.

Proof of Proposition 7. Since Xt = H (τ tε) and denoting again by τ the shift operator
on (E ′)Z

d
, we have τX = (H (τ t+1ε))t∈Z. The result is then a consequence of the stationarity

property of ε.□

Examples of Bernoulli shifts

1. Let us study the recursive equations Xt = aXt−1 + εt when |a| < 1 and (εt)t∈Z is a
sequence of i.i.d. and integrable random variables. It is easy to show that the series
Xt =

∑∞
j=0 a

jεt−j is normally convergent in L1 (and then a.s. absolutely convergent)
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and that (Xt)t∈Z is a solution of these recursive equations. It is also a Bernoulli shift,
setting

H ((sj)j∈Z) =
∑
j≥0

ajs−j,

which is de�ned on the subset F of EZ for which the previous series is absolutely
converging. One can also show that there is only one stationary solution. Indeed, if
(X ′

t)t∈Z is another stationary solution, setting Dt = Xt −X ′
t, we have Dt = anDt−n for

any n ∈ N. But an|Dt−n| ≤ an|Xt−n|+ an|X ′
t−n| and the two terms on right-hand side

of this inequality are both converging to 0 in probability when n → ∞. We deduce
that Dt = 0 a.s. and then Xt = X ′

t a.s.

2. One can extend the previous model to

Xt =

p∑
j=1

ajεt−j + εt, t ∈ Z, (4.1)

with the same assumptions for ε but now with the assumption that the roots of the
polynomial P(z) = 1 −

∑p
j=1 ajz

j are outside the unit disc of the set of complex
numbers C. It is easy to show that we have a one-to-one correspondence between
the stationary process (Xt)t∈Z solutions of (4.1) and the stationary solutions of the
multivariate recursions Yt = AYt−1 + ε̃t where

A =

(
a1 · · · ap−1 ap

Ip−1 0p−1,1

)
, ε̃t =


εt
0
...
0

 ,

where Ip−1 denotes the identity matrix of size p− 1 and 0p−1,1 the column vector with
p − 1 components all equal to 0. The matrix A is often called companion matrix. A
well known result about companion matrices states that the spectral radius ρ(A) of
the matrix A is less than 1 if and only if the polynomial P has all its roots outside the
unit disc. More precisely, one can show that the characteristic polynomial of A equals

to Q(z) = (−1)p
(
zp −

∑p
j=1 ajz

p−j
)
. Moreover, the Gelfand formula guarantees that

for any matrix norm ∥ · ∥, for instance the norm 2 associated to the Euclidean norm
∥ · ∥2 on Rp, i.e.

∥A∥ = sup
x∈Rp:∥x∥2=1

∥Ax∥2 =
√
ρ(ATA),

limn→∞ ∥An∥1/n = ρ(A). When ρ(A) < 1, we then deduce that there exists a positive
integer n0 such that κ := ∥An0∥ < 1. It is easy to deduce that the series Yt =∑∞

j=0A
j ε̃t−j is normally convergent in L1 and is the unique stationary solution of the

multivariate recursions. Note that if E (ε21) < ∞, the series also converges in L2 and
the solution has a �nite second moment.
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3. GARCH models are widely used in �nancial econometrics to model the dynamic of
stock prices or currency exchange rates. See Francq and Zakoian (2019) for a broad
introduction to these kind of models. In what follows, we consider a sequence (εt)t∈Z
of i.i.d. random variables with mean 0 and variance 1. We set

Xt = εtσt, σ2
t = α0 + α1X

2
t−1 + α2σ

2
t−1, (4.2)

where α0 > 0 and α1, α2 ≥ 0. When σt and εt are independent with σt ∈ Ft−1 :=
σ (Xt−j : j ≥ 1), then σ2

t is simply the conditional variance of Xt given Ft−1, i.e.

Var (Xt|Ft−1) := E
(
X2

t |Ft−1

)
− E2 (Xt|Ft−1) = σ2

t .

Our aim here is to construct a stationary solution ((Xt, σt))t∈Z of (4.2) which is also non-
anticipative (i.e. σt ∈ σ (εt−j : j ≥ 1)). To this end, we assume that α1 + α2 < 1. We
�rst note that any solution of (4.2) satis�es σ2

t = α0+at−1σ
2
t−1 where at−1 = α1ε

2
t−1+α2.

Under our assumptions, we have Ea1 < 1 and one can show that

σ2
t = α0

[
1 +

∞∑
j=1

at−1 · · · at−j

]
, t ∈ Z

is a random series converging in L1 and a.s. and solution of the recursions. It is of
course stationary and Xt = εtσt is stationary solution of (4.2). One can also show that
the previous solution is the unique stationary solution of (4.2).

Though is is possible in theory to use two-sided Bernoulli shifts, such asXt =
∑

j∈Z ajεt+j,
many interesting examples are one-sided, i.e.

H ((st)t∈Z) = G (st, st−1, . . .)

for a measurable mapping G. A general construction of one-sided Bernoulli shifts uses
contraction properties of iterative systems, as illustrated in the aforementioned examples.
The following result, which can be found in Wu and Shao (2004), extends this setup. The
proof is left as an exercise.

Theorem 26. Let E be a Borel subset of Rk, (G,G) be a measurable space, F : E ×G→ E
a measurable mapping and (εt)t∈Z be a sequence of i.i.d. random variables taking values in
G. Setting ft(x) = F (x, εt) for (t, x) ∈ Z × E, and f t

s(x) = ft ◦ ft−1 ◦ · · · ◦ fs(x) for s ≤ t,
we assume that the following conditions hold true for some p ≥ 1 and a norm ∥ · ∥ on Rk.

