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Chapter O

Introduction

0.1 Why asymptotic theory 7

Let X4,...,X, be independent and identically distributed random variables with common

probability distribution P € P where P is a subset of the set of probability measures.

Suppose we want to estimate a parameter § = 0(P) of this distribution. To this end, we

would like to find an estimator 6,, = T}, (X1,...,X,) of 6. Here T, is a measurable mapping.
To assess accuracy of én, the two following questions are natural.

~

e Do we have convergence (in probability, almost surely, in quadratic mean...) of 6, to
fasn—oo?

e Can we exhibit a convergence rate? For instance, which kind of sequence (r,), of
positive real numbers, diverging to infinity, entails that

limsup r,[E (

n—oo

N 2
en—e‘ ) < 00?

And can we exhibit a non-degenerate limiting distribution for /7, (én — 0), which is
useful for constructing confidence intervals and statistical tests?

For studying these problems, general limit theorems are available and many results exist
for quite sophisticated statistical models. On the other hand, asymptotic theory is not
suitable for evaluating the quality of the estimator for a fixed value of n. Non-asymptotic
statistics can then be useful. However, getting accurate non-asymptotic results often requires
to work with simpler models, especially if our aim is to obtain sharp constants. In this sense,
both theory are complementary.

The aim of this course is to present some general classes of statistical models for which
a nice asymptotic theory can be obtained. In the following sections, we introduce some
examples of estimators which will be studied in the next chapters.



0.2 Parametric M-estimators
A parametric estimator is obtained as a solution of a minimization problem

~

1 n
0, = argmin — me(X;),
gce N ; ( )

for some © C R? and my : R¥ — R is a measurable mapping for every § € ©. Note that
we implicitly assume that such an argmin exists. When it is not unique for some w € 2, we
assume that 6, (w) is one of the possible argmin.

We provide some specific examples below.

1. Maximum likelihood estimators (MLE) corresponds to the case my(z) = — log ps(z)
where P = {pg - p: 0 € O}, p is a measure of reference (e.g. counting measure on N,
Lebesgue measure on R¥) and vy := py - o denotes the probability measure defined by
vp(A) = [, podp for any A € B(RF), the Borel sigma-field of R*. For instance,

e the exponential distribution corresponds to pg(z) = 0 exp(—0z) for 6 > 0 and p is
the Lebesgue measure on R, . A generalization is given by the gamma distribution
with parameters 6y, 0, > 0, for which py(z) = 227105 =% /T'(0;). Here I'(z) =

I~ a* texp(—x)dx for z > 0.

e The Poisson distribution with parameter § > 0 has the probability density py :
x +— e7%0% /2! with respect to the counting measure on N.

e The case pg(z) = exp (¢(0)7'S(z) — Z(#)) for some measurable mapping S : R* —
R® and mappings ¢ : © — Rf, Z : © — R with ¢(#)” denoting the transpose of the
column vector ¢(6) corresponds to the exponential family which contains the two
previous examples as special cases as well many other such that the multivariate
Gaussian distributions).

2. Regression estimators with X; = (Y;,7;) € R x R? satisfying Y; = r¢(Z;) + ¢; with
(Z1,e1),...,(Zn,en) ii.d. such that E (¢;/Z;) = 0. It is often assumed that r9(Z;) and
g1 are square integrable and the least squares estimator (LSE) of 6 is defined by

n

A

1
6, = argmin — Z (Y; — re(X3))°.

n
9o P

Linear regression corresponds to the case r¢(Z;) = ZI'0 where 6 is vector of RP.

When the probability distribution P of the pair (Z;, ;) is not assumed to be an element
of a parametric family, the model is usually called semi-parametric (i.e. the probability
distribution of the observations can be described by a finite-dimensional parameter 6
and an infinite-dimensional parameter P). However, in our context, it will be possible
to estimate 6 independently from P.



Regression models can be extended to dependent data (Y}, Z;), ., where ¢ denotes the
time. Sometimes Z, = Y;_; and the model is said to be autoregressive. Autoregressive
models are widely used in many areas, e.g. for analyzing prizes dynamics in finance,
the evolution of temperatures, species dynamics in ecology...

3. A binary regression model with Y; taking values in {0,1} and X; taking values in R?
can be obtained setting
P(Y; =11Z; =z2) = F (2"9),

where F is a cumutative distribution function and # € R? is an unknown parameter.
When F(u) = ~22%_ we call this model a logistic regression model and when

1+exp(u)
u 2 2
Flu) = / L\/%/)dx,

we call it a probit regression model. Many practical applications can be considered.
For instance, in epidemiology, Y; takes the value 1 if the patient ¢ has a given disease
(e.g. cancer) and Z; is a vector containing some information for the patient (e.g. age,
weight, smoking or not...). It is possible to consider conditional likelihood estimation
from the conditional distribution of Y; given Z; = z, which is given by

po(yl2) = F (270)" (1 - F (ZTQ))l_y, (y,2) € {0,1} x R%
The condition Maximum Likelihood Estimator (MLE) is given by

0, = argmax Hpg (Y;|Z:)

ferd L

— argmax— Y {Vilog (F (276)) + (1 — Y)log (1 — F (276))}.

gerd TV T

0.3 Measurability of M-estimators

Let (€, A,P) be a probability space and 6, = argming.g M, (6) where for any 6 € ©, M, (6)
is a random variable. A crucial example concerns the case M, (0) = S, (0, X1, ..., X,,) where
S, is a measurable real-valued mapping on a suitable product space and Xi,...,X,, are
random variables taking values the same measurable space (typically R¥) . The case

1 n
S (0, X1, Xn) = — D m(X5),
=1

is of special interest.

We start with a very simple result ensuring measurability of M-estimators. The unique-
ness assumption is not easy to check and the compactness of © is a limitation. We will
consider a more general result just after but without giving a proof.
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Proposition 1. If © is a compact subset of R?, the mapping 0 — M, (0) is a.s. continuous
over © (i.e. there exists (¥ € A such that P () = 1 and for all w € @', the mapping
0 — M, (0), is continuous over ©) and there exist 0, : Q@ — O such that for all w € ' and

all € ©\ {én(w)}, M, <én>w < My(0)y. If 0, € O, we set O,(w) = 0 for w € Q\ .

Then én 18 measurable.

Proof of Proposition 1. Let A be an open subset of R%. It is enough to show that
{én € A} is a measurable set which is true as soon as {én € A} N €Y is a measurable set.
Then

{én € A} NQ =< min M,(#) > min M,(0) p N Q.
6\ A 9e6

Indeed, the set © \ A is a compact subset of R? (as the intersection between a compact set
and a closed set) and if w € €', the continuous mapping 6 — M, (0),, reaches its minimum
over © \ A. By definition of én, the minimal value is larger than ming M,,(6), = M, (én> )
Additionally, for any compact set K included in ©, mingex M, (f) is a random variable.

Indeed, one can write mingex M, () = inf,_z M, () where K is finite or infinite or numerable
subset of K. For instance, one can set

~ 1
K={aP1<i<phen}, Kcurp (xi»’“), E) ,

k)

where the xg ’s are suitable points in K. Finally, we have shown that the set

{ min M, (0) > min Mn(é’)} neY
feO\A 0c®

is a measurable set which leads to the result.l]

We next give a more general result which is applicable in a quite general framework,
provided that the random function is continuous with respect to the parameter of interest.
A proof of the following result can be found in Niemiro (1992), Corollary 1.

Theorem 1. Suppose that M, (0) = S, (6, X1,...,X,) with 0 — S, (0, X1,...,X,) contin-
uous a.s. on ©, (x1,...,z,) — S, (0,x1,...,z,) measurable for any 6 € © and

I(X1,...,X,) = {e’e ©:5,(0,X1,...,Xn) :gngsn(e,xl,...,xn)}
S

15 almost surely non empty. Then there exists

0 =N, (Xy,...,X,) = argmin M,(#) e T (X1,...,X,)
0eO

with A,, measurable.

To apply the previous result, one can simply check the condition on I' (X7,...,X,,) by
considering the behavior of M, (6) when ||6| — oc.

8



0.4 Kernel density estimation

We now give a classical example in non-parametric estimation. Here 0(P) is simply the
probability density of the probability measure P. The parameter space © is now a subset of
the family of probability densities with respect to the Lebesgue measure )\, on R¥. We do
not want to make a parametric assumption on O, but only suitable regularity conditions (e.g.
continuity, differentiability...). The idea for estimating the common probability density f of
some identically distributed random variables X, ..., X,, taking values in R”, is to use the
properties of convolution products. Let us consider another probability density K : R¥ — R,
that will be called a kernel and for some i > 0, let us define Kj(x) = h™*K (z/h) for z € R”.
Note that K} is also a probability density. We know that the convolution product Kj * f
defined by
Knxf@) = | Kile=y)f@)Auldy), o R

approximates f (for instance in IL') when A — 0. Since f is unknown, we use the empirical
distribution P, = £ 3" | 0, and define

@) = | Kulx—y)Pu(dy) = %Z Ky (z—X;).

Rk

We then see that Efy (x) = K * f(x). The bias for estimating f(z) is defined by K, = f(2) —
f (x) and we have to choose h as small as possible to decrease the bias. However the variance
of fy(x) generally increases when h becomes small. Later in this course, we will see the the
variance is of order (nh*)~!. Then a suitable choice h = h,, has to be made in practice.

Standard examples of kernels are the Gaussian kernel K (z) = (27) %2 exp <—@) or

the indicator kernel K(x) = 271, <1 where ||z]. = maxj<;<4|z;|. Note that for this

second kernel, f,(x) denotes the proportion of observations inside the ball By (x,h) =
{y € R*: |ly — 2|l < h} divided by the volume of the ball. This gives another intuition
for using such estimator for the probability density and explains why the hyper-parameter
h is called the “bandwidth”.

0.5 Non-parametric regression estimation

In this section we assume that Y; = r(Z;) +¢;, 1 < i < n, with r(Z;) and £, integrable
and E[g;|Z;] = 0 a.s. We only observe X; = (Z,,Y;) for 1 <i < n and we do not assume
that r : R — R is contained in a predetermined parametric family of functions. A standard
estimator for r is the Nadaraya-Watson estimator with

rh(z) _ n! Z?:l YK}y, (Z — Zi)
WS K (= Z)

where h > 0 is a bandwidth and K is a kernel. Note that the denominator of 7,(z) is
precisely an estimator of the density f; of the random vector Z at point z. If we assume

z € RY,

9



that the pair (Y7, Z;) has a density fy 7 with respect to the Lebesgue measure on R x R,

one can note that
Je ufv.z(y, 2)dy

Then

E Y1 Kn(z — Z1)] = / y | Kz —2)fyz(y 2)ddy = /ny,Z<ya z)dy = fz(2)r(z),

R Rk

which justifies the use of such estimator for estimating r(z).
There exist other methods based on the same idea of local averaging.
For instance, the k nearest neighbors (kNN) estimator of r(z) is defined by

g A | "
P(2) = 2 D Ve zsreny Vo Tun(2) = inf {T 20: ) -zisn) 2 ’f} -
=1

i=1

Note that 7, x(z) corresponds to the kth smallest value of ||z — Z;||, 1 < i < n. We then
simply average the values of Y; for which Z; is among the kNN of z in the sample.

Note that this estimator depends on k and of a norm. For the norm, one can take the
Euclidean norm but not only. We remind that all the norms are equivalent on R?. For k, the
intuition is that a small value of k will lead to a small bias but to a large variance (we localize
a lot the average) while a large value of k& will produce a large bias and a small variance (the
average is over a large number of variables and we do not localize sufficiently). This hyper-
parameter k plays the same role as the bandwidth for the Nadaraya-Watson estimator. Note
that 7(z) is similar to this estimator with the indicator kernel and a random bandwidth.

Let us mention that both estimators can be used when Y; takes values in {0, 1} (we use the
term classification instead of regression) and produce estimators of r(z) = P (Y; = 1|Z; = 2).

For classifying a new observation Z, 1 (for which the label Y,,;; is not known) with the
nearest-neighbor approach, one simply predict 1if 7 (Z,.41) > 1/2 (i.e. if there is a majority
of 1 in the kNN of Z,,1) and 0 otherwise.

10



Chapter 1

Complements on stochastic convergence

1.1 Reminders

Let (Q, A,P) be a probability space. On the space R¥ endowed with its Borel sigma-field
B (R*), we denote by || - || an arbitrary norm (using the same notation whatever the value
of k). A sequence of random variables (Y;,),en taking values in R* converges

1. almost surely (a.s.) to YV if 3 Q € A with P (Q) =1 and Yw € Q, lim,_ Y, (w) =
Y(w),

2. in probability to Y if V € > 0, lim,, , oo P (||Y, — Y|| > €¢) =0,

3. in distribution (or weakly, or in law) to Y if for all mapping h : R¥ — R continuous
and bounded, lim,_,, E [h(Y,,)] = E [h(Y)].

We use the respective notations Y, 3 Y, Y, & Y and Y, — Y for the a.s. convergence,
convergence in probability and convergence in distribution.

The following result ensures the stability of the three convergence properties after com-
position with a continuous mapping.

Theorem 2 (Continuous mapping theorem). Let Y,, and Y be some random vectors taking

values in R¥ such that Y, “3Y (resp. Y, » Y, Y, = Y) and f : R* — R’ a mapping,
continuous at any point of C € B (R*) such that P(Y € C) = 1. Then f(Y,) =¥ f(Y) (resp.

F(Ya) = F(Y), f(Yo) = f(Y)).

Proof. It is obvious for the almost sure convergence. For the convergence in probability,
let ¢ > 0 and k be a positive integer. Set

1
Bk:{xEC:EIyERk s.t. |x—y|<%and |f(:v)—f(y)|>e}.

11



We have N1 By, = () by continuity of f and By.; C Bi. Then

(17 - > < I -viz 1 futy e BIUEY €€

Indeed if Y (w) € C and ||f(Yn(w) — f(Y(w))|| > €, we have either Y (w) € By or ||V, (w) —
Y(w)|| > +. We then get

POIF() ~ F0 > ) <P (I =YD 2 ) + PO € B + PV £0),

Since P(Y ¢ C) =0 and Y, 5 Y, we have

TP ([ £(Y,) — f(V)l| > €) < B(Y € By).

Since lim, P(Y € By) = 0 by the continuity properties of the measure, we get the result.
For the convergence in distribution, the proof will be given after the next result.

1.2 Portmanteau lemma

In what follows, for a Borel set A of R*, we denote by dA the boundary of the set A. It is
defined by 0A = A\ A where A is the closure of A (that is the smallest closed set containing
A) and A is the interior of A (that is the largest open set included in A).

Lemma 1 (Portmanteau lemma). The following assertions are equivalent.
1. Y, =Y.
2. For every mapping f : R* — R Lipschitz and bounded, lim, E[f(Y,)] = E[f(Y)].
3. If F is a closed set, lim,P (Y, € F) <P (Y € ).
4. If O is an open set, lim, P (Y, € O) > P(Y € O).
5. If A € B(R*) is a continuity set for Py, i.e. P(Y € A) =0, then lim, P (Y, € A) =
P(Y € A).

Proof. 1. = 2. follows from the fact that a Lipschitz function is also continuous.
Let us show that 2. = 3. For € > 0, let f.(y) = (1 - @) (where x, = max(z,0)).
J’_

We remind that the distance d(y, F') = infep ||y — f|| is always attained for some f, € F. It
is automatic to check that 1p(y) < fe(y), limeo fe(y) =0if y ¢ F and f(y) =1ify € F.
Moreover for 3,7 € R¥,

|fe(y) = f(y)] < Iy =1

€

12



The mapping f. is Lipschitz and bounded and then lim, E [f.(Y;,)] = E[f.(Y)]. We then get

TP (Y, € F) < TmE[£.(Y,)] = E[£(Y)].

We conclude by letting € — 0, using the dominated convergence theorem which leads to
im0 E [fe(yﬂ = P(Y < F)

3. < 4. Tt is obvious since the complement of an open set (resp. a closed set) is a closed
set (resp. an open set) and for any real-valued sequence (z,,),, lim,(—z,) = —lim , .

3.4+ 4. = 5. We note that

P(Y € 4) = HmP (v, € 4) > TP (Y, € 4) > mP (¥, € A) > limP (¥, ¢ 4) > P (Y € 4).

n n

Since the continuity property ensures that P (Y € Z) =P <Y € A> =P(Y € A), we get
ImP (Y, € A) =limP (Y, € A)=P(Y € A),

which shows the result.

5. = 1. Let f : R¥ — R be a continuous and bounded mapping. Without loss of
generality, we will assume that 0 < f < 1 (otherwise one can always replace f by af +
with (a, ) € R? to get this property). We use the formula

Emm]:/o ]P’(f(Yn)>t)dt:/0 P (Y, € 1 ((t,00))) dt.

By continuity of f, we know that f~! ((t,00)) is an open set (as the reciprocal image of an
open set by a continuous mapping) and f~! ([t,00)) is a closed set (as the reciprocal image
of a closed set by a continuous mapping). Then

F7H((t00)) € f7H ([t 00)).
We deduce that
Of 7 ((t,00)) C fH([t,00)) \ f 71 (£, 00)) = {f =1}
We know that A = {t e R: P(f(Y)=1t) > 0} is finite or infinite but numerable. Indeed
A=U,>1A, with A, ={t e R:P(f(Y)=1t) > 1/n} and A, is necessarily finite (otherwise
P cannot be a probability measure). We conclude that for all ¢ ¢ A, we have
P (Yn c f(t, oo)) — P (Y € f_l(t,oo)) )

From the dominated convergence theorem, we conclude that lim, E [f(Y,,)] = E[f(Y)].O0

13



End of the proof of the continuous mapping theorem. Here, we assume that Y, —
Y. We use the point 3. of the portmanteau lemma. Let F' be a closed set. We have

{fp) e F}={Y, e f ' (F)} C {Yn € f—l(F)}.

Moreover, we have the inclusion f~1(F) C f~'(F)UC®. Indeed, if lim,, y, = y with f(y,) € F,
either y € C and then lim,, f(y,) = f(y) is in F because F is closed or y ¢ C.
We then conclude that

P (f(Y,) € F) < TmP (Yn e f—l(F))
< P(vesTm)
< PYefYF)+P(Y ¢C)=P(f(Y)eF).
The second inequality follows from an application of point 3. of the Portmanteau lemma to

the sequence (Y,), (direct sense). We then conclude that f(Y,) — f(Y) from point 3. of
the Portmanteau lemma (reciprocal sense).[]

1.3 Slutsky’s lemma

Theorem 3. Let ¢ be vector of R¥ and (Y,)),, and (Z,), be two sequences of random vectors
taking values in R*.

1. We have Y,, % ¢ if and only if Y,, — c.
2. If Y, =Y and ||V, — Z,|| > 0, then Z, — Y.

3. IfY, =Y and Z, 5 ¢, then (Y, Z,) — (Y, ¢).

Note. Point 3. of the previous theorem is often called Slutsky’s lemma. An example
of application is the estimation of an unknown parameter in the expression of a weakly
converging sequence. For instance, let X;,..., X, be i.i.d. with E(X;) =m and Var (X;) =
o? € (0,00). Set X, = 13"  X;. From the central limit theorem, we have ‘/77‘ (X, —m) =
N(0,1). Let 62 = L5 (X — Yn)z. We know that 6 % o2 (an even a.s. from the strong

T n
law of large numbers). From Slutsky’s lemma and the continuous mapping theorem, we get

yn (X,, —m) < N(0,1). One can then deduce a confidence interval of a given asymptotic

o
level for the mean of the distribution when the variance is unknown.

Proof

1. Note first that the convergence in probability always entails the convergence in dis-
tribution. Suppose then that Y,, < c¢. For any ¢ > 0, we get from point 3. of the
Portmanteau lemma,

@P(Yn ¢ B(c,e)) <P(c¢ Bc,e)) =0.

14



This shows that Y, & c.

2. Let f:RF — R be a Lipschitz and bounded mapping, with Lipschitz constant L > 0.
Set || flloo = sup,egrs | f(2)]- For any 6 > 0, we have

E[f(Yn) = f(Z0)]]

IN

20 FlloolP (IYn = Znll > 0) + sup [f(z) = f(y)]

ly—=l<é

< S oB (Y~ Zull > 8) + LS

We get lim,, |E [f(Y;) — f(Z,)]| < Ld. Since 6 > 0 can be arbitrarily small, the result
follows from the point 2. of the Portmanteau lemma.

3. We use the previous point since (Y, ¢) < (Y, ¢) (it can be checked using the general
definition of convergence in distribution) and ||(Y;, Z,) — (Ya,¢)|| = 0.

