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Abstract

Using an unique dataset containing millions of bi-annual meter readings of electricity
consumption within France from 2007 and 2015, we estimate the price elasticity of elec-
tricity expenditure of private households. We propose three different specifications for the
study of price elasticities. A more canonical specification in which we regress electricity
consumption on a price per kilowatt/hour; a second specification that follows Filippini
(1995) and presents an Almost Identical Demand System (AIDS) model; finally an exten-
sion of the latter that allows elasticities to be season-dependent and differ between summer
and winter. In all models we control for years and months fixed effects as well as weather
and another set of economic variables at the department level. In our first estimation we
find an elasticity of electricity consumption on price equal to -0.8, a result remarkably in
line with the previous literature. In our AIDS models we also obtain results very close
to the ones obtained by Filippini et Al. In particular price elasticities of -1.46 and -1.86
for peak and off-peak prices (Filippini reports -1.41 and -2.57). In our seasonal model we
report elasticities for winter of -1.45 and -1.85, and for summer slightly higher in absolute
value, equal to -1.61 and -2.08.

JEL Classification: Q4, Q41, C5, D12

Keywords: Electricity demand, Price elasticity
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1 Introduction

Two main advantages of our unique dataset are that 1) we cover more than 95% of private

electricity consumption in metropolitan France; 2) given that we have meter readings, we

observe the actual prices per kwh, and we do not need to resort to an average price given by total

expenditure over total consumption (where total expenditure includes fixed costs of delivery

etc...). Our data analysis is done in two steps. In our first step we use all the information

available from our meter readings to create a new dataset that contains merged information

from other datasets with other economic variables, mostly from INSEE and weather variables

as well. In this step we exploit the nature of our original dataset using the detailed information

contained especially in terms of geography (that is, INSEE and weather variables are merged

based on refined geographical levels). At the same time we also create monthly data from

bi-annual observations by spreading individual electricity consumption within the half year

according to coefficients extracted from the official profiling system used by ERDF to compute

every purchaser load curve. In our second step we select samples from our big dataset merged

with other variables and with monthly data to carry on our econometric analysis with standard

software.

We propose three different specifications for the study of price elasticities. The first specifi-

cation, more canonical, in which we regress electricity consumption on a price per kilowatt/hour

given by the actual price, for those customers that pay only one tariff, or a weighted average

of different prices, for those customers who pay different prices in different times of the day. In

our second specification we follow Filippini (1995) and present an Almost Identical Demand

System (AIDS) model. In our last specification we extend this approach by allowing elasticities

to be season-dependent and differ between summer and winter. In all models we control for

years and months fixed effects as well as weather and another set of economic variables at

the department level. In our first estimation we find an elasticity of electricity consumption

on price equal to -0.8, a result remarkably in line with the previous literature. in our AIDS

models we also obtain results very close to the ones obtained by Filippini. In particular price

elasticities of -1.46 and -1.86 for peak and off-peak prices (Filippini reports -1.41 and -2.57). In

our seasonal model we report elasticities for winter of -1.45 and -1.85, and for summer slightly
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higher in absolute value, equal to -1.61 and -2.08.

The paper proceeds as follows, in next section we present a brief summary of the relevant

literature; in section 3 we detail the preliminary treatment of our big dataset; in section 4 we

detail our estimation strategy and in section 5 the results; section 6 concludes.

2 Literature Review

The literature on the estimation of price elasticity of electricity demand is large. This literature

can be divided in three major parts depending on the data used to estimate this elasticity,

that is there are studies that use time series aggregated data, this is the most populated

area of research on this issue; there are studies that use cross-section data and finally studies

that use some type of panel data. Both cross-section data and panel data can be of various

types depending if the observations are on single households, the most disaggregated case, or

some aggregation that can varies from county levels, for example Nakajima (2010) derives his

estimates from a panel data consisting of Japanese prefectures, to country level aggregate data

(see for example Bernstein and Madlener (2011) for a panel of OECD countries).