1. For all x ∈ E, ft(x) ∈ Lp.

2. There exists a positive integer m and two positive real numbers L and κ, with κ < 1
and such that

∥ft(x)− ft(y)∥p ≤ L∥x− y∥,
∥f t+m

t+1 (x)− f t+m
t+1 (y)∥p ≤ κ∥x− y∥,

where for a random variables Z taking values in E, ∥Z∥p = E1/p [∥Z∥p]. The sequence(
f t
t−n(x)

)
n≥1

has an almost sure limit denoted by f t
−∞ and not depending on x. There then ex-

ists a unique stationary solution (Xt)t∈Z such that Xt ∈ σ (εt−j : j ≥ 0) and Xt = F (Xt−1, εt)
a.s. We have Xt = f t

−∞ a.s. Moreover E [∥X1∥p] <∞.
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Sketch of the proof. For an arbitrary x ∈ E, the sequence
(
f t
t−n(x)

)
n∈N is a Cauchy se-

quence in Lp and has then a limit denoted by Xt(x). The a.s. convergence to this limit also
holds true. From the second assumption, we have Xt(x) = Xt(x

′) for any x′ ∈ E. Unique-
ness of this non-anticipative stationary solution (which has a Bernoulli shift representation)
follows from the contraction condition in the second assumption.□

A note on Markov chains on Rk. A sequence (Xt)t∈N of E−valued random variables is
called a homogeneous Markov chain if for any integer t ≥ 1,

P (Xt ∈ A|Xt−1 = xt−1, . . . , X0 ∈ x0) = P (X1 ∈ A|X0 = xt−1) ,

for anyA ∈ B(E) and x0, . . . , xt−1 ∈ E. The mapping (x,A) 7→ K(x,A) := P (X1 ∈ A|X0 = x)
is called a Markov kernel (or a transition kernel). A Markov kernel K : E × B(E) → [0, 1]
is simply a mapping such that for any A ∈ B(E), x 7→ K(x,A) is measurable and for any
x ∈ E, A 7→ K(x,A) de�nes a probability measure. An integral

∫
E
f(y)K(x, dy) can be

de�ned using such a probability measure.

Under the assumptions of Theorem 26, for any x ∈ E, the sequence (f t
1(x))t≥0 is a

Markov chain, starting at 0 (using the convention f 0
1 (x) = x). Its transition kernel is given

by K(x,A) = P (f1(x) ∈ A).

A probability measure µ on E is said to be invariant if µ(A) = µK(A) :=
∫
E
µ(dy)K(y, A).

The distribution µ of X0 given in the previous theorem is an invariant probability measure (it
corresponds to the marginal distributions of a stationary sequence). Now de�ne by induction
the transition kernels Kn by

Kn(y, A) =

∫
E

K(y, dz)Kn−1(z, A), n ≥ 2.

It is easy to check that Kn(y, A) = P (fn
1 (y) ∈ A). By induction, we get µKn = µ. If

h : E → R is a continuous and bounded function, we have∫
E

h(y)Kn(x, dy) = E [h ◦ fn
1 (x)] = E

[
h ◦ f−1

−n(x)
] n→∞→ E [h(X−1)] =

∫
E

hdµ.

We then conclude that for any x ∈ E, fn
1 (x) ↪→ µ, which means that the distribution of the

Markov chain converges to µ whatever the initial state x. From the dominated convergence
theorem, this is also true for any initial probability measure ν, since∫

E

∫
E

h(y)Kn(x, dy)ν(dx) =

∫
E

h(y)νKn(dy)

and νKn is the probability distribution ofXn whenX0 is generated from ν. As a consequence,
the invariant probability measure of the chain is unique.
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4.2 Ergodic theory for stationary processes indexed by Z
For generalizing the strong law of large numbers to stationary sequences, we directly face to
some pathological problems. For instance, when Xt = X0 for all t ∈ Z, then 1

n

∑n
t=1Xt = X0

which does not coincide with E(X0) except is X0 is a.s. constant. Moreover, for a Markov
chain on E = {0, 1} with transition P = I2 the identity matrix, the probability π = (1/2, 1/2)
is invariant. However 1

n

∑n
t=1Xt is equal to 0 on the set {X0 = 0} which has probability

1/2. The a.s. limit of these partial sums cannot be the expectation of π which is 1/2. We
then see that some problems can occur when there exist some non trivial "invariant" sets,
i.e. sets A with probability in (0, 1) and for which {X0 ∈ A} = {Xt ∈ A} for any t ≥ 1.

Ergodic theory is a branch of mathematics which studies the properties of some mappings
τ : G → G that are invariant under a probability measure µ on a measurable space (G,G),
i.e. µ ({g ∈ G : τg ∈ A}) = µ(A) for any A ∈ G. In our framework, G = EZ, τ is the shift
operator already de�ned in the previous section and µ = PX , the distribution of a stationary
process X = (Xt)t∈Z.

Before giving the generalization of the law of large numbers, we introduce the following
de�nition.

De�nition 8. Let (G,G, µ) be a probability space and τ : G→ G a measurable mapping.

1. We say that τ preserves the measure µ if µ (τ−1A) = µ(A) for any A ∈ G. Here
τ−1A = {x ∈ G : τx ∈ A}.

2. A measurable subset I ∈ G is said to be invariant if τ−1I = I.

3. τ is said to be ergodic for µ if any invariant subset I is trivial, i.e. it has measure 0
or 1.

A generalization of the strong law of large numbers can be obtained by inspecting the
limiting behavior of x 7→ Snf(x) :=

1
n

∑n
t=1 f (τ

tx). However, if I is a non trivial invariant
subset, the choice f = 1I leads to Snf = 1 which cannot converge to µ(I) =

∫
fdµ. A proof

of the following important result can be found in Petersen (1989), Chapter 2.