1.4 Stochastic o and O

Definition 1. The sequence (Y,,), is said to be bounded in probability if for any € > 0, there
exists M > 0 such that sup,cny P (||Ya] > M) < e. We then note Y,, = Op(1).

Notes

1. If there exists a constant L > 0 such that ||Y,|| < L a.s. (bounded sequence), then
Y, = Op(1).

2. If Y, =Y for any n, then Y,, = Op(1).

3. Y, = Op(1) if and only if for all € > 0, there exists M > 0 such that lim,, P (||Y, || > M) <
€.

The following result is sometimes used to show convergence in distribution.
Theorem 4 (Prokorov). 1. IfY, — Y, then Y, = Op(1).

2. If Y, = Op(1) then there exists a subsequence (Ynj)j converging n distribution.

Proof

1. Let € > 0 and M > 0 such that P (|[Y[| > M) < € (note that limy .. P ([|Y]| > M) =
0). Using the point 3. of the Portmanteau lemma, we have lim, P (||Y,]| > M) <
P(Y] = M) <e

2. The second point is much more difficult to get. See for instance Van der Vaart (2000),
pp. 8 — 9 or Billingsley (2013), Theorem 5.1.

15



Notation. The convergence in probability Y, 2 0 is also denoted by Y;, = op(1). Of course
Y, = 0]}»(1) =Y, = O]p(l)

Rules of calculus. One can show that the following rules are valid. op(1)+op(1) = op(1),
O (1) + Op(1) = Op(1), 0p(1)Op(1) = 0p(1), (14 0p(1))"" = Op(1).

Comparison of random sequences. For a sequence (R,), of real-valued random vari-
ables, we say that Y,, = op(R,,) if Y, = R, Z,, with Z,, = op(1) and Y,, = Op(R,,) it Y,, = R, Z,
with Z, = Op(1). We obtain the following new rules of calculus op(R,) = R,op(1),
Op(Rn) = RnOp(l) and op (O]]D(l)) = Op(l).

Lemma 2. Let R : R¥ — R be a measurable mapping such that R(0) = 0 and Y, = op(1)
taking values in R*. For any p > 0,

1. if R(h) = o(||h]|P) when h — 0 then R(Y,) = op (||Ya|P),

2. if R(h) = O (||h||P) when h — 0 then R(Y,) = Op (||Y,||P).

Proof. Let g : R* — R be the mapping defined by ¢(0) = 0 and g(h) = R(h)/||h|]? if
h # 0. Note that under the assumption of point 1., ¢ is continuous at 0. The equality
R(Y,) = ||Yal|Pg(Y,) is valid in both cases.

1. The continuous mapping theorem ensures that g(Y;,) = op(1) if Y,, = op(1).
2. In the second case, we use the bound
P(lg(Yo)| > M) <P ([[Yall > K) + P ([[Yall < K, [g(Ya)] > M).

By the assumption on R, one can take K small enough and M large enough such that
the second probability is equal to 0. Then lim,, P (|g(Y,,)| > M) < lim, P (||Y,| > K) =
0 which shows that ¢(Y,,) = Op(1).00

1.5 d—method

Let O be an open subset of R*.

Theorem 5. Let ¢ : O — R™ be a differentiable mapping at point 0 € O and T,, : 2 — O a
random vector such that r, (T, — 0) — T with r, — co. Then

7 (9(T) — ¢(0)) — J¢(9) T

( ) 1<i<m*
1<j<k

where J,(0) = (gfj 0
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Proof. Using a Taylor expansion at order 1, we have
¢(0 + h) = ¢(0) + Js(0)h + o ([|A]]) -

Since 7,(T,, — 0) = Op(1), we get T,, — 0 = iOp(l) = op(1) and T, 5 6. From the previous
lemma, we get ¢(T),) = ¢(0) + J4(0) - (T, — 0) + op (|| T, — 0]|). We then get

T (P(T0) = 6(0)) = Jo(0)rn(Tn = 0) + 7ol T — 6] 0p(1).
Since 1, [|T,, — 0|| = Op(1) (from our assumptions), we obtain
o (P(T0) = #(0)) = Js(0)rn (T — 6) + 0p(1)

and the result follows from the continuous mapping theorem and Slutsky’s lemma.[]

Example. Consider
G _ lZ(XZ-—Yn)Q _ %ng_yi — X2, - X
i=1 i=1

Set p; = EX} for any positive integer i. Suppose that p; = 0, set 02 = puy — p? = py and
d(z,y) =y — 2% Then Jy(z,y) = (—2x,1). Setting T,, = (7,“?”), we have

Vi (T, — (0, 113)) = No ((0’0)’ (Zi mlﬁﬂg)) '

We deduce that
\/5(52—02) <—>N(0,u4—ug).
If 111 # 0, one can replace u; by E[(X; — p1)?] to get a similar result.

Note. If the first derivative of ¢ vanishes, it is still possible to study a higher-order Taylor
expansion to get the asymptotic distribution of ¢(7},). For instance, using a Taylor expansion
of order 2, one can show that if E(X;) =0 and E (X?) = 1,

—2n (cos (X,,) — 1) = x*(1).
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Chapter 2

Examples of convergence of estimators

2.1 M-estimators

An M —estimator 0, is a minimizer of a random function 0 — M, () that can be computed
using realizations of n random variables or random vectors X1, ..., X,,. More precisely,

~

0, = arg rggg M,(0),

where © is the set of possible parameters. In this paragraph, we will only consider finite-
dimensional parameter spaces, i.e. © C R? for some d > 1. Extension to more general metric
spaces is possible. For simplicity, we will always assume that an infimum or a minimizer of a
random function is measurable. A more thorough discussion of measurability problems has
been given in the introduction chapter.

In this section, we denote by || - || an arbitrary norm on R of R¥. B(z,¢) will denote the
corresponding open ball of center = and radius ¢, i.e. B(z,e) = {y € R?: |ly — z|| < €}.

2.1.1 Consistency of M —estimators

The first result is very simple to state and already ensures weak consistency of a sequence
of M-estimators (i.e. convergence in probability to the minimizer of a limit criterion).

Theorem 6. Assume that there exists a non random mapping M : © — R such that
1. supgee | M, (0) — M(0)| = op(1).
2. For all € > 0, supgee.|g—g, > M (0) > M(6p).

Then 0, 2 0y (weak consistency).

Note. The first assumption of this theorem is an assumption of uniform convergence which
is often used for studying consistency of M-estimators. The second assumption is an assump-
tion of "good" separation of M (6y) = inface M ().
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Proof. Let ¢ > 0. From our second assumption, there exists 7 > 0 such that |6 — 6y >
e = M(0) — M(6y) > n. Moreover we have M, (én) < M, (6p) and
M (6,) =M (0) = M (8.) =My, (0) 4y (6) =M (6)+ Mo (80)~ M(8) < 25up| M, (6) — M(9)].
=)
We then get
P (10— 0]l > ¢) <P (M (0,) > M(B) +n) <P (2 sup M, (6) — M(9)] > n) .
=)
We conclude using the first assumption.[]

a.s.

Note. If the first assumption of the previous theorem is replaced by supycg | M, (0) — M (0)] =
0, then we have strong consistency, i.e. 6, ©3 ;. This a consequence of the inclusion

{||én — G| > e} c {2325 |M,,(0) — M(8)] > n} .

Details are omitted.

We now are interested in checking the uniform convergence property in the special case
where M, (0) = 157" my(X;) when © is compact. The following result is an example of

T n

uniform law of large numbers.

Lemma 3. Suppose that © is compact, X1, ..., X, i.i.d., 0 — mg(z) continuous for Px, —almost
all © and E [supyeg [me(X1)|] < co. Then supyeg | M, (6) — M(0)] =3 0.

Proof. For 6 > 0 and = € R, set
wa(x) = sup {|mgsn(x) —me(z)| : 0,0+ h €O, |h] <A}.

wa(z) is the modulus of continuity of 6 — my(z) at point x. Using the dominated conver-
gence, we have lima o E [wa(x)] = 0. Since O is compact, one can find 6;,...,0, € © such
that © C U_, B (0;,A). Let 6 € B (6;,A) for some i = 1,...,¢. Then

M (0) — M,y (0)] < %Z wa(X:) 23 E [wa(X1)] as.

using the law of large numbers. We get
[ M (0) = M(0)] < |Mn(0) — M ()] + | My (0;) — M(0;)| + [M(0;) — M(6;)|

< %Zm(m T max | M, (6:) — M(6:)] + E [wa (X1)].

1<i<e

Using the law of large numbers (note that the maximum in the right-hand side only depends
on a finite number of points), we then get

lim | M,,(6) — M(0)| < 2E [wa(X,)] a.s.
We conclude by letting A — 0.0J
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Note. In the compact case, strong consistency can be reduced to a deterministic problem:
the convergence of a sequence of minimizers when we have uniform convergence of the ob-
jective functions. Let f, : © — R be a continuous mapping defined on a compact set ©
and such that ||, — flle := supgee | fo(8) — f(8)] "= 0. Suppose that f(6y) < f(6) for all
0 # 6y. Then the uniform convergence ensures that f is continuous and the compactness as-
sumption guarantees that 6, = argming f,,(¢), n > 1, has a subsequence (6, ),>1 converging
to some point 68* € ©. Moreover,

Fin 05,) = F O < [fi, = Fllo+1f (6,) — £ (67)] "5 0.

Since fy, (04,) < fs.(60), by letting n — oo, f(6*) < f(6p). We deduce that 8* = ). One
can deduce that lim,_,. 6, = 6y (a sequence in a compact set converges if and only if it has
a unique cluster point).

The previous discussion leads to the following result.
Theorem 7. Let X,..., X, be i.i.d. random vectors. Suppose that
1. © s compact,

2. for Px, —almost all x, the mapping 6 — my(x) is continuous on © and E [supgeg |me(X1)|] <
007

3. 0+— M(0) is minimized only in 0.

Then én 2% 0,.

Note. The second assumption ensures the continuity of the mapping 6 — M () (using the
theorem of continuity under the sign integral).

2.1.2 Application to maximum likelihood estimators (MLE)

When Px, = pg, - pt, the maximum likelihood estimator can be seen as a M-estimator cor-

responding to my(z) = —log %. Note that the division by py, is considered only for
0

theoretical reasons, in practice 6 — —logpg(x) is used. The aim of this part is to give a
sufficient (and necessary) for the third assumption needed for applying Theorem 7.

We first introduce an important quantity for measuring the closeness of two probability
measures P = p- p and (Q = ¢ - p. The Kullback-Leibler divergence is between P and Q) is
defined by

K(P.Q)= [ ploglp/a)duit u({a=0.p >0} =0,

p>0
otherwise we set K (P, Q) = oo.
Lemma 4. We have K(P,Q) > dy(P,Q)? = [ (/b — va)" dp.

21



Proof. We assume that p({g=0,p > 0}) = 0 otherwise K (P, Q) = oo and the result is
obvious. We first note that

/p>0p(10g(p/q)) dp = /p>0q <§ log g) dp < oo.

Indeed the negative part of x — xlog(z) is bounded. If fp>0p (log Ta’) dp = oo, one can
+

deduce that K(P,Q) > dy(P,Q)* Otherwise, using the inequality log(z) < 2 (y/z — 1) for
all z > 0, we get

/ plog Zdy = —/ plog Ldu
p>0 q p>0 p

> —2/>0p(\/ﬁ—1)du

= —2/\/p_qdu—0—2
= dy(P,Q)%0

Notes. From the previous lemma, one can notice that K > 0 and K (P, Q) = 0 if and only
if p = q. However K is not symmetric and does not satisfy the triangular inequality. K is
then not a distance. However, dy is a distance called Hellinger distance. From the previous
lemma, a small divergence entails proximity between the two probability measures. We
defer the reader to Tsybakov (2004) for some additional properties of the Kullback-Leibler
divergence as well as some comparisons with other metrics between probability measures.

Proposition 2. Suppose that for any 6 € O, pu({ps =0}) = 0 and for any 0 # 6y,
w({pe # poy}) > 0. Then M has a unique minimizer at point .

Proof. Observe that M(0) = E [my(X,)] = K (Py,, Py) and from the previous lemma, we
have M(60) > 0 = M(6y) and M(0) = 0 = M(6y) implies dy(Pp, Pp,) = 0 which in turn
implies that pyg = pp, p—almost everywhere.l]

Note. Proposition 2 with Theorem 7 can be used to prove consistency of MLE when
the state space is compact. Note that the assumptions of Proposition 2, which guaranty
identification of the parameter, are quite weak. Additionally to the existence of a common
support for all the densities, it is simply necessary to assume that two different parameters
do not lead to the same probability density (up to some set of null measure for ).

2.1.3 A more general result in the c—compact case

It is possible to relax the compactness assumption which is crucial in Theorem 7.
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Theorem 8. Suppose that © = Ukzoék where Oy, is a compact subset of R and ©), C Opy.
Suppose furthermore that the following conditions are satisfied.

1. The mappings M,, and M are a.s. continuous on ©.
2. 0y is the unique minimizer of M.

8. For any k € N, lim,,_,o supycg, |M,(0) — M(0)] =0 a.s.

4. There erists 0, = arg mingee M, (0) such that for all w € Q, there exists a compact
K = K(w) such that 0,(w) € K for alln > 1.

Then 6, %3 0o.

Proof. We start by noticing that any compact subset K of © is automatically included in
a compact set O for some integer k. If not, one can always find a sequence (xy)x in K such
that xp ¢ ©. But there then exists a cluster point x of the sequence in K and since = € ég
for some integer ¢, one can conclude that z; € ég C Oy for large k' which is a contradiction.

Now, let w € Q and K(w) compact such that 6,(w) € K(w) for all n > 1. Since
K(w) C Oy, for some integer k(w) and 6, € O; for another integer j, we use the uniform
convergence of 6 — M, (0),, to M on the set Omax(j,k(w)) as well as the deterministic argument
presented before the statement of Theorem 7 to conclude.[]

The example of geometric median Let © = RY for d > 2 and X,,..., X, i.i.d. and
taking values in ©. Suppose that E||X;| < co where || - || denotes the Euclidean norm. Let
us define

~

1 n
= in M, M, =— X; —0|.
b = argmin M, (0), M,(6) = — Zl 1X: =0
It is easy to check the inequalities | M, (0) — M, (0")| < ||0—0'|| and |[M(0) — M (0")| < ||0—0'].
Moreover, the uniform convergence of M, is valid on any compact subset of ©.

Next one can note that an argmin 0,, always exists because limg|— M, (0) = oc. For a
given 0, € ©, any argmin satisfies the inequalities

. 1 — . 1 — 2 —
10, — o] < 52 | X — Ol + HZ [ X — 0. < EZ [ X — 04| = 2E[| X1 — 0. < oc.
=1 =1 =1

This shows the condition 4. of Theorem 8 and conditions 1. and 3. are also satisfied.
It remains to check condition 2. A median, i.e. 6y = argmingee M (6), always exists. This
is a consequence of the continuity of M and

argmin M (0) = arg  min
0€0 0:10[| <2E[| X1 |

To show uniqueness of 6y, we will assume that the support of the measure Py, is not included
in a line D, i.e. P(X; € ©\ D) > 0. If #; and 0y are two medians, let D be the line joining
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these two distinct points. Let A € (0,1). If ¢ D, we have ||z — (1 — \)f; — N0 <
(1 = N)||z — 01| + A||Jz — 65]| and the inequality is large if x € D. We conclude that

M (1 =X)0, + Mby) < (1 —N)M(01) + AM(6,) = M(6,),

which contradicts the definition of #;. Then condition 2. of Theorem 8 is also satisfied.

2.1.4 Z-estimators

We call §,, a Z-estimator if Z, (én> = 0 or more generally Z, (én> = op(1), where

n

Z,(0) = %Zzg(Xi), 0 co.

i=1

This estimator is meaningful when the target 6y € © satisfies E [z, (X1)] = 0.

Examples

1. When zy(x) = myg(x) (notation for the gradient of 6 — my(z)), a Z-estimator is an
example of M-estimator since we simply want to vanish the gradient of the objective
function M, for finding 0,, = arg mingeg M, ().

2. It can happen that Z,, is not the derivative of a differentiable mapping. For instance, if
zp = sign (x — 0) where sign(u) = 1,~0 — Lu<o, 0, is called the median. Alternatively,
a median can be defined from the M-estimator such that mg(z) = |r — 6|. Both
estimators enjoy similar properties.

3. We next give a Z-estimator based on the idea of instrumental variable in Econometrics.

Suppose that
Yi=001+ 002X, + 6032 +¢;, 1<1<n,

where ¢; is independent from (X;, Z;) and E(g;) = E(Z;) = 0. But only (X;,Y) is
observed. For instance, Y; can represent the income of an individual, X; the number
of years of education and Z; the qualities of the individual. If X; and Z; are not
independent, E(Y;|X;) # 61 + 62X, and the least-squares method does not apply.
The idea is to find an "instrument" uncorrelated with (Z;,¢;), for instance the salary
of the parents. We then get the two following equalities

E(Y;) =601 + 602E(X;), EY;W;) = 00, E(W;) + 00 E(X;W;).

We then set
2o(y, x,w) = (y — 0 — by, y — 61w — Oraw) .

If the covariance between W7 and X is different from 0, the determinant of the matrix

(E(é‘ﬁ) EI(EI/(V)l()l(}l)) is different form 0 and one can identify 6.
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We next give a result analogue to Theorem 6 for Z-estimators. The proof is similar and
then omitted. Theorem 7 can be also stated for Z-estimators.

Theorem 9. Suppose that
1. supgee [ Zn(0) — Z(0)]] = op(1),
2. For all € > 0, infgco.jg—ao|>e | Z(0)]| > [|Z(00)]] = 0.

Then any sequence of Z-estimators is weakly consistent.

2.1.5 Asymptotic normality for M-estimation

In this subsection, we consider M, (0) = 1> my(X;). For x € R*, the gradient vector

and the Hessian matrix of the mapping 6 — my(z) at point 6 will be denoted by rg(x) and
my(x) respectively.
Theorem 10. We suppose that the following assumptions hold true.

1. © is a compact subset of R? and 6, € o.

2. The point 6 is the unique minimizer of the mapping 0 — E [my(X1)] and supgee |ma(X1)|
15 integrable.

3. For all z, 0 — my(x) is two times continuously differentiable and there exists a neigh-
borhood Vg, of 0y such that supyce |7, (X1)||is integrable.

4. g, (X1) is square integrable and Wy, := E [y, (X1)] is invertible.

Then A
Vi (6= 00) = Na (0,05, Vi, Wy, 1)

where Vg, = E [rig, (X1)ring, (X1)7].

Note. Observe that the assumptions of Theorem 10 guaranty that E [rhg,(X1)] is the gra-
dient at point 6y of the mapping 6 — E [me(X;)] and then Vy, = E [rig, (X1)ri9,(X1)7].

Proof of Theorem 10 The assumptions of Theorem 10 contain that of Theorem 8. Then
6, %3 0,.
The idea is to make a Taylor expansion of the following form
0~ M, (en) — M, (6) + M, (60) - (én - 90) + 0 (1/v/n)
= Mn(eo) + Wgo . (én — 90) —|— op (1/\/5) .
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From the central limit theorem, we have /nM,, (6y) < Ny (0, Vg, ). We will then deduce that

Jn (én - 90) — — W, '/, (6) + os(1) (2.1)

and the result will follow from Slutsky’s lemma. To prove (2.1), we start by noticing that
for P—almost all w, there exists ng(w) such that for n > ng(w), M, (én(w)> = 0 because

lim,, o 9n(w) = 0y and én(w) € Oif n is large enough.
We deduce that M, (én) = op (1/4/n) (and even op(r,) for any r,, — 0).
The Taylor-Lagrange formula at order 1 gives for 1 <14 < d,

oM, /- oM, O2M, [~ .

n — n n 'L) . o ‘
00, <6n> 00, (6) + Z 96:00, <9n ) <9n,J 90J)
for some 57(12) € [0y, én] Using vectors, we conclude that

. ~ . ~ 2 n ~Z
M, <9n) — M,(6y) + S, (en - 00) S, = (% (@9)) o (2.2)

From the third assumption, which guarantees a uniform law of large numbers on Vj, and the
almost sure convergence of 6,,, one can easily show that S, = Wy, + op(1). Now (2.1) can be
obtained from (2.2) and the invertibility of Wy, if we show that

Jn (é - 90) = Op(1). (2.3)

To show (2.3), we start by noticing that there exist 7,¢ > 0 such that if H is a matrix of
size d x d such that |[H| < n then || (Wy, + H)™'|| < ¢. We then get

P (Vb = ol > M) < P(ISw = Wanll > n) + P (1S, = Waol < 0. v/alld — 6ol > M)
= DPin T DP2n-

We already know that lim,,_,o p1,, = 0. Moreover,
pon <P (Hsn — W, || < 1, v/7l|S, (én - 90) | > M/c) <P (\/ﬁuMn(eo) +op(1/y/n)| > M/c) .