2.1 Evidence from time series and long panel data

The majority of studies on the price elasticity of the demand of electricity rely on the variation

of the consumption of electricity and its price in time. These studies rely either on time

series or in long panel data. Long panel data are panels that usually contain aggregated data

at a large level of aggregation such as countries or regions, and have observations for many

years. Methodologically these studies usually employ cointegration estimation methods with

autoregressive distributed lags (ARDL) as both time series of price and levels of consumptions

are integrated series. The advantage of this method is that it delivers short and long run

elasticities, that is, the reaction of price changes in the years immediately following the change

and the reaction that will happen in a longer time span provided that the price remains

relatively stable after that change. In the context of electricity demand this is a very relevant

information as households, but also businesses and industrial sites, may adjust in time more

than in the immediate years following the changes of price. In fact, the long run price elasticity
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of electricity is generally estimated to be higher than the short run elasticity. Okajima and

Okajima (2013) provide a good review of the studies that employ time series or long panel data.

Table 1 in their article resumes the estimates obtained for several countries, Australia, Turkey,

South Africa, The United States (six studies) and Japan (two studies). Generally, the short

run elasticity is quite low while the long run significantly larger, Narayan and Smyth (2005)

report an elasticity for Australia of 0.26 for the short and 0.54 for the long run. Their sample

spans 1959 to 1972. Halicioglu (2007) for Turkey, using data from 1968 to 2005 estimates 0.33

and 0.52 for the short and long run. Ros (2017) uses data from U.S. electricity companies

in a long panel that goes from 1972 to 2009. He also finds elasticities in the same ballpark

between 0.48 and 0.61, depending on the model he uses (static or dynamic). Interestingly,

although not surprisingly, in the same paper Ros estimates price equations for different types

of customers and finds that in those states where competition is higher electricity prices tend

to be lower and that the benefit is much larger for industrial consumers than residential ones.

Moreover, he also finds that total factor productivity is associated with lower prices. Dergiades

and Tsoulfidis (2008) using times series for The United States from 1965 to 2006 estimates an

elasticity of 1.07 in the long run. Ziramba (2008), South Africa 1978-2005, finds a completely

inelastic demand of electricity with elasticities estimated at 0.02 and 0.04 in the short and

long run. Nakajima and Hamori (2010) also finds a relatively inelastic demand in the The

United States estimating the long run elasticity at 0.33 using long panel data aggregated at

regional levels and spanning a period from 1993 to 2008. Instead, Nakajima (2010) for the

period 1975-2005, using time series for Japan finds a long run elasticity of 1.13. Other studies

on times series or long panel use a partial adjustment model, among those Kamerschen and

Porter (2004) for The United States 1973-1998 reports elasticities of 0.13 and 1.89, Paul, Myers

and Palmer (2009) also for The United States 1990-2006 reports elasticities of about 0.17 and

0.35, Alberini and Filippini (2011) still for the U.S. 1995-2007 reports 0.12 and 0.2. Finally,

Okajima and Okajima (2013) for Japan report estimates of 0.4 and 0.49 for the short and long

run using a sample of large panel data consisting of Japanese prefectures spanning the period

of 1990-2007.
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2.2 Evidence from cross section and large panel data

Studies that rely on large cross section or panel data are more rare in this literature. There are

two reasons for this, one is that disaggregated data are more difficult to find, but the second

important reason is that the marginal price of electricity is often the same for a large part

of any sample we may have available. That is, in a cross section of households for example,

we may have information on many different variables including the consumption of electricity

that varies from household to household, however in most cases all households will face the

exactly same price for electricity, making it difficult to estimate the price elasticity. Besides,

even when the marginal price does change among households, it is usually not known in the

data. Most studies therefore rely on average prices, that is they rely on data on expenditure

on electricity and the implied average price paid given the actual consumption. While using

average prices is mainly justified by availability of data, there is a growing consensus that this

price is actually the relevant one for households to make their choices about electricity con-

sumption, see Ito (2014) and Alberini, Gans and Velez-Lopez (2011), among others. Among

the few studies, Krishnamurthy and Kristrm (2015) estimate price and income elasticities of

the demand of electricity for household consumption in a panel of 11 OECD countries and find

a substantial sensitivity of consumption to the average price changes, while a lower sensitivity

to income. Their estimates go from -0.27 of South Korea to -1.4 of Australia, they estimate

the price elasticity of France at -0.96. Alberini and Filippini (2011) focus on the demand of

electricity in U.S. states and present a dynamic econometric model that delivers long and short

run elasticities. Their estimates for the short run are around -0.15 and for the long run range

from -0.44 to -0.73 depending on the methodology they use. Alberini and Filippini (2011) pay

particular attention to two critical issues in these types of estimations, the fact that in panel

models the lagged dependent variable on the right hand side of the equation is endogenous,

and that electricity prices, given as averages by state, are mismeasured. They use Kiviet Least