Theorem 27 (Birkho�'s ergodic theorem). Suppose that τ is ergodic for µ. Then is∫
|f |dµ <∞, we have

lim
n→∞

Snf =

∫
fdµ a.s.

When τ is the shift operator on G = EZ and µ = PX , we say that the stationary process
X is ergodic if τ is ergodic for µ. In this context, we obtain the following result.

Corollary 4. Suppose that X = (Xt)t∈Z is a stationary and ergodic process taking values in
E and f : EZ → R is a measurable function such that E [|f(X)|] <∞. Then

lim
n→∞

1

n

n∑
t=1

f ((Xt+j)j∈Z) = Ef(X), a.s.
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Under the assumptions of Corollary 4, we note that if g : E → R is PX0 integrable, then

lim
n→∞

1

n

n∑
t=1

g(Xt) = Eg(X0), a.s.

However, one can consider partial sums for much more complicated functions f , for instance
depending of in�nitely many coordinates. To show that we truly obtained an extension of
the law of large numbers, the following result will be needed.

Proposition 8. A sequence (Xt)t∈Z of i.i.d. random variables is ergodic.

Proof of Proposition 8. Let I be an invariant subset of EZ. Then PX(I) = P(X ∈ I) =
PX (τ−nI ∩ I). We are going to show that for any A and B in the cylinder sigma-�eld C,

lim
n→∞

P
(
X ∈ τ−nA,X ∈ B

)
= P (X ∈ A)P (X ∈ B) . (4.3)

Applying (4.3) to A = B = I, we will deduce that PX(I) = PX(I)
2, meaning that PX(I) ∈

{0, 1}, as required.
To prove (4.3), suppose �rst that A and B are �nite unions of cylinder sets. In this case

{X ∈ A} ∈ σ (Xs : s ∈ U) and {X ∈ B} ∈ σ (Xs : s ∈ V ) for two �nite subsets U and V of
Z. But since {τnX ∈ A} ∈ σ (Xs+n : s ∈ U), this event is independent of {X ∈ B} when n
is large enough. Then for such n,

P
(
X ∈ τ−nA,X ∈ B

)
= P

(
X ∈ τ−nA

)
P (X ∈ B) = P (X ∈ A)P (X ∈ B) .

For the general case, one can note that the �nite unions of cylinder sets form an algebra
(that is a set of subsets of EZ, containing the empty set, stable by �nite union and stable by
taking complements) which generates the cylinder sigma-�eld. A general result in measure

theory ensures that if A is a sigma-�eld, µ a probability measure on A and Ã is an algebra
generating A, then for any ε > 0 and A ∈ A, there exists Aε ∈ Ã such that

µ (A∆Aε) ≤ ε, A∆Aε = (A \ Aε) ∪ (Aε \ A) .

Applying this result to A = C the cylinder sigma-�eld, µ = PX , and Ã the set of �nite unions
of cylinder sets, we get∣∣PX

(
τ−nA ∩B

)
− PX

(
τ−nAε ∩Bε

)∣∣
≤ PX

((
τ−nA ∩B

)
∆
(
τ−nAε ∩Bε

))
≤ PX

(
τ−nA∆τ−nAε

)
+ PX (B∆Bε)

= PX (A∆Aε) + PX (B∆Bε)

≤ 2ε.

Note that the previous equality is a consequence of stationarity. Since ε > 0 is arbitrary, it
is easy to conclude that (4.3), already valid for the pair (Aε, Bε), extends to the pair (A,B).
This concludes the proof. □
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4.3 Semiparametric M-estimation for autoregressive pro-

cesses

4.3.1 Estimation of a conditional mean

Let the model

Xt = fθ0(Xt−1) + εt, t ∈ Z, (4.4)

where the ε′ts are i.i.d. with mean 0 and �nite variance and fθ0 : R → R is a measur-
able mapping depending on a parameter θ0 ∈ Θ. A natural estimator can be obtained by
minimizing

θ 7→Mn(θ) :=
1

n

n∑
t=2

(Xt − fθ(Xt−1))
2 .

The corresponding estimator θ̂n is called non-linear least squares estimator. Existence of a
stationary and ergodic solution for (4.4) can be obtained from Theorem 26, as soon as there
exists κ ∈ (0, 1) such that

|fθ0(x)− fθ0(y)| ≤ κ|x− y|, (x, y) ∈ R2.

Moreover, when Θ is compact, θ 7→ fθ(x) is continuous for all x and supθ∈Θ |fθ(X1)| is
integrable, Birkho�'s ergodic theorem is su�cient to ensure strong consistency of θ̂n. Indeed
one can apply Theorem 2 of Chapter 2. The reason is that, except some regularity and
integrability conditions, only the pointwise law of large numbers was necessary to obtain
consistency in the i.i.d. setting. We have know extended this law to dependent data and
all the other arguments needed to prove Theorem 2 in Chapter 2 are not restricted to
independent observations. The single assumption to check is the third one. We note that by
independence between Xt−1 and εt,

M(θ) = E
(
ε21
)
+ E

[
(fθ(X1)− fθ0(X1))

2]
and M(θ) ≥ M(θ0). Moreover M(θ) = M(θ0) if and only if fθ = fθ0 µ−a.s., where µ is the
probability distribution of X1. Then the third assumption follows as soon as µ ({fθ ̸= fθ0}) >
0 for θ ̸= θ0.