But /n||M,(6y) + op(1/1/n)|| = Op(1) and then SUp,,>1 P2, can be made arbitrarily small if
M is large enough. This shows (2.3) and completes the proof.O]

We mention without proof another result for asymptotic normality that does require
0 — my(x) to be differentiable in a neighborhood of 6y but transfers this smoothness to its
expectation M. Contrarily to the previous one, this result can be applied to the median,
i.e. mp(z) = |x — 0|. See https://perso.univ-rennesl.fr/bernard.delyon/param.pdf,
Theorem 15, p. 45.
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Theorem 11. Suppose that the following assumptions hold true.
1. © is a compact of R? and 6, € o.

2. There exists a measurable mapping N : R*¥ — R, such that |mg(x) — me(z)] <
N(x)||0 — || with E[N(X1)?] < oc.

3. 01— my(X) is a.s. differentiable at point Oy and g, (X1) is square integrable.
4. The mapping M 1is two times continuously differentiable with 0y as unique minimizer.

Then,
NG (én _ 90) < N, (o, N (86)™E [1igy (X1 )14, (X1)"] M(eo)*l) .

2.1.6 Maximum likelihood estimators

Here my(x) = —logpg(x). Under the assumptions of Theorem 10 or Theorem 11, we have
the weak convergence

NS (én _ 90) SN (o, NI (8o)™"E [1ig, (X1 )rng, (X1)7] M(eo)-1> .

The quantity

s . T _ | Poo(X1)pe, (X1)"
I (90) =K [mgo(Xl)m90<X1) ] =E |: 0 peo(Xol)2
is called Fisher information (at point 6p).

Lemma 5. Suppose that pe,(X1)/pe,(X1) is square integrable. If there exists a neighborhood
Vo, of Oy such that the mapping 0 — pe(z) is two times continuously differentiable on V,
(u—almost everywhere) and fsupgevgo || oo (2)||p2(dz) < o0, then

p.@o (Xl) + peo (X1>p90 (Xl)T

1(00) =E [mQO(Xl)] =k _pGO(Xl) p@o(Xl)2

Proof. To show the result, it is sufficient to prove that
ﬁeo(Xl)] / .
E|l——=| = x)pu(dr) = 0. 2.4
|:p90(X1) p90( )ILL( ) ( )

To this end, we apply the theorem of derivation under the sign integral. For the first integra-
bility assumption, we know that E [||pg, (X1)|l/pe,(X1)] = [ ||Pe, (2)]|pe(dx) < 00. Moreover

Sup [[Po(@) | < poo ()11 + sup 7, (2)I] X [Vaol

€Ve, €Vo,

where |V, | denotes the diameter of V,,. We then get fsupgevgo |po(x)p(dx) < co. Finally,
the theorem of derivation applies to 6 — [ pg(z)pu(dz) =1 and (2.4) is valid.OI
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Note. If én,MLE denotes the MLE, under appropriate conditions, we get
\/ﬁ (én,MLE — 60) — Nd (0, ](90)_1) .

It is possible to show that I(6y) ™" is the smallest asymptotic variance among the M-estimators
for which the assumptions of Theorem 10 are valid (in fact, optimality of the MLE holds
true under more general assumptions but this is outside the scope of this course). We first
introduce a non-total order relation on the set of symmetric non-negative definite matrices
of size d x d,

A=< B e 2TAxr < 2Bz, zeR%L

Note first that under our regularity assumptions
/ vivg, ()pon (@)u(dz) = 0, 6.
Taking the derivative with respect to 0, € O in the previous equality
[ i@l w)atde) + [ s, )i, ) ) = 0.

From this identity, if 2,y € R, we get
. X )T
oTR [ig,(X1)]y = —E {me ()Pl ]
[ 90( 1)]y 9(( 1) peo(X1) Yy

Tpeo (Xl)peo (Xl)Ty
Poo(X1)? ’

where we applied the Cauchy-Schwarz inequality. Setting x = We_olz and y = I(6y) 'z for
some z € RY, we get

< \/E [T g, (X1)me,(X1)Tx] - E [y

I(0) 12 < \/ZTWHEIVG)OWG_OIZ X \/2T1(0g)" 12

and then
2T I(00) 2 < 2TWy TV, Wy 2
In particular for any z € R¢, the asymptotic variance of the linear combination zTém MLE 18

smaller than 276, where 0, is another M —estimator. This justifies the asympotic optimality
property of the MLE under suitable regularity conditions.

2.1.7 Model selection. Akaike information criterion

Usually, for M-estimators, we have several natural submodels that we want to select. For
instance, in the case of a regression model with p predictors available, the true model could
write as
Y, = Z 0o; X i +ei, 1<i<mn,
JEMo
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where M, is a subset of {1,...,p}. In this case, we may want to select the good subset of
predictors M. In the general case of M-estimators, we have a finite collection of models M
and we have a finite number of estimators émM = arg mingeg ,, M,(#) where © o, denotes the
parameter space corresponding to a submodel M. Set 6y o = argmingee, ,, M(#) and M,
such that 0y g, = argminag M (6 (). Note that in the case of nested models, i.e. My C M,
o,m can be identified to 0y ¢, and this vector will be simply denoted by 0.

A first idea to estimate Mg would be to minimize M — M, (én,M> but unfortunately
the selected model M is generally much larger than M, (overfitting problem). It could be
then more interesting to minimize M — M (énM) but M is unknown.

In the rest of the discussion, suppose that M D M and for simplicity write 0,, instead
of 0,, p. We remind that under some assumptions, if M D M,

\/ﬁ <én — (90) — ./\[|M| (07 W@E}M%o,MWG_O}M) ’

where | M| denotes the number of free parameters in model M. Under some regularity
conditions, we have

M (én) —  M(6) + M(6) (én . 90) + % (én - eo)T Woont (én - 90) + op(1/n)
— M(6) + % (én — 90>T W (én - 90) +op(1/n),
M, (en) = M, (00) + My (60) (én - 90) v % (én . eo)T Waont (én — 90) +op(1/n),

Mo(6o) = M, (en) — W, (60) (én - 90) +o0p (1/v/n) .

We then get
M, (0,) = M, (00) - % (6= 00) Waaa (6= 00) + on(1/m)
and finally
M (8.) =7 = My (0,) + (82— 00) Wagaa (9 — 00) +02(1/) (2.5)

with 7,, = M(6y) — M,,(6y) not depending on M D M,. Since
argrrjl\}[nM <9n,M> = argmin {M <9n,/\/l) — Tn} ,

A~ A

we see from (2.5) that M, <9n7M> under estimate M <9n,M> —7,. In AIC criterion, we replace

~ T ~
the correcting term <9n - 90> Woo. M <9n - 90) by its expectation and we let n — oco. Using
the Gaussian limiting distribution, we get

E (én - 90>T Wt (én - 90) ~ % Tr (Vi rdWioa) -
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For the MLE
Tr (Vo pWoon) = IM]-

In this case, we define
. . M o
M = arg min M, (6pr) +—— ¢ |AIC criterion].
n
In the case of a general M-estimator, it is necessary to estimate Vy, o4 and Wy, a.

2.1.8 Additional results for convex objective functions

We now consider the case of convex objective functions 6 — M, (#). In this case, asymptotic
results are easier to state.

We first start with a useful result showing that pointwise convergence of convex functions
entails uniform convergence on compact subsets. The following technical lemma is given
without proof. See Tyrrell Rockafellar (1970), Theorem 10.8.

Lemma 6. Let U be an open and convexr subset of R and (f,)nen @ sequence of convex
functions from U to R. If there exist a conver function f : U — R and a dense subset
D C U such that lim,,_,, fo(x) = f(x) for all x € D, then (fn)nen converges to f uniformly
on any compact subset of U.

Corollary 1. Suppose that all the assumptions of Lemma 6 are valid. Additionally, suppose
that f has a unique minimizer x* € U. Then if n is large enough, f, is lower-bounded,
reaches its minimal value and the sequence of argmin converges to x*.

Proof. Let ¢ > 0 such that K := B (z*,¢) C U, where B (z*,¢) = {z € U : ||z — 2*|| < €}.
From Lemma 6, we have 7, := sup,cx |fu(z) — f(2)] "= 0. We remind that a convex
function defined on an open subset of R? is always continuous. Since the boundary of K,
0K, is compact (as a closed subset of K compact), we have § := inf,cox (f(z) — f(z*)) > 0.
This is due to the fact that f(z) > f(«*) for any 2 € K and to the continuity of f. We are
now going to show that infy f, = infx f, is n is large enough. Since K is compact and f,
continuous, we will have infy f, is reached at a point z,, € K. Let y € U \ K. There exists
A € (0,1) such that z = Az* + (1 — \)y € OK. Then the following inequalities hold true.

ful@®) S f(@7) + 10 < f@) + 10— 0 < ful@) + 20 — 0 S Aful2”) + (1= M) fuly) + 2r — 0.

If n is large enough, 2r, — ¢ < 0 and then the previous inequalities yield to f,(z*) < f.(y).
We conclude that infy f, = infx f,, = fu(z,) for some z,, € K and ||z, — 2*|| < € if nis
large enough.[]

We now go back to the problem of consistency of M-estimators.

Theorem 12. Let © be an open and conver of RY. Suppose that the three following assump-
tions hold true.
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1. The sequence (M,,), is a sequence of convex random functions converging point by point
on a dense subset of © to a deterministic convex function M a.s. (resp. in probability).

~

2. There exists a sequence (9n> of near-argmin of (M,),>1, in the sense that 6, —
n>1 -

infg M, "=5° 0 a.s. (resp. in probability).
3. 0y is the unique minimizer of M.

Then 0, converges a.s. (resp. in probability) to 6.

Notes

1. If the sequence of convex functions (M, ),>1 converges pointwise to function M : © —
R, then M is automatically convex. This is true in the deteministic case and then auto-
matic for a.s. convergence. For the convergence in probability, use the a.s. convergence
along a subsequence to conclude the convexity of the limit.

2. The existence of a near-argmin can be useful in some examples when © is unbounded.
See below for the logistic regression.

Proof of Theorem 12. The almost sure convergence is a consequence of Corollary 1. In
particular, taking an arbitrary dense subset D of ©, it can be shown that for P—almost all
w e Q, for all § € D, lim,,_,o, M,,(0),, = M(0).

For the convergence in probability, we remind that Z, - Z if and only if for any subse-
quence of (Z,),, there exists a subsubsequence converging to Z a.s. (remind that convergence
in probability entails almost sure convergence of a subsequence). Let M, = Mg a subse-

quence of M, and (s;);>1 dense in ©. We have M,(s;) = M(s;) for all j > 1. Let £ be a
positive integer. There then exists an integer n, such that for all 1 < j </,

P (‘Mw(sj) - M(sj)} >1/0) <27

One can assume that ny, < ny. ;. We deduce that for all e > 0 and j > 1,
ZIP’ (| My, (s) = M(s5)| > €) < 0.
=1

From the Borel-Cantelli lemma, we have for any j > 1, M,,(s;) =3 M(s;) a.s. Since the
set of point of a.s. convergence is numerable, one can deduce that for P—almost all w € €2,
lim,, 00 Mw(sj)w = M(s;) for any j > 1. We then deduce form Corollary 1 that é¢(n£) 22 0,.
This concludes the proof.[]
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Examples

1. The geometric median. Let , = arg mingee L3 IXi — 0], © =R Here M, and
M are convex. We recover the convergence of 0, to 0o obtained in the previous section,
provided that 6 is the unique argmin of § — M (0) = E (|| X1 — 0]]).

2. Logistic regression. Let (X;,Y;) € R? x {0,1}, 1 < i < n, some i.i.d. pairs of random
variables such that P (Y; = 1|X; = z) = F (276)) with F(z) = (1 + exp(—z))~'. Here
© = R One can include an intercept term in the linear combination X7y, (i.e. the
first component of X, is equal to 1). Let

Goy(00) = P (Y; = 11X, = 2) = F (a760)" (1~ F (2765))" """

We set
my(Y;, Xi) = —log gx, v; (0) = —Y;X] 0 + log (1 + exp(X/0)) .

The corresponding M-estimator corresponds to the conditional MLE because it is based
on the maximization of the logarithm of the conditional density of (Y1,...,Y,) given
(X1,...,Xn). Note that

. _ zazTexp(z”0)

mG(yal') - 1+ eXp(:CTQ) :

We deduce that M, (6) is a positive semi-definite matrix. Hence the convexity of M,,.
To show that M is well defined, we only have to check integrability of my (Y7, X1). This
is satisfied as soon as E (|| X1||) < oo.

We now check under which condition 6, is the unique argmin of M. To this end, one
can check that

M(0) — M(0y) / KL (B(F(0"2), F(07x))) dPx, (),

where KL (B (F(07z), F(03z))) denotes the Kullback-Leibler divergence between the
Bernoulli distributions with respective parameters F/(67x) and F (0% z). Hence we get
M(0) > M(6y) and the equality only holds if F(6Tx) = F(6%x) for Py, —almost all
x. Since F is one-to-one, we get M(0) = M(6,) if and only if 67X, = 01 X; a.s. We
conclude that 6y is the unique minimizer of M if and only if the components of X are
linearly independent.

The most difficult problem is to check the second assumption of Theorem 12. Existence
of the MLE does not hold when data coming from Y; = 1 and Y; = 0 are separated
by an hyperplane of RY. See Albert and Anderson (1984) for a precise statement.
However, for a fixed w, Corollary 1 ensures that 6 — M, (6),, has a minimizer 6, (w) if
n is large enough. A sequence of near-argmin then exists.

We now consider asymptotic normality of minimizers of convex criteria. We first consider
a simple result which is not difficult to prove. A much more general result will be given
without proof at the end of the subsection. The results below is formulated for M, (0) =
> me(X;), without the 1/n normalization.

32



Theorem 13. Let M, be a conver random mapping defined on R? with 0, as near-argmain.
Suppose that for any z € R,

1
My, (00 + 2/v/n) = M(00) = 52"V 4 Uz 4 B 4 1a(2),

with V' symmetric, positive definite, non random and r,(z) = op(1), U, = Op(1).
Then
~ 1
Vvn (6’n - 90> = argmin {§ZTVZ + U2+ En} + op(1)
z€R

= VU, + op(1).
Moreover if U, — U then \/n <§n — 90> — —V~1U.

Proof of Theorem 13 Let

— 1
Dy(2) = My, (60 + z/v/n) — M,(6), Dn(z) = 5vaz + U2+ E,.
The mapping D,, (resp. D,) is convex and has a minimizer \/n (én - 00) (resp. Z, =

—V~1U,). The mapping z +— D,(z) — Uz — E, is also convex and converges pointwise to
2+ 2TV 7 in probability. From Lemma 6 and a subsequence argument, one can deduce that
the convergence is uniform on compact sets. As a consequence, r, = D,, — D,, converges in
probability to 0, uniformly on compact sets. More precisely, for any compact subset K of

Rda SUP.ex |Tn(z)| = O]P’(]')'

In what follows, we set K,, = B (Z,,¢), R, =sup,c, |Dn(z) — 5n(z)| and

A, = inf,cok, {En(z) - D, (Zn)}, where 0K, denotes the boundary of K,. Observe
that K, is a random compact subset of R? because the center of the ball is a random
variable. Note also that A,, > 0 a.s. The proof will be based on the following lemma.

Lemma 7. Let w € Q. If A, (w) > 2R, (w) and D,(y), < inf, D,(2), + Ap(w) — 2R, (w),
then y € K,(w).

Proof of Lemma 7 Ify ¢ K,(w), there exists € 0K,,(w) such that x = A\Z,(w)+(1—\)y
for some A € (0,1). We then get the following upper-bounds.
Dy, (Zn(w)) D, (Zn(w)),, + Ru(w)
D, (1) + Rp(w) — Ay (w)
Dp(x), + 2R, (w) — Ay (w)
AD,, (Zn(w)), + (1 = AN)Dp(y)w + 2R, (w) — Ap(w).

Using our assumptions, we then get

2R, (w) — Ay (w)
1—A

w

VAN VAN VAN VAN

D, (Zn(w))w < Dn(y>w +

< Do(y)u + 2Rp(w) — An(w) < Dy (Za(w))

w "

This yields to a contradiction.[]
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End of the proof of Theorem 13. From Lemma 7, we get the following inclusion
A=A, > an}m{Dn (\/ﬁ (én - 90)> <inf Dy, + A, — 2Rn} c {H\/ﬁ(én —00) — Za| < g} .

[t is enough to prove that lim,, ., P(A4,) = 1; this will prove that /n (én — 9()) —Zn = op(1)

and the conclusion of the theorem will follow from Slutsky’s lemma. Now let » € R? such
that [|h]| = . We have

1
D, (Z,+h)—D,(Z,) = 5hTVh.

We conclude that

1

1
A, = inf =hTVh = §A,g2,

Ih]|=e 2

where A_ > 0 is the smallest eigenvalue of V. Next for x > 0, we have
P(R, > k) <P(|Z,|| > M) +P(||Z.]| £ M,R,, > K) := ap + B

Since Z,, = Op(1), one can choose M large enough so that sup,,»; «, is arbitrarily small. For
such a M,

By <P sup |Dy(2) — Dy(2)| >k "0,
= <Mte
We conclude that R,, = op(1) and then P (A, < 2R,) "Z8° 0. Finally, since NLD (én — 90>is

a near argmin of D,

P (Dn (\/ﬁ (én _ 90>) > inf D, + A, — 2Rn> ncall)

n—o0

and we automatically get P(AS) "= 0, which concludes the proof..]

Examples

1. Theorem 13 applies to logistic regression. It is simply necessary to make a Taylor ex-
pansion at order 2. If E||X;]|? < oo and the coordinates of X; are linearly independent
random variables, one can set V = E [my,(X;)] and U, = \/iﬁ Sor gy (X;).

2. Let us apply the result to the median in the univariate case, i.e. my(x) = |z — 0|.
We assume here that Xi,..., X, are i.i.d. with a density f which is continuous and
positive at point 0y := inf {x € R : F(z) > 1/2}, where F'is the cumulative distribution
function corresponding to f. In this case 6y = argmingeg E[|X; — 6]] is the unique
minimizer and satisfies P(X; < 6y) =P (X > 6y) = 1/2. See http://www.stat.yale.
edu/~pollard/Papers/convex.pdf for additional results and examples. We have

Moo 1() — Mgy () = D(x)t + R(z, 1),
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with D(z) = 1,<p, — 126, and

o 2(t + 90 — I)190<$§90+t if ¢ > O,
R(ZL’,t) o { 2(y —t— Q0)190+t<y§90 ift<0

Of course R(z,0) = 0. We then get

M, (00 + z/v/n) — M,(6o) = % Z D(X;)z + ZE [R(X;, 2/v/n)]

+ Y {R(Xiz/vn) ~E[R(Xi,z/V)] }.

One can show that E [R(X;,t)] = f(60)t*+o(t?) and E [R(X;, 1)?] = ]t[* f(60) + o(|t[?).
This shows that r,(z) = Y. {R(X;, 2/v/n) — E[R(X;, 2/+/n)]} satisfies E[r,(2)?] =
o(1) and then 7,(z) = op(1) for any z € R. Moreover

ZE [R(X, 2/v/n)] = f(6)2" + o(1).

An application of Theorem 13 yields to v/n (én - 90> — N (0, m)

Finally, let us mention a more general result showing that minimizers of convex random
functions always converge in distribution provided that the finite-dimensional distributions
converges to that of a random convex function possessing a unique minimizer. The proof of
the following theorem, which can be found under a more general framework in Kato (2009),
is based on a representation theorem which allows to derive convergence in distribution from
a.s. convergence. See http://www.stat.yale.edu/"pollard/Books/Iowa/Iowa-notes.
pdf, Theorem (9.4) for a statement of the representation theorem.