Square Dummy Variables (LSDV) and Blundell-Bond procedures to correct for the first issue,

and IV for the second. Filippini (2011) conducts a similar analysis as in Alberini and Filippini

(2011), but with Switzerland data and he identifies off-peak and peak elasticities. He also

finds that the consumers substitute between off-peak and peak times according to the price
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schedules. All the studies above, and the many cited in those papers, assume that households

are “price-takers” in the sense that they can adjust their consumption for a given price of elec-

tricity. Reiss and White (2005) develop a model that takes into account “endogenous sorting

along a nonlinear price schedule”, to take into account the possibility that different households

choose different price schedules offered by local utilities. They “estimate a model of household

electricity demand that can be used to evaluate alternative tariff designs. The model focuses

on the heterogeneity in households demand elasticities, their relation to appliance holdings

and other household characteristics, and how they inform household consumption responses to

complex (nonlinear) price schedule changes.” Reiss and White (2005) find that their estimated

average elasticities are slightly higher in magnitude that what would be obtained with more

traditional estimation methods.

3 Available Data and Preliminary Treatment

Given the nature of the data available to us, we conduct our analysis in two steps. In the first

step we work with our original data set provided by ERDF to generate monthly observation and

to make the data set consistent for the merging with other variables obtained from INSEE. In

the second step we extract a sub-sample from our original data set, we merge other variables at

a refined geographical level and we carry on our econometric analysis with standard softwares.

Our data is collected from meter readings of more than 95% of electricity private customers

in metropolitan France. The readings are done roughly every six months and, therefore,

record the electricity consumption between these two dates. Our starting point is an amount

of electricity effectively consumed in a certain time span by a meter, usually referring to a

household. Electricity customers are of three types depending on the contract they subscribe,

households who subscribe a single price per Kwh during the whole day are the BASE customers,

customers who subscribe two different prices for peak (day) and off-peak (night) are called

P/OP. The third category of customers are called TEMPO and subscribe a contract with six

different prices for Kwh that combine the P/OP option with a series of three types of days,

color coded with RED, WHITE and BLUE, from more to least expensive. Customers also

differ in terms of power subscription, which defines the amount of Kw can be consumed at any
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point in time, the higher is the amount subscribed the higher is the fixed cost associated to the

contract. The BASE and P/OP options do not have constraints in terms of minimum power

subscription (3 Kw is in fact the minimum for a contract), while the subscription of a TEMPO

contract requires a minimum of power subscription. For this reason TEMPO customers are

generally expected to have higher consumption of electricity, while they represent a small

sample of the whole electricity market. For each meter our data set records an ID, which

identifies the site (or meter), the date at which the measurement starts and the date at which

ends. Therefore, readings are recorded for each segment of consumption (peak, off-peak and

for each type of day for TEMPO customers), and the consumption in Kwh per type is also

recorded. Our data set contains 36,390,648 meters recorded over a period of 8 years from

2007 for more than 800 millions observations. Another set of observations per meter gives the

possibility to identify the contract, including the power subscribed, and the prices per Kwh for

each segment of consumption. Interestingly, segments of consumption differ within different

locations in France, therefore our data also reports the exact times for the segments for each

meter.

A major issue we face with our data is given by the fact that the dates at which meters are

recorded vary with the meters, hence, even though all meters are recorded every six months

and the electricity consumption is taken over those months, the time at which meters are

read is different depending on the meter and, as such, those readings cannot be immediately

compared across different meters. We therefore need to make our consumption observations

comparable across meters before we can carry out our econometrics analysis of the data . The

following subsection describes our methodology that makes the observations comparable.

3.1 Harmonization of Electricity Load Observations

The harmonization of load observations is done using coefficients provided directly by RTE

and ENEDIS, the network operators for electricity in France. These coefficients in turns are

calculated using a representative panel of electricity customers for which electricity is measured

every 10 minutes. In practice, the coefficients serve to extrapolate the behavior in terms of

electricity use observed from the panel to the entire universe of meters observed. The panel

is rich in terms of frequency of observations, but, given the sample nature of the data, not

6



as rich in terms of other covariates such as geographical variables. The coefficients are then

calculated per profile, that is if the meter has a contract that is BASE, P/OP or TEMPO.