Let us know investigate the case of a linear autoregressive process of order p (4.1), which
is often denoted AR(p), and for which the least squares estimator has en explicit form. We
assume here that E (ε21) <∞ and the root of P(z) = 1−

∑p
j=1 ajz

j are outside the unit disc.
This ensures that the unique stationary solution has a �nite second moment. Our aim is to
estimate θ0 = (a1, . . . , ap)

T when E (ε21) <∞. The least squares estimator is given by

θ̂n = arg min
θ∈Rp

1

n

n∑
t=p+1

(
Xt −X T

t−1θ
)2

=

(
1

n

n∑
t=p+1

Xt−1X T
t−1

)−1
1

n

n∑
t=p+1

Xt−1Xt.
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Here Xt−1 denotes the column vector with entries Xt−1, Xt−2, . . . , Xt−p. From the ergodic
theorem, we have

1

n

n∑
t=p+1

Xt−1Xt
a.s.→ E [X0X1] = E

[
X0X T

0

]
θ0.

To get strong consistency, we only have to check that Γ := E
[
X0X T

0

]
is invertible. Using

the ergodic theorem and the continuity of the inverse of a matrix, this will ensure that(
1

n

n∑
t=p+1

Xt−1X T
t−1

)−1

a.s.→ Γ−1

and then strong consistency. If Γ is not invertible, there exists u ∈ Rp \ {0} such that

uTΓu = E
[(
uTX0

)2]
= 0.

We then conclude that uT X̃0 = 0 a.s. and one variable, for instance X0, writes a.s. as a
linear combination of X−1, . . . , X−p+1. But this, due to the model form, this would mean
that ε0 writes as a linear combination of X−1, . . . , X−p. By independence, this is impossible
when ε1 is not constant a.s. Then u

TΓu = 0 is not possible unless u = 0.

4.3.2 Estimation of a conditional variance

Let the model

Xt = εtσt, σ2
t = θ0,1 + θ0,2X

2
t−1,

where θ0,1 and θ0,2 are unknown non-negative real numbers and the ε′ts are i.i.d. with mean
0 and variance 1. We have already seen that θ0,2 < 1 is a necessary and su�cient condition
for existence of a stationary solution. Setting Vt(θ) = θ1 + θ2X

2
t−1 for t ∈ Z, a �rst idea

would be to use a least squares estimator with

Mn(θ) =
1

n

n∑
t=2

mθ(Xt−1, Xt), mθ(Xt−1, Xt) = (Xt − Vt(θ))
2 .

This is natural since E [X2
t |Xt−1] = Vt(θ0). However, such estimator requires the existence

of the fourth moment for consistency. One can show that existence of the fourth moment
induces a supplementary restriction on θ0,2. This is why, we prefer another M-estimator called
Gaussian Quasi-Maximum Likelihood Estimator (QMLE). The principle is to compute the
density of (X2, . . . , Xn) conditionally on X1, assuming that εt follows a standard Gaussian
distribution. The conditional density of Xt given Xt−1 is given by

f (xt|Xt−1) =
1√

2πVt(θ0)
exp

(
− x2t
2Vt(θ0)

)
.
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Then the conditional density of (X2, . . . , Xn) given X1 and evaluated at (X2, . . . , Xn) is given
by

Ln(θ0) =
n∏

t=2

1√
2πVt(θ0)

exp

(
− X2

t

2Vt(θ0)

)
.

Maximizing θ 7→ Ln(θ) is equivalent to minimize

θ ∈Mn(θ) :=
1

n

n∑
t=2

mθ(Xt−1, Xt), mθ(Xt−1, Xt) =
X2

t

Vt(θ)
+ log Vt(θ).

To obtain a compact parameter space, one can set

Θ = [0,M ]× [0, 1/M ] for some M > 1.

When εt is Gaussian, the QMLE is simply called conditional likelihood estimator (since it
is based on the conditional density). The main interest is that when εt is not necessarily
Gaussian, the method still works and can be used to get a consistent estimator (which
explains the terminology Quasi Likelihood). This is justi�ed by the equality

M(θ)−M(θ0) = E
[
Vt(θ0)

Vt(θ)
− log

Vt(θ0)

Vt(θ)
− 1

]
and the inequality x− log(x)−1 ≥ 0 for x > 0 with equality if and only if x = 1. We then get
M(θ) ≥M(θ0) andM(θ) =M(θ0) if and only if Vt(θ) = Vt(θ0) a.s. When the distribution of
εt is not concentrated on {−1, 1}, it is possible to show that necessarily θ = θ0. All the other
assumptions of Theorem 2 in Chapter 2 are veri�ed. In particular, we have automatically
E [supθ∈Θ |mθ(X0, X1)|] <∞ here, since EX2

t <∞.

4.3.3 What about asympotic normality?

For semiparametric-models of the previous types, one can proceed as in the i.i.d. case. For
the non-linear least squares estimator and the Gaussian QMLE, the quantity Ṁn(θ0) which
gives the asymptotic distribution of the M-estimator are given respectively by

Ṁn(θ0) = − 2

n

n∑
t=2

(Xt − fθ0(Xt−1)) ḟθ0(Xt−1)

and

Ṁn(θ0) = − 1

n

n∑
t=2

{
X2

t V̇t(θ0)
2

Vt(θ0)
− V̇t(θ0)

Vt(θ0)

}
.

One can observe that in both cases, E [ṁθ0(Xt−1, Xt)|Ft−1] = 0 a.s. where Ft−1 = σ (Xs : s ≤ t− 1).
Then the partial sums

∑n
t=2 ṁθ0(Xt−1, Xt) form a martingale. We then need a central limit

theorem for this kind of martingales, written as a partial sum of stationary and ergodic
sequences.