Theorem 14. Suppose that z — ¢,(z) are random convez functions defined on R? such that

Z, = argmin,cra ¢,(2) and z — goo(2) is another random convex function with a unique
argmin Zeo. Then if for any =1, ...,z € R?,

(gn(z1), -5 gn(2k)) = (9(21), -, 9(2))
we have Z, — Zso.
Typically, one can apply Theorem 14 to some criterion of type g,(z) = M,, (6o + z/\/n) —
M, (6y), but it is now not required to get a quadratic expansion as formulated in the state-

ment of Theorem 13. We will apply this result in the next section.
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2.2 An example of penalized regression method. LASSO
type estimators

In this section, we consider a regression model of the form

Yi=al0g+e, 1<i<n,

with 1,...,¢&, i.i.d. with E(g;) = 0 and E(¢?) = 0% < oco. We consider a non-random
design here, i.e. x1,...,x, are deterministic. For some v > 1, we set
n ) d
én:ar min L,(6), L,(0)= Y —270)" + )\, 0,
i a0 1= 3 0147 £ 0,3 o)

where )\, > 0 is a hyperparameter selected by the user.
One can show that finding solutions of this penalized regression problem is equivalent to
minimize 6 — Y7 (Y; — xiTH)Q under the constraint ||f|, < R,, with a one-to-one corre-

1/y
spondence between A, and R,. Here [|0], = <Z;.l:1 |9j|'7> . The most popular choices are

v =1 (LASSO regression) and v = 2 (ridge regression) and are useful respectively if many
components of the true 6y vanish or when the covariates are collinear.

We will investigate the asymptotic properties of penalized regression estimators when d
is fixed and n — oo. Fu and Knight (2000) investigated these properties also for the case
v € (0,1), though the arguments are no more based on convexity. We will use following
assumption.

— 00

A1 There exists a positive-definite matrix C' such that C, := = 3" | z;al cayel

A2 We have max;<;<, H\%” = o(1).

Note. When the design is a realization of X7, ..., X, i.i.d., A1-A2 are satisfied if E [|| X;||?] <
oo and E (XleT ) is positive definite (or equivalently the coordinates of X; are linearly in-
dependent). Indeed A1 is a consequence of the law of large numbers. Moreover

X2 | X 1P 0 x < s N | X1 x> 1
n - n n
M? 1<
< 4= X1y w1 ns
= + n ; || j|| 1X511>M

From the law of large numbers, we then get lim,, >, HXZHQ < E [||X1]]*1x,)>n] which goes
to 0 as M — oo. In such a case, working with a deterministic design is equivalent to work
with the conditional distribution of (Y7,...,Y,) given X; = zy,..., X,, = x,. The advantage
of working with a non-random design is the level of generality, since the sequence (x;);>; is
not required to be the realization of a sequence of i.i.d. random variables.

For consistency, we have the following result.
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Theorem 15. Suppose that Assumptions A1-A2 hold true. If A\,/n — Xg, then én N
arg mingega L(6) with

L(6) = (6 —60)" C (6 —60) + Xo > _16;]".

j=1
In particular, when A\g =0 (i.e. A\, = o(n)), then argmingcga M(6) = 6,.
We then conclude that A\, = o(n) is a necessary and sufficient condition to ensure con-

sistency of the penalized regression estimator.

Proof of Theorem 15. The convex mapping L, /n converges pointwise in probability to
L + 0. Moreover L is strictly convex and limyg_ L(0) = oo (since C' is positive definite),
then it has a unique minimizer. The result is then a consequence of Theorem 12. Note that
a minimizer of L, always exists because limg|_oc Ln() = 00. O

For the asymptotic normality, we have the following result.

n—o0

Theorem 16. Suppose that Assumptions A1-A2 holds true and that \,/\/n = Ao > 0.

1. If v > 1, then

R A
vn (9n - 90) — Ng <—C1%7(82'9”(90,9‘)|90,j|71)1§j§d7 0201) :

2. Ify=1,yn (én — 90> — arg min,cga V' (z) where

d
Vi(z) = =2"W + 27Cz + )\ Z {zsign(0o, 16, 20 + 2| Lee, =0 }

7=1
and W follows the distribution Ny (0,0%C).

Note. The asymptotic distribution of the ordinary least-squares estimator (i.e. with A\, =
0) is Ny (0,02C~1). Indeed, we have

-1
. . 1 n ) 1 n 1 n
0, = arg ggﬁ{% - El (Y; — XiTH) = (ﬁ El a:leT> - El r;Y;

1=

and »
- 1O 1 <
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As stated in the beginning of the proof of Theorem 16, we have
1 n
— Z Ti€i — Nd (0, O'QC)
v i=1

and from A1 and Slutsky’s lemma, we deduce that \/n (én - 90> — Ny (0,02C~1). This is

also the asymptotic distribution for penalized regression estimators when Ao = 0. However,
the case \g > 0 is interesting for getting additional properties. Let us consider the case
v = 1. One can show that when d — r coefficients vanish for the true model, then the
asymptotic distribution of the penalized regression estimator put a positive mass to 0 for the
corresponding coordinates. Set S = 6,. Without loss of generality, assume that 8,,; =--- =
Ba=0and §; # 0 for 1 <i < r (otherwise one can always index the variables accordingly).
Set also ' = (Oiﬂj)lgi,jgr’ F= (O@j)rﬂgigd,lg]’gw 8(6) = (sign(ﬁj))lgjgr, W1 and 21 the first
r components of W and z and W, 25 their last d —r components. One can show that z with
29 = 0 is a solution for minimizing V' if and only if the inequalities —%]l < Fz —Wy < ’\2—011
hold true component by component, 1 being the vector of R? with all coordinates equal to
1, and z; = B! (W1 — Afs(ﬁ)) This clearly happens with a positive probability. A more
interesting property would be to show that the LASSO estimator recovers asymptotically
the zero coefficients. Under some conditions, this property is true for a fixed p but also in a
high-dimensional framework when p grows with n. See Zhao and Yu (2006).

Proof of Theorem 16. We have

L, (90 + z/\/ﬁ) — Lo(6) = 2'Cpz— 2 Z i) 2
i=1

Vn &=
+ A {9j+— —|em}.
=1 v

Moreover, 21'C,,z = 27Cz+o0p(1) and \/lﬁ S e — Na(0,40%C). For the second assertion,
note that we have a sum of independent but not identically distributed random variables but

one can use the central limit theorem given by Theorem 30 in Chapter 4. Indeed, setting
2
Yo = wigi//n, we have S0 Var (V,,,) = 37 wal "5V := ¢2C. Moreover, the second

n
assumption of Theorem 30 is satisfied, since ||Y,,;|| < c¢nlei] with ¢, = maxi<;<,, ||z:]|/v/n

and for € > 0,

n 1 n
D EIYailP Ly e < =D 2l E [ 5ere,]
=1

i=1
with goes to 0 as n — oo, using A1-A2 and the square integrability of ¢;.

1. Suppose first that v > 1. We have

)\nZ{

Jj=1

’y d
— ‘60’]"7} ni>>oo "Y)\[) Z zj\eo,j]'yflsign(e()’j).

j=1

Oy + —
0,5 \/ﬁ
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The result then follows from Theorem 13, with V' = 2C and
9 n d
Un = _ﬁ Z €;x; + ’Y)\() Z zj]907j|7_lsign(90,j).
i=1 1

j=

2. Suppose next that v = 1. We have

The assumptions of Theorem 13 are satisfied only when Ay = 0 and we obtain a
N (0,02C™1) asymptotic distribution. If Ay > 0, one can use Theorem 14 with g,,(z) =
Ly, (6o + z/+/n)— Ly (6). Note that V is strictly convex and lim, | V() = 0o; there
then exists a unique minimizer.[]

d
ya n—o0 .
0o.; + %‘ - |90,j|} = Xo E {2isign(00,3) Lo, 20 + |2l Loy, =0} -

=1

2.3 Kernel density estimation

In this section, we go back to the problem of kernel density estimation. Let us assume
that X1,..., X, are i.i.d. random vectors, taking values in R* and for which Py, = f - \;
where ), is the Lebesgue measure on R* and f € F where F is a subset of the set of
probability densities on R¥. When F = {p, : € © C R?}, we face to a parametric problem
and maximum likelihood estimation as in the previous section can be studied. However,
when we do not want to assume that F is a parametric family of probability densities, kernel
density estimation is one of the classical method to estimate the unknown density f. Let
K : R¥ — R, be a probability density and set K, (u) = h™*K(u/h). As discussed in Chapter
0, one can define a natural estimator called kernel density estimator (KDE),

R 1<
=—-Y Kyr—X,), zeRF
) = 5 3Kl =X,

There is a tuning parameter h to choose for computing the estimator. The additional pa-
rameter, the kernel K, plays a more minor rule in KDE convergence, only a few regularity
properties are required for this kernel to compute the convergence rate of fh to f. The
optimal choice of h will depend on n, i.e. h = h,, with lim,,_,, h,, = 0 but the convergence
to 0 should be not too fast. To get a better intuition about the properties of KDE, let us
assume that & =1 and K (u)31_11(u). In this case

1 n
2oy it Lo n<Xi<ath

Tnlz) = 2

We then simply count the proportion of observations in the interval [x — h,x + h], which
estimates the probability P (x — h < X; < x 4 h) and divide this proportion by the length of
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the interval. Intuitively this should converge to f(z) if f is continuous at point z. However,
if h,, \( 0 to fast with n, the KDE will exhibit too much variability. In contrast if h, is
too large, the KDE will be too flat. There is then a tradeoff for the choice of this tuning
parameter. Figure 2.1 illustrates this problem when K is the Gaussian kernel, i.e. K(u) =

L exp <_ﬁ)
Vor 2 )

0.35
0.35

0.20
0.20

0.05
0.05

Figure 2.1: KDE (in red) for n = 100 standard Gaussian observations with A = 0.1 (left)
and h =1 (right)

2.3.1 Upper-bound for the integrated mean square error

The integrated mean squared error (MSE) is defined by

SE (1) = [ (o)~ f@) do.

Rk

Setting By (z) = Efu(x) — f(x), the bias of the estimator at point z, we have the usual
bias/variance decomposition

IMSE (f) :/

Rk

By, (z)*dx + /

Rk

Var (fh(aj)) dx.

Let us assume that every probability density f in F is two times continuously differentiable
and let us compute the bias Bj(x) = Efy,(x) — f(z). Using a Taylor expansion at order 2,
we have

Bu(z) = [ Kulx—y)f(y)dy — f(z)

Rk

= K(u) (f(x — hu) — f(x)) du

Rk

— /Rk K (u) {—th(:B)u + h? /01(1 — "' V? f(z — thu)udt| du.
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In what follows, we denote by || - || the Euclidean norm on R*. For a square matrix M of
size k x k, we also denote by |[M]|| the corresponding operator norm of M, i.e. ||M]| =
sup| <1 |Mx|| (it coincides with the square of the spectral radius of the matrix M*M).
From the Cauchy-Schwarz inequality, we have u” Mu < ||ul|?||[M|| for every vector u of R
Assuming that [, uK(u)du = 0 (it is the case when the kernel K is symmetric), the first
term vanishes and applying the Cauchy-Schwarz inequality, we get

| Bn(x <h4/ / K (u)]|ul] dux// (1 — 2K () ||ul2|V2f ( — thu) |[2dudt.

We then get
R4 2
/ |Bh<x>|2dxs—( / ||u||2K<u>du) [ v s
Rk 3 Rk’ Rk

Moreover, for the variance part, we have

/Rk Var (fh($)> de = %/Rk Var (Kj(z — X)) dz

< %/ E (Ky(z — X1)?) da

1
= W/Rk y K(u)?f(z — hu)dudz

Jer K2 (w)du

nhk

We then get the following result.

Theorem 17. Suppose that [ is twice continuously differentiable on R* with [o, [|V? f(x)|[*dz <
00. Suppose furthermore that [o, uK(u)du = 0, [ [[ul]?K(u)du < oo and [4, K?*(u)du <
oo. There then exists a constant Ck y > 0 such that

1
< 4y
IMSE (f) < Ck.f (h + nhk)

Notes

1. If we optimize the upper-bound in h > 0, we find that h, ~ n” T gives the best
rate of convergence. In this case, the convergence rate of fh is ni (considering the
square root of the IMSE). One can note that the rate of convergence is slower than
the standard /n—rate obtained in parametric estimation. However the space F of
probability densities is of infinite dimension here and free of any parametric assumption
that can be quite misleading in practice.
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2. Suppose that F); denotes the subset of probability densities f : R¥ — R two-times
continuously differentiable with [, [|V?f(x)|[dz < M. Then it can be shown that

there exists a positive real number C); such that for any density estimator f of f,

inf IE/Rk <f(x) —f(x))zdx > Chyn” T

Je€Fm
This shows that KDE are rate optimal.

3. See Van der Vaart (2000), Section 24.2 and Section 24.3 for a proof of the previous
lower bound as well as an improvement of the convergence rate when f can be assumed
to be m—times continuously differentiable with m > 2.

4. In practice h has to be selected from the sample, otherwise we only know that the
optimal choice is of the form h = Cn~ 7% with an unknown constant C' > 0. There exist
many "data-driven" procedures for bandwidth selection. One of the most popular is
cross-validation. See in particular Hall (1983) and Stone (1984) for asymptotic results.
Other selection methods are possible. See Goldenshluger and Lepski (2011) for an
approach based on an estimation of the bias of KDE. A discussion about bandwidth
selection methods is outside the scope of this course.
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Chapter 3

An mtroduction to empirical process
theory

This chapter is a short and partial introduction to empirical process theory. Most of the ele-
ments are taken from Van der Vaart (2000), Chapter 19. More complete references are Vaart
and Wellner (2023) or Dudley (2014). The lecture notes available at http://www.stat.
columbia.edu/“bodhi/Talks/Emp-Proc-Lecture-Notes.pdf are accessible and provide a
list of interesting applications. In particular, Section 3.4.2 is taken from these notes.

3.1 Uniform weak convergence of random functions

Let X1,..., X, be some i.i.d. random vectors taking valued in R* and with common prob-
ability distribution P. Let P, be the empirical measure associated to a sample Xq,..., X,
taking values in R¥, i.e. P, = 13" 6, For a measurable mapping f : R* — R, set
P,f = 237", f(X;) and Pf = E[f(X;)]. If F denotes a set of measurable functions
f:RF — R (called a class of functions in what follows), {P, f : f € F} is called an empirical
process.

In this chapter, our aim will be two-fold.

1. First we are interested in the almost sure converge of sup;cx [P, f — Pf| to 0. When
this convergence occurs, we will say that that the class F is P—Glivenko-Cantelli. It
is clear that if F contains a finite number of elements, then it is P—Glivenko-Cantelli
as soon as P|f| < oo for all f € F. This is a simple consequence of the strong law of
large numbers. In Chapter 2, we have seen that the class {fy : 0 € ©} is P-Glivenko-
Cantelli as soon as © is a compact subset of R? with 6 — fy(z) continuous on ©
for all z € R* and x — supyce | fo(x)| is P—integrable. When f(z) = 1,<, setting
Fo(t) = 23"  1x,< and F(t) = P((—o0,t]), it is also widely known that

lim sup |F,(¢) — F(t)| =0 a.s.

showing the class of half-line intervals is P—Glivenko Cantelli for any P. In this
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chapter, we will derive more general conditions to get uniform convergence from a
measure of complexity of the class F.

. We will also study the weak convergence of the random element
{G,f :=/n(Pof —Pf): f € F} as an element of ¢ (F). Here £ (F) denotes the
set of mappings g : F + R such that ||g||7 := sup;c# |g(f)| < co. This will ensure
that for every continuous and bounded function h : (> (F) — R,

Tim E[h(G,)] = E[h(G) (3.1)

for a random element G taking values in > (F). For example, using a suitable function
h (e.g. h =h(||g|7) with & : R — R continuous and bounded), this convergence will
ensure the weak convergence of |G, || to ||G||#. Such a convergence will be interesting
for non-parametric testing for instance.

When fi,..., f, € F are such that Pf? < oo for 1 < i < ¢, the multivariate central
limit theorem ensures that

(anh s aanf) — M (07 E) )
where the covariance matrix of the limiting Gaussian vector is defined by

¥(i,7) = Cov (fi(X1), f;(X1)) .

Then a good candidate for G is a Gaussian process, i.e. a process {Gf : f € F} for
which any finite-dimensional marginal vector (Gfi,...,Gf,) is a Gaussian vector, with
mean 0 and covariance matrix (Pf;f; —Pf; - Pfj)1<i,j<g- But this finite-dimensional
convergence property only ensures (3.1) for some specific functions h, i.e. h(G,) =
9 (Gpfi,...,G,fy) for a continuous and bounded function g : R® — R. When F is not
numerable, this is not sufficient to ensure convergence (3.1) for an arbitrary continuous
and bounded function h.

To get an intuition on why convergence for finite-dimensional distributions is not suf-
ficient for convergence in a uniform sense, let us consider the following elementary
example. Consider ¢*([0, 1]) and the Dirac masses ¢,, where x,, : [0,1] — R is defined
by z,(1/n) =1and z,(t) =0if t € [0,1] \ {1/n}. Then d,, convergences weakly to Jy
for finite-dimensional distributions but since ||,||jp,;) = 1, one cannot expect conver-
gence to 0 for the uniform topology. The same problem holds in empirical processes
theory.

When G,, converges in distribution to G, we will say the class F is P—Donsker.

3.1.1 Outer probabilities and expectations

There are often some problems of measurability of G,, taken as a random element in (> (F).
For instance, take the simple example of the indicator functions F = {]l(,ooﬂ 't e R} and
consider Q =R, X;(w) = w and

{PlfifEF}:{]IXlStitER}.
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Here (> (F) can be identified to £*° (R). Let S be a subset of R which is not a Borel set and
G = UgesBs, where

5= {o € 5(®) ssuplof) ~ 1.s.] < 172

u€eR

Then G is an open set and then a Borel subset of /*°(R). However
{we: 1, €eG}=5

because sup,cg |Lu<u — Ls<u| = Ls20. Then Py is not measurable as an element of (> (F).
To circumvent measurability problems, we will consider an extension of the weak conver-
gence notion using outer probability measures. This extension is presented to get a rigorous
presentation of the results, it can be skipped for a first reading.
Let (€2, A,P) be a probability space, (G, d) a metric space (for example G = (> (F) and
d(g,q) =g —dl7), X : Q= G arandom element and f : G — R a mapping, we define

E*[f(X)] =inf {E(U) : U : Q — R measurable ,U > f(X),E(U) exists } .

The terminology E(U) exists means E (U, ) < oo or E (U_) < oo where U, = max(U, 0) and
U_ = max(—U,0). We also have the following definition of an outer probability of a subset
B C Q,

P*(B) =inf{P(A): Ac A, B C A}.

One can show that P*(X € C) = E* [1xec| for a subset C' of G. See Vaart and Wellner
(2023), chapter 1.2 for the main properties of outer probabilities and expectations. There
also exists a notion of inner probability of a subset B C (2,

P.(B) =sup{P(A): A€ A A C B}.

The notions of convergence are now as follows. The limit X :  — G will be always
assumed to be measurable in what follows.

Definition 2. Let X,, : QQ — G, n > 1, be a sequence of random elements and X : Q — G a
measurable mapping.

1. We say that (X,,), converges in probability to X if for every e > 0, lim,,_,o, P* (d (X, X) > €) =
0.

2. We say that (X,,), converges weakly to X if for every continuous and bounded mapping
h:G— R, lim, . E*[h(X,)] = E[h(X)].
3. We say that (X,,), converges a.s. to X if d(X,,X) < A, with A, measurable and

lim,, soo A, =0 a.s.

We then extend Portmanteau lemma in an arbitrary metric space using outer probabili-
ties. The proof is very similar to the lemma proved in the first chapter of the course and is
omitted.
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Lemma 8. Let X,, : Q — G, n > 1, be a sequence of random elements and X : Q — G a
measurable mapping. The following statements are equivalent.

1.

2.

For every continuous and bounded mapping h : G — R, lim,_, E* [h(X,,)] = E [h(X)].
For every Lipschitz and bounded mapping h : G — R, lim,,_,o E* [A(X,,)] = E [h(X)].

For every open subset O of G, liminf P, (X, € G) > P (X € G).

. For every closed subset F' of G, limsupP* (X,, € F) <P(X € F).

For every Borel subset B of G such that P(X € 6B) = 0, lim, ., P* (X, € B) =
P(X € B).

Analogues of Slutsky’s lemma and the continuous mapping theorem follow similarly. In
the rest of the chapter, you can forgot the P* of P, notations and consider that
they are simply equal to P (even if it is not true in theory).

3.1.2 A criterion for convergence in distribution

Since convergence of finite-dimensional distributions is not sufficient for convergence in dis-
tribution in the space (> (F), we introduce an additional condition which guarantees this
weak convergence. In the next result T denotes an arbitrary set.

Theorem 18. A sequence Z,, : Q0 — (>°(T') converges weakly to a tight measurable random
element Z : Q2 — (°°(T) if the two following conditions are satisfied.

1.

2.

Forty,....tx €T, (Zu(t1), ..., Zn(tr)) converges in distribution in R*.

For every e,n > 0, there exist a partition T1,..., Ty of T such that

n—00 1<j<k s,teTy

lim sup P* (max sup |Z,(t) — Zn(s)| > e> <.

Notes

. The notion of tight random element will be defined in the Appendix section 3.5.

. The second assumption 2. in Theorem 18 plays the rule of an asymptotic equicontinuity

condition. It means that one can always find a suitable partition of the index set 7" in
such a way that the maximal increment of Z,, in the elements of this partition can be
arbitrary small in probability.

. The proof of Theorem 18 requires additional notions that are discussed in Section 3.5.
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3.2 Bracketing numbers, entropy and uniform limit the-
orems

Let Xi,..., X, be some i.i.d. random vectors taking values in R*. We denote by P their
common probability distribution. For any real number r > 1, we denote by L,.(P) the set of
measurable mapping f : R¥ — R such that [ |f|"dP < oc.

We first introduce the entropy with bracketing which is useful to measure the complexity
of a class of measurable functions F. For two measurable functions u and v from R* to
R such that v < v, the set of all functions f : R* — R such that u < f < v is called
a bracket and is denoted by [u,v]. For ¢ > 0, an e—bracket [u,v] in L,(P) is a bracket
such that P(v—wu)" < €". The bracketing number Ny (¢, F, L,(P)) is the minimal number of
e—brackets needed to cover F. Of course, the bracketing number increases when ¢ decreases.
Note the the functions u and v need not to be elements of F (but they have to be in L,.(P)).
The entropy with bracketing is defined as the logarithm of the bracketing number.

The next result guarantees that a finite entropy implies uniform convergence.

Theorem 19. Suppose that Ny (e, F, L1 (P)) < oo for all ¢ > 0. Then F is P—Glivenko-
Cantelli.

Note. Of course if Njj (e, F,L,(P)) < oo for some r > 1, then Nj (e, F, L(P)) < o0.

Proof of Theorem 19. Let ¢ > 0 and [uy, vg], 1 < ¢ < k, some e—brackets covering F.
This means that F C U}_,[us, v/ and P(v, —ug) < e. Set g1, = maxj<p<y |Prug — Puy| and
Go.n = maxi<¢<i |Prve — Pvy|. For f € [ug, vy, we have the following inequalities.

—&— g1 < Pyuy — Pug + Pug — Pvy <P, f — Pf <P,v, — Pvg+ Pvg — Puy < goy + €.

This yields to

sup |]Pnf - Pfl S max (gl,rng,n) + €.
fer

We then get
lim, sup |P,f — Pf| <e.
feF

This concludes the proof.[]

We now turn out to a result which guarantees a uniform central limit theorem. Finiteness
of the entropy is not sufficient for this. We require the root of the entropy to be integrable
for r = 2. We then define

5
Jy (0, F, Lo(P)) = / \/Iog Nj (e, F, Ly(P))de.
0
Note that finiteness of Jj (9, F, Ly(P)) for a particular value of ¢ entails finiteness of
Jy (0", F, Ly(P)) for any ¢’ > 0. In this case, the entropy is always finite for » = 2 and then
for r = 1; the class F is P—Glivenko-Cantelli.
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The following theorem is proved in Section 3.5. It is based on the criterion for weak
convergence in (> (F), Theorem 4 and on a control of the expectation of ||G,||#, given in
Lemma 10.

Theorem 20 (Donsker). Suppose that Jy (1, F, Ly(P)) < co. Then F is P—Donsker.

Note. There also exists another standard notion of entropy, the entropy based on uni-
form covering numbers, which leads to interesting Glivenko-Cantelli or Donsker classes. See
Van der Vaart (2000), Chapter 19 with an introduction to the specific case of VC classes of
functions, widely encountered in empirical processes theory are which are defined through
combinatorial properties. We will note discuss this alternative entropy notion in this course.

3.2.1 A few examples

Parametric classes. We revisit the example F = {fy: 0 € ©} where © is a compact
subset of R%, 6 +— fy(z) is continuous over O for all x and F := supy.g | f4| is integrable with
respect to P.

Let 0* € © and Bs be an open ball with center #* and radius 0. Set u° = infycp, f5 and

v? = supy. B; Jo- From the dominated convergence theorem, we get

lim P (Ué — u(s) =P (lim <U6 — u‘s)) =0.
SN0 SN0
There then exists § = § (6*,¢) such that P (v° —u’) <e. If © C UYL, B(6;,6(6;,¢)), then
F CUb, [ufi,vfi} and Nj (e, F,Li(P)) < oco. However, we have no control on the size of
the bracketing numbers.

Suppose now that there exists a measurable function m : R¥ — R such that Pm < oo
and

|for () = for ()] < mn()]|01 — b2

If © C Uy_ B (6p,¢), let uy = fp, — em and vy, = fp, + em. For § € B (0y,¢), note that f €
[ug, v¢] and the brackets cover F. Moreover, P(vy—ug) < 2e Pm. Then Ny (2ePm, F, L1(P)) <
k. To get the minimal value of k, we will suppose that || - || corresponds to the infinite norm.
If it is not the case, there always exists L > 0 s.t. |- || < L|| - || and replacing m by Lm, our
assumptions are satisfied for the infinite norm. For the infinite norm, if diam(©) denotes the
diameter of © and ¢ < diam (©), the number of open balls of radius € covering F is bounded
by 2 (diam (0)/¢)? and one can obtain a covering of © with centers in © if we multiply the
radius by 2. We then get the bound

Ny (2¢Pm, F, Ly(P)) < K (diam (8)/¢)",

where the constant K only depends on d and ©. Then F is P—Glivenko-Cantelli. A similar
analysis can be conducted with brackets in Lo(P), as soon as Pm? and Pf? are finite for
6 € ©. The bracketing numbers are still bounded by ¢, up to a constant and F is also a
P—Donsker class.
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Distribution function. Let F = {]l(_oo,t] (e ]R}. Here

sup |P,f — Pf| = sup|F,(t) — F(t)].
fer teR

Let us introduce the brackets []1(_00,“_1], ]1(_()0@.)] with —o0o =ty < t; < --+ < t;, = 0o chosen

such that F(t;) — F(t;-1) < efor 1 <i < k. For s € R, we set F'(s™) = lim, », F'(x). To

this end, one can use the generalized inverse of the cumulative distribution function,

Fl't)=inf{z eR: F(z) >t}, te(0,1)

and set t; = F~!(ig)(g). Indeed, we have the inequalities F' (F~1(t)) > sand F (F~'(t7)) <t
for any ¢ € (0,1). We have

Ny (e, F, Li(P)) < [1/e] +1 <2/
and F is P—Glivenko-Cantelli. Since

F (}ﬂ(_“’ti) B ]1(_00@—1”2) =F(t;) - F(ti) <e= Ve

we get Npj (e, F, La(P)) < 4/e* and F is also P—Donsker. To summarize these important
results, we give them as a corollary.

Corollary 2. We have sup,cg [F,(t) — F(t)] “3 0. Moreover \/n(F, — F), as a random
element in (> (F), converges in distribution to a zero mean Gaussian process Gp with co-
variance EGp(s)Gp(t) = F (min(s,t)) — F(s)F(t) for s,t € R.

When P is the uniform distribution over [0, 1], we have EGp(s)Gp(t) = min(s, t) — st for
0 < s,t < 1. The corresponding Gaussian process has the same probability distribution as
the Gaussian process {U; := By —tB; : 0 <t < 1}, where {B; : t > 0} is a Gaussian process
called Brownian motion, that is a centered Gaussian process with covariance EB,B, =
min(s,t), s,t > 0. The process {U; : 0 <t < 1} is called Brownian bridge. For a general
distribution function F', one can check that G has the same probability distribution as the
process {Up(t) 0<t< 1} which is called F—Brownian bridge.

A "bigger" class of functions. Donsker classes can be obtained as soon as the entropy
log Njj (g, F, Ly(P)) can be bounded by Ce=?™ with some § > 0. The previous classes
of functions were small, because the entropy was of order log(1/¢). Consider the class of
Lipschitz functions F = {f : [0,1] — [0,1] : |f(x) — f(y)| < |x — y|}. Let ¢ > 0 and a; = ie,
for i € Z. Setting A; = (a;_1,a;]N[0,1] for 1 <i < k where k is the first integer greater than
1/e, we consider some functions of the form u = Zle ag, 14, where ¢; € Z fori=1,... k.
Let f € F and set s; the integer part of f(a;_1)/e. If z € A;, we have

E(Si — 1) S f(ai_l) — & S f(ZE) S f(ai_l) +e S 5(81‘ + 2)

Moreover, the Lipschitz properties of f guaranty that s; —2 < 5,11 < s5;+2. We deduce that
£ is an element of a bracket [u,v] with u = 3¢ ap 14, and v = 35 | ap 4514, with £y, €
{l; —2,0; —1,0;,0; + 1,¢; +2}. The number of such brackets, which have size controlled
by 3e for the infinite norm, is smaller the %51/5 (up to a constant). This is smaller that

exp (C'/e) for a suitable C' > 0. This class is then P— Donsker for any P.
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Additional examples can be found in Vaart and Wellner (2023) and Van der Vaart
(2000), Chapter 19.

3.3 Maximal inequalities

In this section, our aim is to control the expectation E*||G,|. We start with a useful
exponential inequality.

Proposition 3 (Bernstein inequality). Let Yi,...,Y,, be some i.i.d. random variables, cen-
tered and bounded by M. Set v =T (Y}?) and S, = > | Y;. For any x > 0, we have

P (S, > z) < exp (—W) .

Proof. For any A > 0, we get from the Markov inequality,
P(S,>z) < ¢ ME (e’\S”) = []E (eAYl)}n
Using our notations, we will use the following bound. For any integer k£ > 2,
E (Y{) < vM*2

Now let A < M~!. Using the Taylor expansion of the exponential function and the fact that
E(X;) = 0, we deduce the following upper-bounds.

E (™) - ZQ—TE )

Using the inequality (1 + z)" < exp(nz), we get

2
IP(San)Se_’\x(l—i— VA )< ’\”W

1—-AM

We next minimize the mapping

nu?
A=A _
/ T oa—an
The derivative vanishes at points
1 1
A =— |1&
= M 2ma

20



Only the root A_ is smaller than 1/M. Moreover, using the inequality /1 +x < 1+ %x for
x>0, we get

~ 1 1
A< A=—|1—-
- [ 14 M=

nv

Taking A = X instead of A_, we get exp (f()\)) = 7» which ends the proof.[]

=z
2(nv+Mz

For the deviation of the empirical process, we deduce the following result. For a measur-
able mapping ¢ : R¥ — R, we denote by ||g||s the infinite norm of g.

Corollary 3. Let f be a bounded measurable function. We have for any x > 0,

FIGns] 2 x) < 2exp (_2(Pf2 +2x\|fHoo/\/ﬁ)) '

Proof of Corollary 3. Use the bounds

and apply the Bernstein inequality to Y; = MT;P!’ for ¢ = £f which is bounded by
2[| flloo/v/n.8

We next use the previous result to bound the expectation of the suprema of empirical
processes. We first consider

|Gnll7 = sup |G f]
fer
when the family F is finite, i.e. |F| < co.

Lemma 9. Let F be a finite class of measurable and bounded functions. There then exists
C > 0, not depending on F, n and P such that

maxser || flloo

vn
Proof of Lemma 9. Let f € F and set a = 4| f||w/v/n and b = 2Pf2. Define A; =
Gnf1ig,f1>b/a and By = Gy, f1 g, f|<b/a- From Corollary 3, we get for x > 0,

P([Af] > z) < P(|Gnf| > max(z,b/a))

= e (_ max(z, b/a)? )

b+ amax(x,b/a)

2 exp (—w) < 2exp (—22)

ElG. I < 0 { g (14 )+ e P o (15 71}

IN

2a a

and

x? x?
P(|Bf| > z) <P(|Gn(f)| > ) Lo<pja < 2exp (_b—i— ax) Lo<h/a < 2exp (_2_17) )
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Next setting for p = 1,2, ¢,(x) = exp(a?) — 1, we deduce that
| Ayl [Afl/4a 00
Eo¢, ( > = E/ e*dx :/ P(|Af| > 4za) e’dr < 1
4a 0 0

and similarly Egp, ('\J/BL‘> < 1. Since ¢, is convex and non-negative, we get from Jensen’s
inequality,

Ay | Ay]
b1 <Er?€a§<z) < Eg¢, (r?eax—a> <EY & (—f> < |F|.

fer

Similarly,

02 (Emax’i) < |F|.

7eF \/6b
The proof follows by applying the triangular inequality

E|G.|> < Esup|As|+Esup|By|
feF feF

A B
< 4aEsup 141 + V6bE max M
fer 4a feF 6b

and the inverse of the mapping ¢, to the previous inequalities.[]

We now consider an arbitrary class F possessing an envelope function, i.e. there exists
a function F': R¥ — R such that supcz|f(z)] < F(z) for 2 € R% Tt is possible as soon a
supser | f(x)] < oo for any = € R*.

Lemma 10. Let F be a class of measurable functions f : R¥ — R with envelope F and such
that super Pf* < 0%, Set a(0) = 6//log Ny (6, F, Lo(P)). There then exists C > 0, not
depending on F, n and P, such that

E* |Gl < C{Jy (6, F, La(P)) + ViP* Flps srags) -

Proof of Lemma 10. For technical reasons, we assume that § < 1/8. If we prove the
lemma with such a §, one can always apply the bound to the pair (6, F/«a) (for a given
a > 1) to get the bound for the pair (ad, F).

Since |G, f| < /n(P,F + PF), we have

feup G fLrs i) < 2VNPFLps frgs)-
EF

It then remains to bound p, = E*sup;c 7 |Gnf|lp< ma)- I Frn = {f]lF<fa } we have
Ny (0, F, Lo(P)) < Npj (6, F, Lo(P)). For simplicity, we Wlll identify F,, and F and assume
that all the elements of F are bounded by \/na(0).
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Next, again for technical reasons that will appear latter in the proof, we fix a positive
integer gy such that 40 < 27% < 8. This is possible because § < 1/8. We have the lower
bound

BOF LP) > 3 /2 N5, FL La(P))ds (3.2)

q>q0+3

> 5 > 279 /log N, (3.3)
q>qo+3

> ¢» 27%/logN,, (3.4)
q=490

where N, = Npj (279, F, Ly(P)) for any non-negative integer ¢ and c is a universal constant.
We have used that N, < N,i1. Now if I,; = [ug,v4:], 1 < € < N, is a covering of F
such that P(vg; — Ug)? < 2_2‘1, we set Ay = v, — ugi. Replacing I,; by F; = 1,1 and

I,i \U_\I,; for i =2,... N,. We then get a partition P, = {F,; : 1 <i < Ny} of F
for all q 2 qo-

Without loss of generality, we assume that the partitions are nested, i.e. we will assume
that P,+1 is a refinement of P, which means that for ¢ = 1,..., Nyq;, there exists j €
{1,..., Ny} such that F1), C Fyy. If it is not the case, at each stage ¢ > 0, one can
replace JF,; by all the intersections of the form JF,; N F(,_1); for all possible values of j. This
operation will give a partition of cardinal at most N Nqo -+ N, at stage ¢, instead of V.

However, we note that

ZQ‘qy/logﬁq < i?‘q zq: \/1og N, = io: V1og N,27P = 222_’)\/10ng.

4>490 q=q0 P=qo0 P=qo P>q0

We then conclude that there exists a sequence of nested partitions P, = {]—"qi 1< < Nq}7
q > qo, such that for a universal constant ¢,

Jy (6, F, La(P)) > EZ 27%/log N,, sup |f—g| <Ay, PA?]Z» < 27%, (3.5)

>q0 f:9€F g

It now remains to bound E*||G,| = by >_ ., 279/log N, up to a constant. To this end
forany ¢ > qpand 1 <i < N ¢> We consider an arbitrary element f,; € F,; and we set

7qu = fqiv Aqf == Aqi lf f c .qu'.

The principle will be to use an argument called chaining. In order to apply Lemma 9,
we will introduce the differences Dy f := 71 f — m,f for approximating f. Note that
{D,f: feF}is a finite set but [Dyy1f| < A,f and A,f is not necessarily a bounded
function. This is why we will only consider the differences D, f(z) for  in the event

Aqf = {AQOf < \/ﬁan"quf < \/ﬁaq}v
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where a, = 279/4/log N1 are chosen to get the desired upper bound from Lemma 9. We
will then get

f@) = mgf(@) = > Dofla,_ s+ f(x) = T f(x),

q>qo+1

where ¢; (z) is the first index p (possibly infinite) for which z € B, f = A,—1 f0{A,f > V/na,}.
But note that either z € Ny>4A,f and then z ¢ B, f for all ¢ > go + 1 or there exists a
unique integer p = ¢(z) such that z € B,f and x ¢ B,f for ¢ # p and = ¢ A, f for ¢ > p.
Note also that from our choice of ¢y, we have 2a(d) < a,, and then z € A, f.

This allows to write the decomposition

f =7l = Z Dgfla,. 1f+z (f = 7qf) L, s

q>qo+1 4>490

We then get

IGull7 < §2£|Gn7TQt)f|+ > iup\Ganf]lAqﬂfH > Sujg\Gn (f = 7af) Lp,y]

q>qo+1 q>qo+1

= U1+U2+U3.

e For U, we apply Lemma 9, noticing that |m, f| < v/na, and P (|7, f|?) < d by
assumption. We get

U, <C {aqo log(1+ Ng,) + 64/log(1 —|—Nq0)} .

Since § < 27972 and using the definition of aq, the right-hand side in the previous

inequality can be clearly bounded by ) > log N, up to a universal constant.

e For the second term Us, we note that |D,f| < A,—y < \/na,—1 on the set A,;f and
P(|D,f|*) < 277! by the definition of our nested partitions. Moreover there are at
most N, functions D, f and at most N,_; indicator functions 14, y. The number of

functions is then bounded here by Nq X Nq_l < Nz. Lemma 9 leads to

UQSC{Z aq110g1+N Z q+1\/10g1+N }

q>qo+1 q>qo+1

a2 1/ 108 N, up to a universal constant.

e Finally, we bound Us. Since our partitions are nested, we have |f—7,f| < A, f < A, f
which is bounded by y/na,—1 on the event B, f. Moreover P(f —m,f)* < P(A,1f)* <
2-2(a=1) and the number of functions in the supremum is at most Nz, as in the previous
case, we obtain the same bound as for Us,, which completes the proof.[]

Once again, Uy can be bounded by >
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3.4 Two applications of empirical process theory

3.4.1 Goodness-of-Fit Statistics

Let X4,..., X, beiid. random variables taking values in R. Our aim is to test if the data
are generated from a probability distribution P contained in a specific set of probability
measures. In what follows, for a function f : R — R, we denote by || f||oc := supser | f(?)] its
infinite norm.

We start with the case of a single probability measure. More precisely, our aim is to
test Hy: P = Py versus Hy: P # P, where F, is a prescribed probability measure. We
denote by Fy the cumulative distribution function (cdf) of X;. Two popular statistics are
Sy = n|F, — Folls (Kolmogorov-Smirnov) and Sy = n [ (F, — Fy)?dFy (Cramér-von
Mises).

Theorem 21. We have S1 — |G, ||o and Sy — [ G}, dFy where G, is a Gaussian process,
with mean 0 and covariance Cov(Gg,(s), G, (t)) = Fp (min(s,t)) — Fo(s)Fo(t).

Proof of Theorem 21. The two mappings z — |[|z|l and z — [ 22dFp, defined on
(>°(R) are continuous and the result follows from Corollary 2 and the continuous mapping
theorem.[]

Notes

1. Suppose that Fj is continuous. In this case, one can show that the limiting distributions
of the two statistics S7 and S, do not depend on Fy. Here are two arguments.

e We have the representation Gp = Pp where {U, : t € [0,1]} is a Brownian bridge.
In this case ||Ggy|leo = ||U||oc does not depend on Fy. It is also possible to show
that [ Upy@dFo(z) = fol U,dt. This equality is clear when Fj is continuously

differentiable (in this case x +— OFO(I) Uidt is a primitive of x — Upy ) Fi(z)), but
it can be also generalized to any continuous cdf Fj.

e One can also show directly that the distribution of S; and S do not depend on
Fy. To this end, one can use the generalized inverse of the cdf [y, i.e.

Fyl(u) =inf{z € R: Fy(z) >u}, wue€(0,1).

and the representation X; = F, ' (U;) where Uy, ..., U, are i.i.d. random variables
uniformly distributed over [0,1]. The fundamental equivalence

Fyl(u) <z u < Fy(z)

can be used. We then get F,(t) = +3" ly,<pm) and the distribution of

S1 = |Gyl or So = [ G2ZdFy are the same as for uniformly distributed ran-
dom variables. One can then simulate approximately the quantiles of S; and

25



Sy (this requires the simulations of several samples of n variables uniformly dis-
tributed, to use them to compute several realizations of S; (i = 1,2) and then the
associated empirical distribution).