This kind of situation is classical in conditional models. It corresponds to the situation
where θ 7→ E [mθ0(X0, X1)|F0] is minimized at θ = θ0. Inverting derivative and conditional
expectation yields to the martingale property discussed above.
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4.4 Central limit theorems for martingales

In this section, we consider some partial sums of the form Sn =
∑kn

i=1Xn,j where
{Xn,j : 1 ≤ j ≤ kn, n ≥ 1} is a "triangular array" of random variables. Additionally, we

assume that (Xn,j)1≤j≤kn
is a martingale di�erence, meaning that for each positive integer

n, there exists a �ltration (Fn,j)0≤j≤kn
such that for 1 ≤ j ≤ kn, Xn,j is integrable and

measurable with respect to Fn,j and E [Xn,j|Fn,j−1] = 0 a.s.
For instance, in the context of the previous paragraph, Xn,j = Yj/

√
n, where (Yj)j∈Z is

a stationary and ergodic sequence of integrable random variables and E [Yj|Fj−1] = 0 for
Fn,j = Fj = σ (Yt : t ≤ j), we are interested by a central limit theorem for Sn.

The principle is to study convergence of the characteristic function ϕn(t) = E [exp(itSn)]
using a subtle factorization of the complex exponential. In what follows, the notation | · | is
used for both the absolute value of a real number or the modulus of a complex number. We
follow the approach of McLeish (1974) for proving martingale central limit theorems.

Lemma 11. There exists a mapping r : R → C such that

exp(ix) = (1 + ix) exp

(
−x

2

2
+ r(x)

)
and |r(x)| ≤ |x|2 for any −1 < x < 1.

Proof of Lemma 11. The series log(1 + z) =
∑

k≥1(−1)k+1 zk

k
converges for |z| < 1 and

it is known that exp (log(1 + z)) = 1 + z. Now, take z = ix for some x ∈ (−1, 1). We have

log(1 + ix) = ix+
x2

2
+ x3r(x), r(x) =

∞∑
k=0

(−1)k+1 i
k+1xk

k + 3
.

We then get the required factorization by taking the exponential function in the previous
equality. Finally,

r(x) = r1(x) + ir2(x), r1(x) =
∑
p≥0

(−1)p+1 x
2p+1

2p+ 4
, r2(x) =

∑
p≥0

(−1)p+1 x2p

2p+ 3
.

Suppose that x > 0, the argument will be the same if x = −y < 0. Due to the presence of
alternating series, we have −1/4 ≤ r1(x) ≤ 0 and −1/3 ≤ r2(x) ≤ 0 from which we conclude
that |r(x)| ≤ 1.□

The idea is then to use the decomposition exp (itSn) = TnUn where

Tn =
kn∏
j=1

(1 + itXn,j) , Un = exp

(
−t2

2

kn∑
j=1

X2
n,j +

kn∑
j=1

r (tXn,j)

)
.

For martingale di�erences, we have

E [1 + itXn,j|Fn,j−1] = 1
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and we then get E(Tn) = 1. Moreover, if
∑kn

j=1X
2
n,j

P→ σ2, one can hope that E(TnUn) →
exp

(
− t2σ2

2

)
, which suggests that Sn ↪→ N (0, σ2). Note that when Xn,j = Xj/

√
n with

(Xj)j∈Z stationary, ergodic and square-integrable, we have σ2 = E(X2
1 ).

However, converge of the expectation of the product requires a speci�c attention. In
particular, the following result is helpful. The concept of uniform integrability will be needed.
We recall that a sequence of random variables (Tn)n≥1 is uniformly integrable if for any ϵ > 0,
one can �nd M > 0 su�ciently large such that

sup
n≥1

E
[
|Tn|1|Tn|≥M

]
≤ ϵ.

If for all n, Tn = T with T integrable then (Tn)n≥1 is uniformly integrable. Moreover, the
sum of two uniformly integrable sequences is still uniformly integrable. Let n0 be a positive
integer. If E [|Tn|] <∞ for all n ≥ 1 and for any ϵ > 0, one can �nd M > 0 such that

sup
n≥n0

E
[
|Tn|1|Tn|≥M

]
≤ ϵ,

then (Tn)n≥1 is also uniformly integrable. Indeed, one can always increase M to also get

max
1≤n≤n0−1

E
[
|Tn|1|Tn|>M

]
≤ ϵ.

Finally, if additionally Tn
P→ 0, it is easy to show that limn→∞ E(Tn) = 0.

Lemma 12. Let (Tn)n≥1 and (Un)n≥1 be two sequences of random variables such that for
some real number a,

1. Un
P→ a,

2. (Tn)n≥1 is uniformly integrable,

3. (TnUn)n≥1 is uniformly integrable,

4. limn→∞ E(Tn) = 1.

Then limn→∞ E [TnUn] = 1.

Proof of Lemma 12 Since TnUn = Tn (Un − a) + Tna, we simply have to show that
limn→∞ E [Tn(Un − a)] = 0. From the second and the third assumption, (Tn(Un − a))n≥1

is uniformly integrable, as a sum of two uniformly integrable sequences. It is then su�cient
to show that this sequence converges to 0 in probability. Let ε > 0. We have

P (|Tn(Un − a)| > ε) ≤ P (|Tn| > M) + P (|Tn| ≤M,M |Tn − a| > ε)

≤ 1

M
E
[
|Tn|1|Tn|>M

]
+ P (|Un − a| > ε/M) .
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If M is large, from uniform integrability, the �rst term in the last upper-bound can be made
arbitrarily small, uniformly over n, smaller than δ for a given δ > 0. For such M , the second
term converges to 0. Then

limP (|Tn(Un − a)| > ε) ≤ δ

which shows the result.□

Lemma 13. Let {Xn,j : 1 ≤ j ≤ kn, n ≥ 1} be an array of random variables. Let the decom-
position Sn = TnUn with

Tn =
∏

1≤j≤kn

(1 + itXn,j) , Un = exp

(
−t

2

2

kn∑
j=1

X2
n,j +

kn∑
j=1

r(tXn,j)

)
.