2. When Fj is continuous, the limiting distributions of S} and S are respectively ||U||o
and fol Updt, where {U; : 0 < t < 1} is a Brownian bridge. The probability distributions
of these two random variables are tabulated. Additionally, it is possible to derive the
following expression.

P(|U][ec > ) —QZ 1)/ exp (—2j%2%), x> 0.

For testing Hy versus H;, we reject the null hypothesis at level a for large values of S}
(or S3) using the quantile of order 1—a« obtained either from these limiting distributions
or from the simulation procedure given in the previous point.

For adequation tests, it is often more relevant to test adequacy with respect to a family
of probability distributions Pg := {Py : 0 € ©}, for instance a parametric distribution such
as the Gaussian, Py = N (6,0,) for § = (61,0,) € R x R*. Here we suppose that © is a
subset of R%. Suppose that we want to test Hy: P € Pg vs Hi: P ¢ Pg. If we have an
estimator 6, for the true parameter 6y, under Hy, we have the following decomposition

P, — Py =P, — Py, — (P, — Py) ~ P, — Py, — P, (én _90),

where Pgo denotes the derivative of 6 — Py at point 6, (for a topology on the set of probability
measures to precise). We then observe two kinds of fluctuation, one for the empirical process
and another one coming from the estimation error. To derive the asymptotic distributions of
the previous statistics in this context, we have to study the limiting behavior of \/n (P, — P;).
The two following assumptions will be used when Hj is considered to be valid.

H1 There exists a measurable mapping v, : R — R? with [E [1)g,(X1)] = 0 and E [||1bg, (X1)]?] <
oo and such that

vn (én ) = Zweo ) +op(1).

H2 The mapping 0 — P, is differentiable at point 6y, as an application from © to ¢* (F),
where F is a class of Py, —square integrable functions and such that the assumptions
of Theorem 18 are satisfied for Z,, = (G, f);cr and T = F. We denote by Py, this
derivative. Here G, f = v/n (P.f — Pa, f).

Theorem 22. Suppose that Assumptions H1-H2 are valid and the hypothesis Hqy holds true.
Then

Vi (B = By,) < (Gry, f — Gry, i Faf )

feF
in 0> (F).
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Notes

1. Under Hy, we note that the asymptotic distribution obtained Theorem 18 depends on

the parametric model as well as on the estimator used.

. Assumption H1 is valid for MLE for instance, under the regularity assumptions dis-
cussed in the previous chapter.

. The assumption that (Z,,T)) = (G,, F) satisfies the assumptions of Theorem 18 can
be weakened in F is a Donsker class. As shown in the proof of Theorem 22, we have
to use convergence of the empirical process for the class G = F U {1y, } and it is
possible to show that the union of two Donsker classes is still Donsker. See Section
2.10.2 in Vaart and Wellner (2023). However, it is more direct to show that G still
satisfies the two assumptions of Theorem 18, provided that F also satisifies them.
When these two assumptions are satisfied for a family of square integrable functions,
it is straightforward to show that this family is a Donsker class.

. When F denotes the class of indicator functions, one can obtain convergence for the
corresponding Kolmogorov-Smirnov type statistics Sy ¢ := /n||F, — Fj||. The ex-
istence of a derivative with a uniform convergence in H2 has to be shown model by
model. Of course if Ppf = [ fppdu, the natural candidate for P@O is the mapping

f = ffp%d:u'

Proof of Theorem 22. From H2, we have

| Pogsn — Poy — BT Py || 7 = o (||R]]) -

Using H1, this yields to

V|| Py, = Poy = (00— 00)" Pagll 7 = /1|0 — 8o ll0s (1) = 0p(1).

We then get

Vi (Pa=Pp) = V(P Po) =it (P, — Pao)

- \/H(Pn - PHo) - \/ﬁ (Qn - 90>TP90 + OP(l)
= Vi (B — Pyy) = v/ilPutf, Py + o (1).

Setting G = F U {4y, } and

S0 (V7L (Pag = Ping) yeg) = Vi (B = Poy) ey = v/t Py,

the mapping ¢y, is continuous and G also satisfies the assumptions of Theorem 18 (for

the second assumption, just complete the partition of F by the singleton {1y, }).

g is

then Py, —Donsker. We then conclude using the continuous mapping theorem and Slutsky’s

lemma.]
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3.4.2 High-dimensional regression

Here we consider the problem of prediction of a random variable Y given some predictors

X = (X(l), e ,X(p"))T when p, — oo as n — oo. Then X depends on n but for simplicity,
we omit this dependence. Suppose that we have a sample {(X;,Y;) : 1 <i < n} with i.id.
random vectors distributed as (X,Y). Our aim is to study LASSO type estimators, i.e.

n

A . 1 T\ 2
O = arg min M, (6), M, (6) = — ; (Yi—X70)",
where ©,, = {6 € RP : ||0]|; := Y"1, |6;] < R, } for some values of R, > 0. We assume that

P is equivalent to Cn® at infinity for some positive a and C'.
Our aim is to consider the theoretical risk 6 — M, (0) := E [(Y — X70)?] and to find
conditions under which

M, <9n) — M (0,) = op(1), (3.6)
when 6, = argmingeo, M, (). When (3.6) is valid, we say that 0, is ©,—persistent. It
means that the theoretical risk evaluated at 6, is asymptotically closed to the optimal risk.
Theorem 23. For Z; = (Y;, X;), 1 <i <mn, set F,,(Z;) = maxi<jp<p,+1|ZjiZki — E(Z;:Zk,;)|

14\ .
satisfies M := sup, >, B [F,(Z1)?] < co. Then for R, = o (( " ) ), 0, is ©,—persistent.

logn

Note. We do not assume the existence a correctly specified linear model for this result.
In particular, the Z;’s can be any i.i.d. random vectors of dimension p, + 1 satisfying the
required moment assumptions.

Proof of Theorem 23. We have the inequalities

0 < M, (0,) M, (6.)
_ T (9n> o, (6) + M (en) — M, (0,) + M, (0,) — M, (6,)
< 2sup ‘Mn(Q) — ML(@)\
0c6,
Setting
1 & >
Xy = <ﬁ Z Zj,z‘ZM) , S =(E <ZJ:1Zk71))1§j,kz§pn+1
i=1 1<j,k<pn+1
and v = (_91), we have
Mo (0) = Ma(0)] = |77 (30 = %) ]

||En _énHooH’YH%
Hzn - anoo (1 + Rn)2 ’
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where for any matrix A, ||Al|» denotes the maximum of the absolute values of the entries of
A. Using Markov’s inequality, we get for € > 0,

P (Mn (en> ~M,(6,) > e) < PR, + 1S — Tullee > €)

2
B Vi
€

Now take F = ‘Fn — {fj}k 10 < ]’k < pn} with
fin(2) = zjz —E(Zj1 Zk1), =€ R

Let G,, be the empirical process for Z1,..., 7, and the class of function F with enveloppe
F,. From Lemma 10, we have for the choice 6* = PF?,

E [\/EHEH - inHOO]

E[|Gnl|]

C{Jy (8, F. Lo(P)) + V/nPF,1p, - jia(s) }
C {Jy (5, F, La(P)) + a(5) L PF?)

C {Ju (\/P_Fﬁ,ﬂ Lz(P)) + \/10gNn (\/P_Fﬁf, Lz(P)> \/P_Fﬁ}
< 25JH (\/P_Fz,f, LQ(P)) .

Since F, is finite, we have Njj (s, Fy,, L2(P)) < (14p,)? for any s > 0. Since sup,,», PF; < o0,
we deduce that E [||En — §n||oo] can be bounded, up to a positive constant, by v/log p,//n
which is negligible with respect to (R, + 1) The proof is now complete.[]

IAINA

IN

3.5 Appendix

3.5.1 Some complements in Topology and in measure theory

In this part, 7" denotes an arbitrary set.

Definition 3. A mapping p: T x T — R, is said to be a semimetric if
1. For every (z,y) € T x T, p(z,y) = p(y, x).
2. For everyx €T, p(z,x) = 0.

3. For every (x,y,2) € T3,
p(x,y) < plz,2) + p(z,9).

When p(z,y) = 0 = = = y, a semimetric is called a metric and (7, p) a metric space.
Otherwise, (T, p) is called a semimetric space.
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Definition 4. Let (T, p) be a semimetric space. For every (z,r) € T x [0,00), B,(z,r) =
{y €T :p(x,y) <r} is called an open ball. A space T with a semimetric p is said to be
totally bounded if for any € > 0, T can be covered by finitely many open balls of radius €. A
subset A C T s said totally bounded if for any e > 0, A can be covered by finitely many open
balls of radius €.

There are some important links between the notions of totally bounded, completeness
and compactness. If (T, p) is a metric space, than it is compact if and only if it is complete
and totally bounded. Moreover if (7, p) is a complete metric space, then A C T is totally

bounded if and only if its closure A is compact. The following space will be important in
what follows.

Definition 5. Let (T, p) a semimetric space. The space of uniformly continuous functions

f:T — R is denoted by UC(T, p). We recall that

feUC(T,p)<=1lm  sup |f(z) = f(y)| = 0.

020 (4,y)eT2:p(x,y) <5

Definition-Proposition 1. Let (T, p) be a semimetric space. We denote by (>°(T') the space
of bounded functions f : T — R equipped with the uniform norm || f||r = sup,er |f(2)|. If
(T, p) is also totally bounded, we have UC(T,p) C £>(T). Moreover the space UC(T,p),
equipped with the uniform norm, is separable and complete.

By separable, we mean that there exists a sequence (¢,)nen of elements of UC(T),p)
such that for any f € UC (T, p), inf,.>o ||f — gnllr = 0. A totally bounded metric space is
separable. The space ¢>°(T) is not separable when T' is not a finite set.

Proof Let f € UC (T,p) and fix § > 0 such that |f(z) — f(y)] < 1 when p(z,y) < 4. Fix
also x1,...,xx € T such that T C U, B,(x;,0). Then if p(z,z;) <6, |f(z) — f(z;)] < 1.
We deduce that

Iflr <1+ max [ f(z:)]

and then f € ¢>°(T).

Completeness of the space UC(T; p) follows from standard arguments already used for
proving completeness of spaces of continuous functions.

Separability will not be proved here. It follows from the Stone-Weierstrass theorem with
a proof analogue to prove separability of the space of continuous real-valued functions defined
on a compact metric space. []

Definition 6. A probability measure P on a metric space (G, d) is said to be tight if for any
€ > 0, there exists a compact subset K. of G such that P (G \ K.) < e.

The previous definition means that a tight probability measure has a mass that con-
centrates on compact subsets. If G = R* and d is a distance defined by an arbitrary
norm on (G, than every probability measure P is tight. This is a consequence of the
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compactness property of closed balls. Indeed if B4(0,7) = {y € G : d(y,0) <r}, we have
lim, o P (G \ B4(0,7)) = 0 from the lower-continuity property of the measure (alternatively
the dominated convergence theorem) and one can choose a compact subset K, = B4(0,7.)
for r. large enough. One can extend the tightness property (which is not automatic in spaces
of infinite dimensions) to more general spaces.

Proposition 4. If (G, d) is a separable and complete metric space, then every measure P is
tight.

Proof of Proposition 4 Let e > 0 and k be a positive integer. From separability, if (g;):en
is a dense subset of G and Ay ; = By (g;, 1/k), then G = U;en Ay ;. Let now ny = ng(e) be an
integer such that P (U, Ax;) > 1 —¢/2%. If K. denotes the closure of N>y U, Ay, which
is a totally bounded set, we obtain a compact subset of G. Moreover

P(G\K) <Y P(G\UkA) <) /2" =e
E>1 E>1

and the proof is complete.[]

3.5.2 Kolmogorov’s extension theorem

We will need the following important theorem about the existence of a random process
defined from a family of finite-dimensional distributions. Let £ = RY" be the set of real-
valued sequences indexed by the set of positive integers. On E, we consider the sigma-field
& generated by the cylinder set, i.e. the set C' of the form

C:{(Z‘n>n21€Ell’1eAl,...,JIkEAk}

for a positive integer k and some Borel subsets of R, Ay,..., Ax. A proof of the following
result can be found in Durrett (2019), Theorem A.3.1.

Theorem 24 (Kolmogorov’s extension theorem). Assume that for each n > 1, m, is a
probability measure on R™ and such that for Ay, ..., A, € B(R),

T (A1 X oo X Ap) = Tpp1 (A1 X - X A, X R) (3.7)

There then exists a unique probability measure ™ on (E,E) such that for every integer n > 1

and Ay, ..., A, € B(R),
W((I'k)k21EEZl'lEAl,...,[BnEAn):ﬂ'n(AlX"'XAn).

To construct a random element taking values in F, one can use the canonical construction.
We simply set Q@ = E, A = € and X,,(w) = w, (the coordinate mapping) for every n > 1. One
can note that the cylinder sigma-field £ is the smallest sigma-field making the coordinate
mappings measurable. The first application of this result is a rigorous construction of a
sequence of i.i.d. random variables with marginal probability distribution p (in this case,
7, = ", the product of measures).
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3.5.3 Proof of Theorem 18

The aim of the proof is to construct a limiting process Z taking values un UC(T, p) for a
suitable semimetric p making 7" totally bounded. From Proposition 3.7 and Proposition
4, the probability distribution of this process will be tight, as required in the statement of
Theorem 18. To this end, we will first construct this process Z on a numerable set of indices
T, and extend it to T" by continuity. To construct T}, for each positive integer m, we consider
a partition 77", ..., T;" such that the condition 2 is satisfied with n = € = 1/2™. Note that
if S1,...,5p is a refinement of a partition of a partition 73,..., T}, then

max sup |Z,(t) — Z,(s)| < max sup |Z,(t) — Z,(s
i, sup |%,(8) — Zu(s)| < s sup |Z,(0) = Z(s)

and one can assume that 7™ is a refinement of 7™ (Intersect each T;”H with all the T)"’s).
Next, take an arbitrary point 7" in 7" and set Ty = {t;” 1< <k,,m> 1}. Note that
To can be enumerated with a sequence {s; : ¢ > 1}. For a positive integer k, let m be
the limiting distribution of (Z,(s1),..., Z,(sk)). By Kolmogorov’s extension theorem, there
exists a stochastic process (Z(t)):er, compatible with the m,s. By the portmanteau lemma,

P <max max |Z(t) — Z(s)| > 2’”) < liminf P (max max _ |Z,(t) — Z,(s)| > 2m) <27,

7 s,teijﬂTo n 7 s,tEijﬂTg

Next, we define the metric p on T by

pls,t) =D 2 puls,1),  pu(s,t) = min T pgrmerm.

1<i<k
m>1 =J =

That is p,,(s,t) = 1 if s and ¢ are not in the same element of the partition {T{”, . ,T,?jn} and
0 otherwise and p(s,t) = >~ 27" where my is the first integer for which s, are located
in two different elements of the partition 7™. p is a semimetric on 7. Since the diameter of
" is Zj>m 277 = 27™ T is totally bounded for p. Note also that T} is a p—dense subset of
T. Moreover if p(s,t) < 27™, s and t are necessarily both located in the same element 77",
We conclude that
P ( max |Z(t) — Z(s)| > 2_m) <27™,
8,tT0,p(s,t)<2—™

From the Borel-Cantelli lemma, we conclude that for almost every w, if m is large enough and
p(s,t) <27 then |Z(t), — Z(s),| < 27™. This proves that the paths of {Z(t) : t € Ty} are
in UC(To, p). By the extension theorem of uniformly continuous functions on dense subsets,
one can define Z(t) for ¢t € T and the paths of {Z(¢) : t € T'} are still in UC(T, p).

To end the proof, we define p,, : T'— T by pp,(t) = t]* when ¢ € T;". By the assumption
1., we have Z, o p,, — Z o p,, in distribution in ¢>°(7"). This is because p,,(T") is a finite
set (as an exercise, check the required convergence carefully). Moreover Z o p,, — Z a.s.
in ¢>(T) as m — oo. Indeed, by uniform continuity of the paths, ||Z o p,, — Z|lr =
SUpyer, |2 0 pm(t) — Z(t)| is measurable and converges to 0. Almost sure convergence also
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entails convergence in distribution. We then get

“h(Z,) —Eh(2)
*h(Z,) —Eh(Z,opm)+Eh(Z,0opn) —E(Zopy)+Eh(Zop,) —Eh(Z)
“h(Zn) = Eh(Zy 0 pp) + o(1).

Moreover if h : ¢>°(T) — R is L—Lipschitz and bounded, we have

ER (Z,) —Eh (Zy 0 pm)| < L27" 4 2||2]|oP (| 2 — Zn 0 pllr > 27)

and from our assumptions,

J s tnTm

hmsupIP’ (120 = Zn o pmllr >27") = hmZIP’ (max sup || Z,(t) — Zn(s)||7 > 2"”) <27
Since m can be arbitrarily big, this proves the weak convergence.[J

3.5.4 Proof of Theorem 20.

To apply Theorem 18, we introduce the class G = {f — g : (f,g) € F?}. Note that if F C
UF_ [ug, vg], then G C UE_ UK _, [ug — v, vy — up], meaning that

NH (€7F7 LQ(‘P))Q Z N[] (2€7g7L2(P))’

which implies that Jj (1,5, Lo(P)) < co. Now let §,17,e > 0 and set k = Ny (0, F, La(P)).
Setting F; = [ug,v1] NF and for 2 < ¢ < k,

Fo = ([ug, vf] \Uf;ﬂui,vi]) NnF.

Then {F,...,Fy} forms a partition of F and the diameter of each element of the partition
is controlled by 4, for the Ly(P) norm. Using Lemma 10, we get

max sup |G,
1<j<kfg€r;| (f = 9)l

eP* (max sup |G, (f — g)|>€) < E*

1<5<k f,9€F;

< 6’{J[] (6,G, Lo(P)) + VnPFlp. .5 n}
< C{Jy(6,G, La(P)) + a(8) "' PF* 1 puyisyym } -

Here we take
F=sup |f—g]< 2bup|f| < 2 max {W,W}
f.9eF
which is square integrable. Choosing ¢ > 0 sufficiently small in such a way Jj (0, G, Lo(P)) <
ne, the second assumption of Lemma 10 is satisfied, since the second term in the last upper
bound goes to 0 with n. This shows the validity of the second assumption of Theorem 18.
The first assumption of finite-dimensional convergence is automatic.[]
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Chapter 4

Introduction to asymptotic theory for
statilonary sequences

The aim of this chapter is to introduce some basic notions useful for studying statistical infer-
ence of some parameters when the sample X1,..., X, is composed of identically distributed
but not necessarily independent random variables. This situation arises in analyzing time
series, i.e. a collection of random variables measuring the same phenomenon at different
time points and for which past values will have an influence on the present or future val-
ues. We will restrict to random sequences called " stationary", a stronger notion than
identically distributed random variables and which means that the finite-dimensional distri-
butions of the sequence are invariant under time shift. For instance X;, X, ..., X,, have the
same distribution, but (X, X3), (X2, X3),...,(X,_1,X,) also have the same distribution,
(X1, Xo, X3), (Xo, X3, Xy), ... are also identically distributed and so on.

Such stationarity notion is mostly meaningful when the time points are equidistant.
Some examples concern the evolution of daily temperatures, daily stock prices, monthly
unemployment... Stationarity is a very restrictive notion since for many applications, data
exhibit a seasonal behavior, a trend evolution (e.g. on average, daily temperatures are not the
same in summer or winter and also increased during the last 50 past years) or a random walk
behavior (i.e. the X; — X; 1’s form a stationary sequence). There exist many techniques to
transform the original data in a new sequence which will be approximately stationary (such
transformations depend on the context). We will not study this step and assume here it is
reasonable to model the observations with a stationary sequence.

Studying asymptotic statistics in this context requires to first generalize the law of large
number and the central limit theorems when the data are not independent. This will be our
primary goal. We will also present simple stationary models for which the theory applies.

4.1 Stationary processes indexed by 7Z and Bernoulli shifts

For defining stationary sequences of random variables, it is often more convenient to for-
mulate the theory for double-sided sequences, i.e. a sequence of random variables (X;);ez
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indexed by the set of positive and negative integers. This commodity will appear more
clearly when we will study autoregressive processes. We first generalize Kolmogorov’s ex-
tension theorem in this setup. The following result is a simple extension of Theorem 7 in
Chapter 3. Let £ = R%. On EZ (the set of sequences indexed by Z and taking values in E),
we consider the sigma-field C generated by the cylinder sets

C={(@)ez €EE" 10 €Ay, ... 2, €A},
for any n € N and Borel subsets A_,,, A_,,11,..., A, of E.

Theorem 25 (Kolmogorov’s extension theorem). For each n € N, let p, be a probability
measure on E*"T1. We assume that for any A; € B(E), —n < j <n,

fns1 (BEX Ay XA g X Ay X E)=p, (A, x A1 X -+ Ay).

There then exists a unique probability measure u : C — [0, 1] such that for any n € N and
A, A, .. A € B(E),

1 ({(xt)tez €FL . x,e A, —n<i< n}) = pn (A, X A X -+ Ay).

Starting from a family of probability measures p,, n € N, satisfying the compatibility
conditions of the previous theorem, one can construct a compatible canonical stochastic
process (X;)iez, defined on Q = EZ by X;(w) = w; for t € Z and w = (w;)sez € EZ.

Examples

1. When pu,, = v®*"*1 (the product measure on E?"*! with marginal v), one can then
define a sequence (X;);ez of i.i.d. random variables with common distribution v.

2. Suppose that we have a homogeneous Markov chain (X;);eny on a numerable subset
of E, with transition matrix P and such that the distribution of Xg is an invariant
measure. Then one can also construct a double-sided sequence (X;);cz such that the
distribution of X} is 7 of any ¢ € Z and the conditional distribution of X;| X; 1, X; o, . ..
is given by P (and then only depends on X; ). Indeed, let

i ({(@—ny o 20)Y) = (@) P2y pg1) - P(Tne1,20), (T ..., 2n) € B2

Using the equation 7P = 7, one can show that

i ({(T s 0)}) = Z 1 ({(T—n—1, -+ Tg1)}) -

Ton—1,Znt1€EE
Then Theorem 25 applies.

The next notion is the concept of stationarity.
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Definition 7. A process (X;)iez is said to be strictly stationary (or simply stationary) if for
any positive integer h, the probability distribution of (Xy44),c, coincides with that of (X;)iez.

In the previous definition, the distribution of a process is thought as a probability measure
on the space EZ endowed with the cylinder sigma-field C. Let us mention that C is often
denoted by B(E)®Z.

The following result is a consequence of the monotone class theorem.

Proposition 5. A process (Xi)iez taking values on E is stationary if and only if for any
k € N and t € Z, the distribution of the vectors (Xy, ..., X¢1x) and (Xo, ..., X)) are the
same.

An important operator used to formulate some properties of stationary processes is the
shift operator 7 : EZ — EZ defined by 7w = (wy41)ez. T is invertible with inverse 7! : EZ —
EZ defined by 77w = (wy_1)sez- If t is positive integer, we denote by 7! the composition
7o---o7 and if ¢ is a negative integer, 7% = 77!

t —t

o~-o7'71.

Proposition 6. A process X := (X,)iez is stationary if and only if X and X have the
same probability distribution.

Proof of Proposition 6. The direct sense follows from the definition of stationarity. For
the reciprocal sense, if 7.X has the same distribution as X and h is a positive integer, we
have 7"X = 7"71 0 7X and from the measurability of 7"~! : EZ? — EZ we deduce that
7" X has the same distribution as 7"~ X. Tterating this, we conclude that 7"X as the same
distribution as X, as required.[]

Let H : E* — E' := R¥ be a measurable mapping and ¢ := (€¢);ez @ sequence of i.i.d.
random variables taking values in £. We then define a new process X; = H ((€14);ez)-
This kind of process is called a Bernoulli shift. In general, the mapping H is defined on a
measurable subset F' of EZ such that P (e € F)) = 1. One can extend H on EZ by H(z) =0
if v € EZ\ F.

Proposition 7. A Bernoulli shift is a stationary process.
Proof of Proposition 7. Since X; = H (7'¢) and denoting again by 7 the shift operator

on (E")%", we have 7X = (H (1'*'¢)),.,. The result is then a consequence of the stationarity
property of e.0J

tez:

Examples of Bernoulli shifts

1. Let us study the recursive equations X; = aX;_; + &, when |a| < 1 and (&), is a
sequence of i.i.d. and integrable random variables. It is easy to show that the series
Xi = > 2y a’s;; is normally convergent in L' (and then a.s. absolutely convergent)
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and that (X;);ez is a solution of these recursive equations. It is also a Bernoulli shift,
setting
H((sj)jez) = > _a’s_j,
720

which is defined on the subset F of EZ for which the previous series is absolutely
converging. One can also show that there is only one stationary solution. Indeed, if
(X{)iez is another stationary solution, setting D; = X; — X, we have D; = a"D,_,, for
any n € N. But a,|D;_,| < a”|X;—,| +a"|X;_,| and the two terms on right-hand side
of this inequality are both converging to 0 in probability when n — oco. We deduce
that D; = 0 a.s. and then X; = X] a.s.

. One can extend the previous model to

p
X =Y ae_j+e, teL, (4.1)

j=1

with the same assumptions for € but now with the assumption that the roots of the
polynomial P(2) = 1 — 37%_ a;2/ are outside the unit disc of the set of complex
numbers C. It is easy to show that we have a one-to-one correspondence between
the stationary process (X;);cz solutions of (4.1) and the stationary solutions of the

multivariate recursions Y; = AY;_; + & where

where I, denotes the identity matrix of size p — 1 and 0,_;; the column vector with
p — 1 components all equal to 0. The matrix A is often called companion matrix. A
well known result about companion matrices states that the spectral radius p(A) of
the matrix A is less than 1 if and only if the polynomial P has all its roots outside the
unit disc. More precisely, one can show that the characteristic polynomial of A equals

to Q(z) = (—=1)P (zp - ajz”_j>. Moreover, the Gelfand formula guarantees that

for any matrix norm || - ||, for instance the norm 2 associated to the Euclidean norm
|- |l2 on RP, i.e.
[A[l = sup  [[Az[]y = /p(ATA),
2€RP:||z||2=1

lim,, o0 ||A™]|/™ = p(A). When p(A) < 1, we then deduce that there exists a positive
integer ng such that x := [|[A™| < 1. Tt is easy to deduce that the series Y; =
> =g A€ _j is normally convergent in L' and is the unique stationary solution of the
multivariate recursions. Note that if E (¢2) < oo, the series also converges in L? and
the solution has a finite second moment.
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3. GARCH models are widely used in financial econometrics to model the dynamic of
stock prices or currency exchange rates. See Francq and Zakoian (2019) for a broad
introduction to these kind of models. In what follows, we consider a sequence (&)
of i.i.d. random variables with mean 0 and variance 1. We set

teZ

X, =04, 0l =0+ X7+ a0l (4.2)

where ag > 0 and a1, > 0. When o, and &; are independent with o, € F;_1 =
o (Xi—;j:j>1), then af is simply the conditional variance of X; given F;_1, i.e.

Var (X;|Fi—1) := E (X}|Fie1) — B? (X4 Fiq) = o7
Our aim here is to construct a stationary solution ((X, 0¢)),c5 of (4.2) which is also non-
anticipative (i.e. oy € 0 (g;_j : j > 1)). To this end, we assume that oy + s < 1. We

first note that any solution of (4.2) satisfies 02 = ag+a;_107_, where a;_1 = aye2 | +as.
Under our assumptions, we have Ea; < 1 and one can show that

[e.e]
1+ g at—l".at—j
Jj=1

is a random series converging in L! and a.s. and solution of the recursions. It is of
course stationary and X; = ;0 is stationary solution of (4.2). One can also show that
the previous solution is the unique stationary solution of (4.2).

ol = , teZ

Though is is possible in theory to use two-sided Bernoulli shifts, such as X; = ZjeZ €414,
many interesting examples are one-sided, i.e.

H ((St>teZ) =G (St, St—1,-- )

for a measurable mapping G. A general construction of one-sided Bernoulli shifts uses
contraction properties of iterative systems, as illustrated in the aforementioned examples.
The following result, which can be found in Wu and Shao (2004), extends this setup. The
proof is left as an exercise.

Theorem 26. Let E be a Borel subset of R*, (G, G) be a measurable space, F: Ex G — E
a measurable mapping and (&,),o, be a sequence of i.i.d. random variables taking values in
G. Setting fi(x) = F(x,&) for (t,x) € Z X E, and fi(x) = fio fy10- -0 fs(x) for s <,
we assume that the following conditions hold true for some p > 1 and a norm || - || on R*.

1. Forallz € E, fi(z) € LP.

2. There exists a positive integer m and two positive real numbers L and k, with k < 1
and such that

1fe(z) = fi@)llp < Lllz =yl
£ () = A W)l < slle =yl
where for a random variables Z taking values in E, ||Z||, = EY?[||Z||P]. The sequence
(flgln(x))n>1 has an almost sure limit denoted by f*__ and not depending on x. There then ex-

ists a unique stationary solution (X,)ez such that X, € 0 (g4—j : 7 > 0) and X, = F (Xy_1, &)
a.s. We have Xy = ft__ a.s. Moreover E[|| X1]/P] < co.
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Sketch of the proof. For an arbitrary z € E, the sequence (ftt_n(x))neN is a Cauchy se-
quence in L? and has then a limit denoted by X;(z). The a.s. convergence to this limit also
holds true. From the second assumption, we have X,(z) = X;(2) for any 2’ € E. Unique-
ness of this non-anticipative stationary solution (which has a Bernoulli shift representation)
follows from the contraction condition in the second assumption.[]

A note on Markov chains on R¥. A sequence (X})ten of E—valued random variables is
called a homogeneous Markov chain if for any integer ¢t > 1,

P(Xt € A’Xt_l = Tt_1y.-- ,Xo € SL’(]) == P(Xl € A’XQ == xt—l) y

forany A € B(E) and zg, ...,z € E. The mapping (z, A) — K(z, A) :=P (X, € A| Xy =x)
is called a Markov kernel (or a transition kernel). A Markov kernel K : E x B(E) — [0, 1]
is simply a mapping such that for any A € B(E), x — K(x, A) is measurable and for any
r € E, A K(x,A) defines a probability measure. An integral [, f(y)K(z,dy) can be
defined using such a probability measure.

Under the assumptions of Theorem 26, for any =z € E, the sequence (f{(z)),s, is a
Markov chain, starting at 0 (using the convention fP(z) = z). Its transition kernel is given
by K(z,A) =P (fi(z) € A).

A probability measure ;2 on E is said to be invariant if 1(A) = pK(A) == [, p(dy) K (y, A).
The distribution p of X given in the previous theorem is an invariant probability measure (it
corresponds to the marginal distributions of a stationary sequence). Now define by induction
the transition kernels K" by

K"(y,A) = / K(y,dz) K" (2, A), n>2.
E

It is easy to check that K"(y,A) = P(f'(y) € A). By induction, we get uK™ = p. If
h: E — R is a continuous and bounded function, we have

/E h(y) K" (x,dy) = E[ho f()] = E [ho f3(z)] "5 E[h(X_,)] = /E h

We then conclude that for any = € E, f{'(x) < u, which means that the distribution of the
Markov chain converges to p whatever the initial state x. From the dominated convergence
theorem, this is also true for any initial probability measure v, since

/E /E h(y) K™z, dy)v(de) = /E By I (dy)

and v K" is the probability distribution of X,, when X is generated from v. As a consequence,
the invariant probability measure of the chain is unique.

70



4.2 Ergodic theory for stationary processes indexed by Z

For generalizing the strong law of large numbers to stationary sequences, we directly face to
some pathological problems. For instance, when X; = X, for all ¢t € Z, then % Yo X =Xo
which does not coincide with E(Xj) except is X, is a.s. constant. Moreover, for a Markov
chain on F' = {0, 1} with transition P = I, the identity matrix, the probability 7 = (1/2,1/2)
is invariant. However %" | X, is equal to 0 on the set {X, = 0} which has probability
1/2. The a.s. limit of these partial sums cannot be the expectation of m which is 1/2. We
then see that some problems can occur when there exist some non trivial "invariant" sets,
i.e. sets A with probability in (0,1) and for which {X, € A} = {X, € A} for any ¢t > 1.

Ergodic theory is a branch of mathematics which studies the properties of some mappings
7 : G — G that are invariant under a probability measure p on a measurable space (G,G),
ie. u({geG:7ge€ A}) = u(A) for any A € G. In our framework, G = EZ 7 is the shift
operator already defined in the previous section and u = Py, the distribution of a stationary
process X = (X})iez-

Before giving the generalization of the law of large numbers, we introduce the following
definition.

Definition 8. Let (G,G, 1) be a probability space and T : G — G a measurable mapping.

1. We say that T preserves the measure p if u(t'A) = p(A) for any A € G. Here
T 'A={r e G:1x e A}

2. A measurable subset I € G is said to be invariant if 711 = 1.

3. T 1s said to be ergodic for p if any invariant subset I is trivial, i.e. it has measure 0
or 1.

A generalization of the strong law of large numbers can be obtained by inspecting the

limiting behavior of z — S, f(z) := £ 1" | f (7'x). However, if I is a non trivial invariant

subset, the choice f = 1; leads to S, f = 1 which cannot converge to (1) = [ fdu. A proof
of the following important result can be found in Petersen (1989), Chapter 2.

Theorem 27 (Birkhoff’s ergodic theorem). Suppose that 7 is ergodic for u. Then is
[ 1fldp < oo, we have

lim S,f = [ fdu a.s.
n—oo

When 7 is the shift operator on G = E% and p = Py, we say that the stationary process
X is ergodic if 7 is ergodic for u. In this context, we obtain the following result.

Corollary 4. Suppose that X = (X})ez is a stationary and ergodic process taking values in
E and f: E* — R is a measurable function such that E[|f(X)|] < co. Then

1
lim —
n—oo 1,

Zf((Xtﬂ')jEZ) =Ef(X), a.s.
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Under the assumptions of Corollary 4, we note that if g : ' — R is Py, integrable, then

1
lim ~ ;g(Xt) =Eg(Xo), as.

However, one can consider partial sums for much more complicated functions f, for instance
depending of infinitely many coordinates. To show that we truly obtained an extension of
the law of large numbers, the following result will be needed.

Proposition 8. A sequence (X;)iez of i.i.d. random variables is ergodic.

Proof of Proposition 8. Let I be an invariant subset of EZ. Then Px([) =P(X € ) =
Py (r7"I N I). We are going to show that for any A and B in the cylinder sigma-field C,

lim P(X e "A,XeB)=P(X e A)P(X € B). (4.3)

n—oo
Applying (4.3) to A = B = I, we will deduce that Py (I) = Px(/)?, meaning that Px(I) €
{0,1}, as required.

To prove (4.3), suppose first that A and B are finite unions of cylinder sets. In this case
{XeAleo(X,:s€U)and {X € B} € (X, : s €V) for two finite subsets U and V' of
Z. But since {7"X € A} € 0 (X5 : s € U), this event is independent of {X € B} when n
is large enough. Then for such n,

P(Xer"A,XeB)=P(Xer"A)P(XeB)=P(X € A)P(X € B).

For the general case, one can note that the finite unions of cylinder sets form an algebra
(that is a set of subsets of EZ, containing the empty set, stable by finite union and stable by
taking complements) which generates the cylinder sigma-field. A general result in measure
theory ensures that if A is a sigma-field, p a probability measure on A and A'is an algebra
generating A, then for any € > 0 and A € A, there exists A, € A such that

H(AAAL) <= ANAL = (A\ A)U (A \ A).

Applying this result to A = C the cylinder sigma-field, u = Py, and A the set of finite unions
of cylinder sets, we get

IPx (r"ANB) —Px (17"A. N B.)|
Px ((r"ANB)A(r7"A.N B.))
Px (7" AAT"A.) + Px (BAB.)
Px (AAA.) +Px (BAB.)

2¢.

IA A

IA

Note that the previous equality is a consequence of stationarity. Since € > 0 is arbitrary, it
is easy to conclude that (4.3), already valid for the pair (A., B:), extends to the pair (A, B).
This concludes the proof. []
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4.3 Semiparametric M-estimation for autoregressive pro-
cesses

4.3.1 Estimation of a conditional mean

Let the model
Xt = fgo (Xt—l) +e¢, tE Z, (44)

where the ¢}s are i.i.d. with mean 0 and finite variance and fp, : R — R is a measur-
able mapping depending on a parameter 6y € ©. A natural estimator can be obtained by
minimizing

n

0 Mo(0) = =5 (X0 — folXe 1))

n
t=2

The corresponding estimator 0, is called non-linear least squares estimator. Existence of a
stationary and ergodic solution for (4.4) can be obtained from Theorem 26, as soon as there
exists x € (0, 1) such that

|f90($)_f60(y>| §H|{L'—y|, (95,?/) €R2~

Moreover, when © is compact, § — fy(z) is continuous for all x and supgee |fo(X1)| is
integrable, Birkhoff’s ergodic theorem is sufficient to ensure strong consistency of 0,,. Indeed
one can apply Theorem 2 of Chapter 2. The reason is that, except some regularity and
integrability conditions, only the pointwise law of large numbers was necessary to obtain
consistency in the i.i.d. setting. We have know extended this law to dependent data and
all the other arguments needed to prove Theorem 2 in Chapter 2 are not restricted to
independent observations. The single assumption to check is the third one. We note that by
independence between X;_; and &,

M(O) =E (1) + E [(fo(X1) — fao(X1))?]

and M (0) > M(6y). Moreover M(0) = M () if and only if fy = fy, p—a.s., where u is the
probability distribution of X;. Then the third assumption follows as soon as p ({ fo # fo,}) >
0 for 6 # 6,.

Let us know investigate the case of a linear autoregressive process of order p (4.1), which
is often denoted AR(p), and for which the least squares estimator has en explicit form. We
assume here that E (¢7) < oo and the root of P(2) = 1—3"%_, a;27 are outside the unit disc.
This ensures that the unique stationary solution has a finite second moment. Our aim is to
estimate 0y = (a1, ...,a,)” when E (¢2) < co. The least squares estimator is given by

-1
Qn = arg grel]gpl E E (Xt — thllg)Q — (E E Xt—l'XtT1> E E Xt—IXt'

t=p+1 t=p+1 t=p+1
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Here &;_; denotes the column vector with entries X; 1, X; o,..., X;_,. From the ergodic
theorem, we have

1 o
~ ) XX W EXX) = E [4A]] 6.

t=p+1

To get strong consistency, we only have to check that I' := E [XOXOT } is invertible. Using
the ergodic theorem and the continuity of the inverse of a matrix, this will ensure that

-1
1 o
(— > thxtﬂ) St
n

t=p+1

and then strong consistency. If " is not invertible, there exists u € R? \ {0} such that
uW'Tu=E [(UTXO)Q] = 0.

We then conclude that uT)N(O = 0 a.s. and one variable, for instance X, writes a.s. as a
linear combination of X_;,..., X_,;;. But this, due to the model form, this would mean
that e writes as a linear combination of X_,,..., X_,. By independence, this is impossible
when €, is not constant a.s. Then u"T'u = 0 is not possible unless u = 0.

4.3.2 Estimation of a conditional variance

Let the model
X, =¢g04, 0F = o1 + 90,2Xt2—1a

where 6y ; and 6y are unknown non-negative real numbers and the s are i.i.d. with mean
0 and variance 1. We have already seen that 6y, < 1 is a necessary and sufficient condition
for existence of a stationary solution. Setting V;(0) = 0, + 6, X2, for t € Z, a first idea
would be to use a least squares estimator with

M, (0) = %ng(Xt_l,Xt), me(Xi_1, X;) = (X, — Vi(0))* .

t=2

This is natural since E[X?|X;_1] = V;(6y). However, such estimator requires the existence
of the fourth moment for consistency. One can show that existence of the fourth moment
induces a supplementary restriction on 6y . This is why, we prefer another M-estimator called
Gaussian Quasi-Maximum Likelihood Estimator (QMLE). The principle is to compute the
density of (X, ..., X,) conditionally on X, assuming that ¢, follows a standard Gaussian
distribution. The conditional density of X, given X;_; is given by

f ($t|Xt—1) =

Jﬁ o (_2VT<§90>) |
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Then the conditional density of (X5, ..., X,,) given X; and evaluated at (X, ..., X,,) is given
by

0= e (o)

Maximizing 6 — L, (0) is equivalent to minimize
2
t

6 € M ( ng Xt 17Xt) mg(thl,Xt) = V(e)
t

t=2

+ log Vi(9).

To obtain a compact parameter space, one can set
© = [0, M] x [0,1/M] for some M > 1.