Suppose that the following assumptions hold true.

1. limn→∞ E(Tn) = 1.

2. (Tn)n≥1 is uniformly integrable.

3.
∑kn

j=1X
2
n,j

P→ 1.

4. max1≤j≤kn |Xn,j|
P→ 0.

Then Sn ↪→ N (0, 1).

Proof of Lemma 13. We �rst show that Rn =
∑kn

j=1 r (tXn,j) = oP (1). Let ε > 0. On
the set An := {max1≤j≤kn |Xn,j| < 1}, we have

|Rn| ≤
kn∑
j=1

|t|3 · |Xn,j|3 ≤ |t|3 max
1≤j≤kn

|Xn,j|
kn∑
j=1

X2
n,j = oP (1),

where we used the third and the fourth assumption. Moreover, from the third assumption,

limn→∞ P(Ω \ An) = 0. We then conclude that Rn = oP (1), which leads to Un
P→ a :=

exp
(
− t2σ2

2

)
. We also have |TnUn| = 1 which is uniformly integrable. The result is then a

consequence of Lemma 12.□
We now get one of the two main result of this section.

Theorem 28. Let {Xn,j : 1 ≤ j ≤ kn, n ≥ 1} be a triangular array of martingale di�erences
such that

1. limn→∞ E [max1≤j≤kn |Xn,j|] = 0,

2.
∑kn

j=1X
2
n,j

P→ 1.

Then Sn ↪→ N (0, 1).
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Proof of Theorem 28. Set Zn,1 = Xn,1 and for 2 ≤ j ≤ kn, Zn,j = Xn,j1∑j−1
r=1 X

2
n,r≤2. One

can observe that {Zn,j : 1 ≤ j ≤ kn, n ≥ 1} is a triangular array of martingale di�erences
with the same �ltration. Moreover,

P
(
∪kn

r=1{Xn,r ̸= Zn,r}
)
≤ P

(
kn∑
r=1

X2
n,r > 2

)
→ 0. (4.5)

From (4.5), it is enough to show that
∑kn

j=1 Zn,j ↪→ N (0, 1). This will follow from an

application of Lemma 13. Indeed, if Tn =
∏kn

j=1 (1 + itZn,j), we have E(Tn) = 1. Let

J = inf

{
j ≥ 1 :

j∑
r=1

X2
n,r > 2

}
∧ kn,

where a ∧ b = min(a, b). We have

|Tn| =
kn∏
j=1

√
1 + t2Z2

n,j =
J−1∏
r=1

√
1 + t2Z2

n,r

√
1 + t2Z2

n,J

≤ exp

(
t2

2

J−1∑
r=1

Z2
n,r

)
× (1 + |t| · |Zn,J |)

≤ exp(t2)×
(
1 + |t| max

1≤j≤kn
|Xn,j|

)
.

From the �rst assumption of the theorem, max1≤j≤kn |Xn,j| is uniformly integrable and so is
Tn. The other assumptions of Lemma 13 are veri�ed and we conclude that Sn ↪→ N (0, 1)
from the convergence of characteristic functions.□

For stationary and ergodic martingale di�erences, we get the following important result.

Theorem 29. Let (Xj)j∈Z a square integrable stationary and ergodic sequence such that
E [Xj|Fj−1] = 0 a.s., where (Fj)j∈Z is a �ltration such Xj is Fj−measurable for all j ∈ Z.

Then Sn = 1√
n

∑n
j=1Xj ↪→ N (0, σ2), with σ2 = Var (X1).

Proof of Theorem 29. First suppose that σ2 = 0, then Xj = 0 a.s. for all j ∈ Z and
then Sn = 0 a.s. which converges in distribution to N (0, 0), that is the Dirac mass at
point 0. Suppose now that σ2 > 0. Setting Xn,j = Xj/

√
nσ2, we will apply Theorem 28.

From ergodicity and square integrability of (Xj)j∈Z, the second assumption of Theorem 28
is veri�ed. To check the �rst assumption, we use the Cauchy-Schwarz inequality as well as
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truncation. For a given M > 0 , we have

1√
n
E
[
max
1≤j≤n

|Xj|
]

≤

√
E
[
max
1≤j≤n

|Xj|2
n

]

≤
√
M

n
+

√
E
[
max1≤j≤n |Xj|21|Xj |>M

n

]

≤
√
M

n
+

√√√√ 1

n

n∑
j=1

E
[
|Xj|21|Xj |>M

]
=

√
M

n
+
√

E
[
|X1|21|X1|>M

]
.

We then get

lim
n

E
[
max
1≤j≤n

|Xn,j|
]
≤ σ−1E

[
|X1|1|X1|>M

]
and we obtain the desired condition by letting M → ∞. The result is then a consequence
of Theorem 28.□

Next, we deduce a multivariate version of Theorem 29.

Corollary 5. Let (Xj)j∈Z a square integrable stationary and ergodic sequence, taking val-
ues in Rk and such that E [Xj|Fj−1] = 0 a.s., where (Fj)j∈Z is a �ltration such Xj is
Fj−measurable for all j ∈ Z.

Then Sn = 1√
n

∑n
j=1Xj ↪→ Nk(0,Σ), with Σ = Var (X1).

Proof of Corollary 5. From Lemma 15, it is easily seen that weak convergence of Sn to
Nk(0,Σ)is equivalent to weak convergence of uTSn to N

(
0, uTΣu

)
, for any vector u ∈ Rk.

But uTSn = 1√
n

∑n
j=1 u

TXj and
(
Zj = uTXj

)
j∈Z is a martingale di�erence satisfying the

assumptions of Theorem 29 with σ2 = uTΣu. We then get the result.□

Example. We go back to the linear autoregressive process AR(p),

Xt =

p∑
j=1

a0,jXt−j + εt, t ∈ Z,

where (εt)t∈Z is a sequence of i.i.d. random variables with mean 0 but now with �nite positive
variance v. We assume that the roots of the polynomial P de�ned by P(z) = 1−

∑p
j=1 a0,jz

j

are outside the unit disc. In this case, we have already seen there is a unique stationary
solution which writes as Xt =

∑
j≥0 sjεt−j with s0 = 1 and (sj)j≥0 has a geometric decay. In

particular, the series is also converging normally in L2 and Xt is square integrable.
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Our aim here is to estimate θ0 = (a0,1, . . . , a0,p)
T . As seen previously, the least squares

estimator is de�ned by

θ̂n =

(
1

n

n∑
t=p+1

Xt−1X T
t−1

)−1
1

n

n∑
t=p+1

Xt−1Xt.

We have
√
n
(
θ̂n − θ0

)
=

(
1

n

n∑
t=p+1

Xt−1X T
t−1

)−1
1√
n

n∑
t=p+1

Xt−1εt.

Using Corollary 5, it is easily seen that 1√
n

∑n
t=p+1 Xt−1εt ↪→ Np (0, vΓ) where Γ = E

[
X1X

T
1

]
.

Slutsky's lemma ensures that
√
n
(
θ̂n − θ0

)
↪→ Np (0, vΓ

−1).

From Theorem 28, we also deduce the following convergence result for triangular arrays
of independent random variables. The following result was used in Chapter 2.

Theorem 30. Let {Yn,i : 1 ≤ i ≤ kn, n ≥ 1} be a triangular array of centered random vari-
ables, taking values in Rk and such that Yn,1, . . . , Yn,kn are mutually independent. Suppose
that the two following assumptions are ful�lled.

1. There exists a symmetric and semi-de�nite positive matrix V of size k × k such that
limn→∞

∑kn
i=1Var (Yn,i) = V .

2. For any ε > 0, limn→∞
∑kn

i=1 E
[
∥Yn,i∥21∥Yn,i∥2>ε

]
= 0.

Then Sn :=
∑kn

i=1 Yn,i ↪→ Nk (0, V ).

Proof of Theorem 30. We start with the case k = 1 and V = 1. For any ε > 0, using
the decomposition Y 2

n,i = Y 2
n,i1|Yn,i|≤ε + Y 2

n,i1|Yn,i|>ε and bounding the maximum by the sum,
we get the bound

E
[
max

1≤i≤kn
Y 2
n,i

]
≤ ε+

kn∑
i=1

E
[
Y 2
n,i1|Yn,i|>ε

]
.

From the second assumption of the theorem, we conclude that max1≤i≤kn |Yn,i| converges to
0 in L2 and then in L1. The �rst assumption of Theorem 28 is checked.

To check the second one, we set Zn,i = Y 2
n,i1|Yn,i|≤ε and Wn,i = Y 2

n,i1|Yn,i|>ε. From our

second assumption limn→∞
∑kn

i=1Wn,i = 0 in L1 and then in probability. Then

kn∑
i=1

Y 2
n,i =

kn∑
i=1

[Zn,i − EZn,i] +
kn∑
i=1

EZn,i + oP(1).

Since
∑kn

i=1 EZn,i =
∑kn

i=1 EY 2
n,i −

∑kn
i=1 EWn,i = 1 + o(1) and

Var

(
kn∑
i=1

Zn,i

)
=

kn∑
i=1

Var (Zn,i) ≤
kn∑
i=1

EZ2
n,i ≤ ϵ2

kn∑
i=1

EZn,i = ϵ2(1 + o(1)),
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we conclude that
∑kn

i=1 Y
2
n,i goes to 1 in L1 and then in probability. From Theorem 28, we

get the result in this case.

For the general case, we use Lemma 15. Let u ∈ Rk. If uTV u = 0, it is easy to show that∑kn
i=1 u

TYn,i goes to 0 in L2 and then in distribution. Now if uTV u ̸= 0, we set Xn,i =
uTYn,i√
uTV u

.

Applying the result for k = 1 and V = 1, we get
∑kn

i=1Xn,i ↪→ N (0, 1). This means that∑kn
i=1 u

TYn,i ↪→ N
(
0, uTV u

)
. This completes the proof. □

4.5 A more general central limit theorem for stationary

sequences

Suppose that (Xt)t∈Z is a general stationary and ergodic sequence. We have already seen
in the previous sections that for many semi-parametric conditional models, convergence
in distribution of M-estimators of �nite-dimensional parameters simply requires a central
limit theorem for martingale di�erences. However, some simple semi-parametric estimation
problems are excluded from this framework. This is for instance the case for estimating the
population mean θ0 = E(X1) for which a natural estimator is the empirical mean Xn =
1
n

∑n
j=1Xj. However (Xj)j∈Z might not be a martingale di�erence here (for instance AR

processes are not martingale di�erences in general).

In general, stationarity and ergodicity are not enough to extend the Central Limit The-
orem. There exist numerous stochastic dependence measures based on covariances type
inequalities and which can be used to extend the CLT. See for instance the book Dedecker
et al. (2007) for a survey of many existing dependence measures developed in this sense. In
this course, we simply give a CLT based on a projective criterion which allows to deduce
the convergence from the CLT for martingale di�erences. The proof of the following result
is taken from Billingsley (2013), Theorem 19.1. In what follows, for a random variable Y ,
we set ∥Y ∥2 =

√
E (Y 2).

Theorem 31. Let (Xt)t∈Z be a stationary and ergodic sequence such that EX2
0 < ∞ and

E(X0) = 0. Suppose that

∞∑
n=1

∥E (Xn|F0) ∥2 <∞, (4.6)

with F0 = σ (Xt : t ≤ 0).