When ¢, is Gaussian, the QMLE is simply called conditional likelihood estimator (since it
is based on the conditional density). The main interest is that when &, is not necessarily
Gaussian, the method still works and can be used to get a consistent estimator (which
explains the terminology Quasi Likelihood). This is justified by the equality

Vi) Vi)

Vi(9) Vi(9)

and the inequality x —log(x) —1 > 0 for > 0 with equality if and only if x = 1. We then get
M(0) > M(6y) and M (0) = M(6p) if and only if V;(0) = V;(6y) a.s. When the distribution of
g; is not concentrated on {—1, 1}, it is possible to show that necessarily § = 6,. All the other
assumptions of Theorem 2 in Chapter 2 are verified. In particular, we have automatically
E [supgee |mo(Xo, X1)|] < oo here, since EX? < oo.

M) — M(6) = E

4.3.3 What about asympotic normality?

For semiparametric-models of the previous types, one can proceed as in the i.i.d. case. For
the non-linear least squares estimator and the Gaussian QMLE, the quantity M, (6y) which
gives the asymptotic distribution of the M-estimator are given respectively by
: 2 < .
M, (6y) = —— X; — X X
n(0o) n;( t = Joo(Xe-1)) foo (Xi-1)

and

n 27, 2 ’
Mn(eo) _ _l Z Xt ‘/;5(90) B ‘/;5(90) ‘
ni= Vi(6o) Vi(6h)
One can observe that in both cases, E [rhg, (X;—1, X;)|Fi—1] = 0 a.s. where F;_1 =0 (X :s <t —1).
Then the partial sums Y ", g, (X¢—1, X;) form a martingale. We then need a central limit
theorem for this kind of martingales, written as a partial sum of stationary and ergodic
sequences.

This kind of situation is classical in conditional models. It corresponds to the situation
where 0 — E [mg,(Xo, X1)|Fo] is minimized at § = y. Inverting derivative and conditional
expectation yields to the martingale property discussed above.
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4.4 Central limit theorems for martingales

In this section, we consider some partial sums of the form S, = Zfﬁl X, ; where

{Xn;:1<j<k,n>1}isa "triangular array" of random variables. Additionally, we
assume that (X, ;), <j<hn is a martingale difference, meaning that for each positive integer
n, there exists a filtration (fn,j)ogjgkn such that for 1 < j < k,,, X,,; is integrable and
measurable with respect to F,, ; and E[X,, ;|F,;j—1] =0 a.s.

For instance, in the context of the previous paragraph, X, ; = Y;/v/n, where (Y});cz is
a stationary and ergodic sequence of integrable random variables and E[Y;|F;_1] = 0 for
Funj=F;j =0 (Y, :t <j), we are interested by a central limit theorem for S,.

The principle is to study convergence of the characteristic function ¢, (t) = E [exp(itS,,)]
using a subtle factorization of the complex exponential. In what follows, the notation | - | is
used for both the absolute value of a real number or the modulus of a complex number. We
follow the approach of McLeish (1974) for proving martingale central limit theorems.

Lemma 11. There exists a mapping v : R — C such that

exp(iz) = (1 + i) exp (—“’; + r(x))

and |r(z)| < |z|? for any —1 <z < 1.

Proof of Lemma 11. The series log(1 + z) = Zkzl(—l)k“% converges for |z| < 1 and
it is known that exp (log(1 + z)) = 1 + z. Now, take z = iz for some x € (—1,1). We have

2 o0
SN s Zz 3 _ k+1
log(1 + ix) =ix + 5 +x°r(x), r(z)= g_o(—l)

Z’k—i—lxk

k+3°

We then get the required factorization by taking the exponential function in the previous
equality. Finally,

:L.Qp—‘,—l

2p + 4’

x2P

ra(z) = Z(_l)pH_

r(z) =r(x) +irg(x), r(x)= Z(—l)p+1 ¥ 3

p=>0

Suppose that x > 0, the argument will be the same if xt = —y < 0. Due to the presence of
alternating series, we have —1/4 < r(z) < 0 and —1/3 < ro(z) < 0 from which we conclude
that |r(z)| < 1.0

The idea is then to use the decomposition exp (itS,) = T,,U,, where

k k k

n ‘ —t2 n n

Tn = H (1 + Ztanj) s Un = eXp (T ZXZJ + ZT (tXnJ)) .
j=1 j=1 j=1

For martingale differences, we have

B[l + it X, | Foj] =1
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and we then get E(T,) = 1. Moreover, if Z?L X7, L 62, one can hope that E(T,U,) —

exp <—%), which suggests that S, — N (0,0%). Note that when X, ; = X;/\/n with

(X;) ez stationary, ergodic and square-integrable, we have 0% = E(X7?).

However, converge of the expectation of the product requires a specific attention. In
particular, the following result is helpful. The concept of uniform integrability will be needed.
We recall that a sequence of random variables (7},),,>1 is uniformly integrable if for any € > 0,
one can find M > 0 sufficiently large such that

supE [|Tn|]l|Tn|2]\/I] S €.
n>1

If for all n, T,, = T with T integrable then (7,,),>1 is uniformly integrable. Moreover, the
sum of two uniformly integrable sequences is still uniformly integrable. Let ng be a positive
integer. If E[|T,,|] < oo for all n > 1 and for any € > 0, one can find M > 0 such that

sup E [T, 1z, >m] <€

n>ng
then (7,)n>1 is also uniformly integrable. Indeed, one can always increase M to also get

e E[|T L] < e

Finally, if additionally T;, L 0, it is easy to show that lim,,_,., E(7,) = 0.

Lemma 12. Let (T,,),>1 and (U,)n>1 be two sequences of random variables such that for
some real number a,

1. U, Rt a,

2. (Th)n>1 is uniformly integrable,

3. (T,Up)n>1 is uniformly integrable,
4. lim, oo E(T,) = 1.

Then lim,,_,., E[T,U,] = 1.
Proof of Lemma 12 Since T,,U,, = T, (U, — a) + T,,a, we simply have to show that
lim,, o0 E [T,(U,, — a)] = 0. From the second and the third assumption, (7, (U, — a))n21

is uniformly integrable, as a sum of two uniformly integrable sequences. It is then sufficient
to show that this sequence converges to 0 in probability. Let € > 0. We have

P(Tu(Us—a) >€) < P(Ta > M) +P(T| < M, M|T, —a| > ¢)
UTTL|]1\T7L|>M:| +P(|U, —a|l >¢e/M).

A

—E
- M
7



If M is large, from uniform integrability, the first term in the last upper-bound can be made
arbitrarily small, uniformly over n, smaller than ¢ for a given § > 0. For such M, the second
term converges to 0. Then

mP (|7, (U, —a)| >¢) <6

which shows the result.r]

Lemma 13. Let {X,,; : 1 < j < k,,n > 1} be an array of random variables. Let the decom-
position S,, = T,,U,, with

T,= ] (1+itX.,), U,=exp <——2anX3” + Z r(tX,;) ) .
1<j<kn
Suppose that the following assumptions hold true.
1. lim, o E(T,) = 1.
2. (Th)n>1 1s uniformly integrable.
3. Zk" X2 5.

4. maxi<j<k, ‘Xn,j| £> 0.
Then S, — N(0,1).
Proof of Lemma 13. We first show that R, = Z] (7 (tX,;) = op(1). Let € > 0. On
the set A,, := {max;<j<, |Xn ;| <1}, we have

kn kn
Rl <D It 1 X, < yt|3 max yX,”|Z ;=op(),

7=1

where we used the third and the fourth assumption. Moreover, from the third assumption,
lim, . P(Q2\ A,) = 0. We then conclude that R, = op(1), which leads to U, B oa =
exp (—#) We also have |T,,U,| = 1 which is uniformly integrable. The result is then a

consequence of Lemma 12.[]
We now get one of the two main result of this section.

Theorem 28. Let {X,,;: 1 <j <k, n>1} be a triangular array of martingale differences
such that

1. lim,,_,oo E [maxlgjgkn |Xn,jH =0,
9. an X2 _> 1.
Then S, — N(0,1).
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Proof of Theorem 28. Set Z,,; = X, andfor2<j <k,, Z,, = ij]lzi_lXQ <o One

=1“*n,r

can observe that {Z,;:1<j <k, n>1} is a triangular array of martingale differences
with the same filtration. Moreover,

kn
P (U { Xy # Zny}) <P (Z X2, > 2) — 0. (4.5)
r=1

From (4.5), it is enough to show that Zj;l Zy; < N(0,1). This will follow from an
application of Lemma 13. Indeed, if 7, = H?il (1+itZ, ), we have E(T,,) = 1. Let

J
J:inf{jz 1:ZX§7T>2}/\I<;H,
r=1

where a A b = min(a, b). We have

kn J—1
Tl =] y1+e222, = I \/1 +t2272w\/1 +1272,
7=1 r=1
o J—1

t
exp (5 > me> X (L4 [t] - | Zn,a])
r=1

< exp(t?) x (1+It!11g}g>,§ \Xn,j|)-

IA

From the first assumption of the theorem, max<;<s, | X, ;| is uniformly integrable and so is
T,. The other assumptions of Lemma 13 are verified and we conclude that S,, — N (0, 1)
from the convergence of characteristic functions.l]

For stationary and ergodic martingale differences, we get the following important result.

Theorem 29. Let (X;)jez a square integrable stationary and ergodic sequence such that
E [X;|Fj-1] =0 a.s., where (}—j)jez is a fillration such X; is F;—measurable for all j € 7Z.

Then S, = 2= 31 Xj = N(0,0%), with 0 = Var(X,).

Proof of Theorem 29. First suppose that 0 = 0, then X; = 0 a.s. for all j € Z and
then S, = 0 a.s. which converges in distribution to N(0,0), that is the Dirac mass at
point 0. Suppose now that o® > 0. Setting X,,; = Xj/\/m, we will apply Theorem 28.
From ergodicity and square integrability of (X;),cz, the second assumption of Theorem 28
is verified. To check the first assumption, we use the Cauchy-Schwarz inequality as well as
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truncation. For a given M > 0 , we have
1 X2
—FE | max |Xj|| < 4/E|max Xl
Vi [1<i<n 1<jsn n
/ \/ maxij<j<n ‘X ’ ]1|X [>M
M
=\t Z]E | X521 x5 0]

= \/ \/E X1 Py 5]

limE {max |Xn]]] <o [|X1|ﬂ\X1|>M}

n 1<5<

IN

We then get

and we obtain the desired condition by letting M — oco. The result is then a consequence
of Theorem 28.[]
Next, we deduce a multivariate version of Theorem 29.

Corollary 5. Let (X;);ez a square integrable stationary and ergodic sequence, taking val-
ues in R* and such that E[X;|F;—1] = 0 a.s., where (Fj) ez 18 a filtration such X; is
Fj—measurable for all j € Z.

Then S, = \/Lﬁ > i1 Xj = Ni(0, %), with ¥ = Var (X;).

Proof of Corollary 5. From Lemma 15, it is easily seen that weak convergence of S, to
N (0, X)is equivalent to weak convergence of u’'S, to N/ (0, uTZu), for any vector u € RF,
But u?S, f > u'X; and (Z =u"X;) jez, 18 a martingale difference satisfying the
assumptions of Theorem 29 with o2 = u? Su. We then get the result.l]

Example. We go back to the linear autoregressive process AR(p),

p
X =Y ap;X,—j+e, teEL

J=1

where (g¢)e7 is a sequence of i.i.d. random variables with mean 0 but now with finite positive
variance v. We assume that the roots of the polynomial P defined by P(z) = 1—-3>""_, aq;2’
are outside the unit disc. In this case, we have already seen there is a unique stationary
solution which writes as X; = ijo s;er—j with sp = 1 and (s;);>0 has a geometric decay. In
particular, the series is also converging normally in I.? and X is square integrable.
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Our aim here is to estimate 6y = (ag1,- .. ,aovp)T. As seen previously, the least squares
estimator is defined by

-1
. 1 « 1 &
en = (E E th-XtT1> E E X1 Xy

t=p+1 t=p+1
We have .
R 1 n 1 n
ﬁ(en - 90) = (ﬁ Z th‘)c‘tTl) % Z X184
t=p+1 t=p+1
Using Corollary 5, it is easily seen that \/iﬁ > tpir X180 = N (0,0T) where ' = E [ X, XT].
Slutsky’s lemma ensures that /n (én — 00> — N, (0,01 71).

From Theorem 28, we also deduce the following convergence result for triangular arrays
of independent random variables. The following result was used in Chapter 2.

Theorem 30. Let {Y,,;:1 <1<k, n>1} be a triangular array of centered random vari-
ables, taking values in R* and such that Yy 1,..., Yy, are mutually independent. Suppose
that the two following assumptions are fulfilled.

1. There exists a symmetric and semi-definite positive matrix V' of size k X k such that

limm, oo SO0, Var (Yo) = V.
2. For any ¢ > 0, lim,,_, Zf;l E U|Yn,i||2ﬂ||Ynﬁi||2>e} = 0.
Then S, = 3.0 Yo < Ny (0, V).
Proof of Theorem 30. We start with the case Kk =1 and V = 1. For any ¢ > 0, using

the decomposition Y;?; = Y2 1y, 1< + Y21}y, |>- and bounding the maximum by the sum,
we get the bound

kn
. ngfn Yf’] =<t 2; E [V, o] -

From the second assumption of the theorem, we conclude that max;<;<g, |Y,.| converges to
0 in L2 and then in L', The first assumption of Theorem 28 is checked.
To check the second one, we set Z,; = Y21}y, <c and W,,; = Y21}y, |>.. From our

second assumption lim,, ., Zfﬁl W,i=0in L' and then in probability. Then

kn kn kn
Z Ynz,z = Z [Zn,i - ]EZn,i] + ZEZ"’i + 0]}»(1).
=1 =1 i=1

Since Y% EZ,; = > EY?2, — S0 EW,, =1+ o(1) and

kn kn kn kn
Var (Z Zn) = Var (Z,;) <Y EZ, <> BZ,; = (1+0(1)),
i=1 i=1 i=1 i=1
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we conclude that S, Y?; goes to 1 in L' and then in probability. From Theorem 28, we
get the result in this case.
For the general case, we use Lemma 15. Let u € R¥. If u?Vu = 0, it is easy to show that

kn T . 2 . . . R . T o UT}fn,i
Zi:l u" Y, ; goes to 0 in L and then in distribution. Now if v Vu # 0, we set X,,; = T

Applying the result for k = 1 and V = 1, we get Zf;l X,.i < N(0,1). This means that
S uTY,; < N (0,u”Vu). This completes the proof. [J

4.5 A more general central limit theorem for stationary
sequences

Suppose that (X;);ez is a general stationary and ergodic sequence. We have already seen
in the previous sections that for many semi-parametric conditional models, convergence
in distribution of M-estimators of finite-dimensional parameters simply requires a central
limit theorem for martingale differences. However, some simple semi-parametric estimation
problems are excluded from this framework. This is for instance the case for estimating the
population mean 6, = E(X;) for which a natural estimator is the empirical mean X, =
%Z?Zl X;. However (X;);ez might not be a martingale difference here (for instance AR
processes are not martingale differences in general).

In general, stationarity and ergodicity are not enough to extend the Central Limit The-
orem. There exist numerous stochastic dependence measures based on covariances type
inequalities and which can be used to extend the CLT. See for instance the book Dedecker
et al. (2007) for a survey of many existing dependence measures developed in this sense. In
this course, we simply give a CLT based on a projective criterion which allows to deduce
the convergence from the CLT for martingale differences. The proof of the following result
is taken from Billingsley (2013), Theorem 19.1. In what follows, for a random variable Y,
we set ||[Y]|2 = /E (Y?2).

Theorem 31. Let (X,)iez be a stationary and ergodic sequence such that EX& < 00 and
E(Xo) = 0. Suppose that

D B (Xa|Fo) |l2 < o0, (4.6)

n=1

with Fo = o (X; : t <0).
Then the series o* = Var (Xo)+2> oo, Cov(Xo, X,,) is absolutely converging. Moreover,

1 n
Spi=—=Y X, —=N(0,0%).
\/ﬁtzl t ( 0)

Notes
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. If m := E(X;) # 0, one can try to apply the result to X; = X; — m. Note that
condition (4.6) already implies that E(X;) = 0. Indeed,

E(X:) = E(X,) = E[E(X,|F)] "= 0,
because (4.6) ensures the convergence of E (X,,|Fp) to 0 in L? and then in L'

. In some sense, condition (4.6) ensures that E (X, Fy) is close to E(X,,) sufficiently
fast. Note that for i.i.d. integrable random variables or more generally martingale
differences, this conditional expectation is equal to 0.

. As for martingale differences, one can easily obtain a multivariate version of Theorem
31. This is left as an exercise.

. Checking (4.6) for Bernoulli shifts X; = H (g4, &,_1, . . .) can be done as follows. Suppose
that E(X;) = 0 (otherwise center the variables). Let (¢}),., a sequence of i.i.d. random
variables independent of ()., and with the same distribution. For a positive integer
n, let

0 = |1 X0 — Xoll2, X, :=H (en,...,c1,€1,620,...).

n

Suppose that

D 6, < 0. (4.7)
n>1
Since X is independent of Fy, we have E (X,,|Fy) = E (X,, — X/ | Fo). Moreover,
1B (Xn|Fo) ll2 = [IE (Xn = X0 Fo) ll2 < [[ X — X ll2 = 6n,

where we used Jensen’s inequality for conditional expectations. Then (4.6) is valid.

The stochastic recursions of Theorem 26 satisfy (4.7) when p > 2. In this case, one
can show that ¢, < Ck™ for some C' > 0 and x € (0, 1).

Proof of Theorem 31. The absolute convergence of series of autocovariances follows from
(4.6) and the bound

[E(X0Xn)| = [E (XoE (X5 | Fo))| < [ Xoll2 - [E (XnFo) [l2-

For h € Z, set v(h) = Cov(Xy, Xp,) = E(X¢X}). Note that from stationarity, Cov(X;, Xs) =
~v(t — s) for any s,t € Z. We get

1 n 1 n 1 n—1
E[Si]=—) Cov(Xy, X)=— qt—s)=— > (n—I[h])y(h),
n s,t=1 n s,t=1 n h=—n+1
which yields to
h| =
E[S?] =5(0) +2) Tpcny (1 - ‘—) Y(h) = v(0)+2 ) ~(h),
(5] ; < " ;
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as n — 00, using the dominated convergence theorem.
For k € Z, set

Zp = Xp — E(Xi| Facr) + > AR (Xpwil Fr) — E (Xiyil Frer) }-
i>1

Note that the series in the definition of Zj converges in L, using (4.6) and Lemma 14 below.
Moreover E [Z;|F;_1] = 0 a.s. and Lemma 14 and (4.6) ensure that (Z}),., is a stationary
and ergodic sequence of martingale differences, adapted to the filtration (F}),.,. Moreover,

Zpy =X+ A — Dy, Ap = ZE [ Xiri] Fr]
i=1

and . .
ZZk = ZXk+An_A07
k=1 k=1

with [|A,]l2 = [|Aoll2 < co. We then conclude that

1 n
150 = —=>_ Zull- = o(1).

From Theorem 5, we know that \/iﬁ Y re1 Zi — N (0,Var (Z;)). We then conclude that S,

2

has the same limit. But since lim,, . E (S2) = o2, necessarily, Var (Z;) = 0. The proof of

the theorem is now complete.[]

4.6 Appendix

Lemma 14. Suppose that (X;)icz is a stationary process such that E[|X;|] < oco. For any
i > 1, there exists a measurable mapping g; : RY — R such that for all k € Z, E[Xy|Fi] =
9i (X, Xg—1,...). Additionally, if (Xi)iez is ergodic, then any process of the form Y, =
g (Xy, Xi_1,...) where g : RN — R is a measurable mapping, is also stationary and ergodic.

Proof of Lemma 14. From Doob’s theorem, there exists a measurable mapping g; : RY —
R such that E [X;|Fo] = g; (X0, X_1,...) a.s. Moreover if H : RY — R is a measurable and
bounded mapping, we have, setting H, = H (X, Xx_1,...),

E [gz (Xk7Xk—17 . ) Hk] =E [gz (X(),X_l, . ) H()] =E [XlHO] =E [Xk+sz] y
where we used stationary properties of the process (X;)icz. From the characterization of
the conditional expectation, we get the first part of the lemma. The invariance of the

stationarity and ergodicity properties after composition with the measurable mapping g is
straightforward and left as an exercise.[]

Lemma 15 (Cramér-Wold device). A sequence of random vectors (X, )nen, taking values in
R¥, converges in distribution to a random vector X if and only if

V weRn, u'X,—u'X.
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Proof of Lemma 15. This is a consequence of the equivalence between convergence in
distribution and convergence of characteristic functions.]
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