Then the series σ2 = Var (X0)+2
∑∞

n=1Cov(X0, Xn) is absolutely converging. Moreover,

Sn :=
1√
n

n∑
t=1

Xt ↪→ N
(
0, σ2

)
.

Notes
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1. If m := E(X1) ̸= 0, one can try to apply the result to Xj = Xj − m. Note that
condition (4.6) already implies that E(X1) = 0. Indeed,

E(X1) = E(Xn) = E [E (Xn|F0)]
n→∞→ 0,

because (4.6) ensures the convergence of E (Xn|F0) to 0 in L2 and then in L1.

2. In some sense, condition (4.6) ensures that E (XnF0) is close to E(Xn) su�ciently
fast. Note that for i.i.d. integrable random variables or more generally martingale
di�erences, this conditional expectation is equal to 0.

3. As for martingale di�erences, one can easily obtain a multivariate version of Theorem
31. This is left as an exercise.

4. Checking (4.6) for Bernoulli shiftsXt = H (εt, εt−1, . . .) can be done as follows. Suppose
that E(X1) = 0 (otherwise center the variables). Let (ε′t)t∈Z a sequence of i.i.d. random
variables independent of (εt)t∈Z and with the same distribution. For a positive integer
n, let

δn = ∥Xn −X ′
n∥2, X ′

n := H
(
εn, . . . , ε1, ε

′
−1, ε−2, . . .

)
.

Suppose that∑
n≥1

δn <∞. (4.7)

Since X ′
n is independent of F0, we have E (Xn|F0) = E (Xn −X ′

n|F0). Moreover,

∥E (Xn|F0) ∥2 = ∥E (Xn −X ′
n|F0) ∥2 ≤ ∥Xn −X ′

n∥2 = δn,

where we used Jensen's inequality for conditional expectations. Then (4.6) is valid.

The stochastic recursions of Theorem 26 satisfy (4.7) when p ≥ 2. In this case, one
can show that δn ≤ Cκn for some C > 0 and κ ∈ (0, 1).

Proof of Theorem 31. The absolute convergence of series of autocovariances follows from
(4.6) and the bound

|E(X0Xn)| = |E (X0E (Xn|F0))| ≤ ∥X0∥2 · ∥E (XnF0) ∥2.

For h ∈ Z, set γ(h) = Cov(X0, Xh) = E(X0Xh). Note that from stationarity, Cov(Xt, Xs) =
γ(t− s) for any s, t ∈ Z. We get

E
[
S2
n

]
=

1

n

n∑
s,t=1

Cov(Xt, Xs) =
1

n

n∑
s,t=1

γ(t− s) =
1

n

n−1∑
h=−n+1

(n− |h|) γ(h),

which yields to

E
[
S2
n

]
= γ(0) + 2

∑
h≥1

1h≤n−1

(
1− |h|

n

)
γ(h) → γ(0) + 2

∞∑
h=1

γ(h),
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as n→ ∞, using the dominated convergence theorem.
For k ∈ Z, set

Zk = Xk − E (Xk|Fk−1) +
∑
i≥1

{E (Xk+i|Fk)− E (Xk+i|Fk−1)} .

Note that the series in the de�nition of Zk converges in L2, using (4.6) and Lemma 14 below.
Moreover E [Zk|Fk−1] = 0 a.s. and Lemma 14 and (4.6) ensure that (Zk)k∈Z is a stationary
and ergodic sequence of martingale di�erences, adapted to the �ltration (Fk)k∈Z. Moreover,

Zk = Xk +∆k −∆k−1, ∆k =
∞∑
i=1

E [Xk+i|Fk]

and
n∑

k=1

Zk =
n∑

k=1

Xk +∆n −∆0,

with ∥∆n∥2 = ∥∆0∥2 <∞. We then conclude that

∥Sn −
1√
n

n∑
k=1

Zk∥2 = o(1).

From Theorem 5, we know that 1√
n

∑n
k=1 Zk ↪→ N (0,Var (Z1)). We then conclude that Sn

has the same limit. But since limn→∞ E (S2
n) = σ2, necessarily, Var (Z1) = σ2. The proof of

the theorem is now complete.□

4.6 Appendix

Lemma 14. Suppose that (Xt)t∈Z is a stationary process such that E [|X1|] < ∞. For any
i ≥ 1, there exists a measurable mapping gi : RN → R such that for all k ∈ Z, E [Xk+i|Fk] =
gi (Xk, Xk−1, . . .). Additionally, if (Xt)t∈Z is ergodic, then any process of the form Yt =
g (Xt, Xt−1, . . .) where g : RN → R is a measurable mapping, is also stationary and ergodic.

Proof of Lemma 14. From Doob's theorem, there exists a measurable mapping gi : RN →
R such that E [Xi|F0] = gi (X0, X−1, . . .) a.s. Moreover if H : RN → R is a measurable and
bounded mapping, we have, setting Hk = H (Xk, Xk−1, . . .),

E [gi (Xk, Xk−1, . . .)Hk] = E [gi (X0, X−1, . . .)H0] = E [XiH0] = E [Xk+iHk] ,

where we used stationary properties of the process (Xt)t∈Z. From the characterization of
the conditional expectation, we get the �rst part of the lemma. The invariance of the
stationarity and ergodicity properties after composition with the measurable mapping g is
straightforward and left as an exercise.□

Lemma 15 (Cramér-Wold device). A sequence of random vectors (Xn)n∈N, taking values in
Rk, converges in distribution to a random vector X if and only if

∀ u ∈ Rkn, uTXn ↪→ uTX.
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Proof of Lemma 15. This is a consequence of the equivalence between convergence in
distribution and convergence of characteristic functions.□
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