The coefficients for each profile are further enrich with weather variables in order to take into

account the possible change in consumption due to colder or warmer days or hours of the day.

Therefore, let’s define the coefficients that take into account climate and profiles C(j, w, d, h, t),

where j stands for profile, w, d, h and t for week, day, hour (actually measured in slots of half

an hour) and a classification of time, we can, given the annual average consumption of a profile,

infer an semi-hourly consumption by simply multiplying the annual average to the coefficient.

Let’s call the semi-hourly consumption P (j, w, d, h) we have,

PM(j, w, d, h) = PMY (j) · C(j, w, d, h, t)

where PMY (j) is the average consumption in a given year, which we don’t know, and weather

is a function of the particular day and hour of the year. The consumption of electricity in Kwh

actually recorded for any period of time P , can be written as follows,

Q(j, P ) =
1

2

∑
i∈P

PM(j, i) = PMY (j) · C(j, i)

where the index i = (w, d, h) contains all the information on time and weather and has a

frequency of half an hour (reason why the sum is divided by 2 to report hourly consumption

of Kw). From here we can derive the yearly average consumption given by,

PMY (j) =
2Q(j, P )∑
i∈P C(j, i)

.

Figure 1 illustrate the procedure with an example. The green flat line is the observed

average consumption within the observation period, i.e. six months. The red line is the actual

unknown consumption. The yellow smooth line is the imputed consumption that derives from

the application on the coefficients associated to the profile, while the blue line takes into account

also the weather. The blue line is assumed to be the best predictor of real consumption at any

point in time.

Once we know the average consumption per year and the coefficients C(j, i) we can calculate

the consumption per any half an hour for each meter in our data set and aggregate as needed

to find daily, weekly, monthly or semi-annual consumptions. As a result, we end up with a
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Figure 1: Example of an imputed profile

data set in which we have recorded the meter identifier; a variable the identifies if consumption

is during peak/off-peak hours; the calendar month and total consumption during the month.

For the period we cover we have about two billions observations.

3.2 Extracting a Sub Sample for the Analysis

Once we have harmonized the observations so that one period observation means the same

period for all meters, given the very large number of observations we have we extract from our

data set a random sample of 1% of all observations. Given the refined geographical indication of

the meters, we merge to our sample a series of other economic variables such as the consumers

price index (CPI), and indicators of the economic activity of the geographical locations (among

them the share of working individuals, the average education etc...).

One first thing to notice is the important difference between the TEMPO and other con-

tracts. While for the one basic price and the two-price contracts prices change deterministically

with time and only within the day, with TEMPO contracts prices can change also by day and,

most importantly, the price applied to each day is chosen by the electricity provider with a few

hours of advance notice. Indeed, the electricity providers strategically set higher prices in those

days when they expect the demand of electricity to be higher (for example cold winter days).

This induces a strong endogeneity to the price for the TEMPO customers that, as we argue

below, is not present for other customers. For this reason, and knowing that they account for

a small portion of the overall market, we exclude TEMPO customers from our analysis.
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4 Analysis

We propose three different specifications for the study of price elasticities. The first specifica-

tion, more canonical, in which we regress electricity consumption on a price per kilowatt/hour

given by the actual price, for those customers that pay only one tariff, or a weighted average

of different prices, for those customers who pay different prices in different times of the day. In

our second specification we follow Filippini (1995) and present an Almost Identical Demand

System (AIDS) model. In our last specification we extend this approach by allowing elasticities

to be season-dependent and differ between summer and winter. In all models we control for

years and months fixed effects as well as weather and another set of economic variables at the

department level that includes the number of days per month in which the temperature exceeds

15 degrees, a threshold of so called comfort under which house heating is probably required;

the actual number of days in a month; the share of homes that are reported as main residences;

the share of dwelling built before 1990; the share of houses over all dwellings. All variables

that help us control for factors that can affect electricity consumption and that, especially in

its time dimension, could also be correlated with the price of electricity. We also add variable

such as the average age of population; the share of the population in the labor force and the

share of college educated.

4.1 Price Setting in France

Estimating the demand elasticity of any good or service is a difficult task as price and quantity

are generally equilibrium objects determined simultaneously. As such, in a simple regression

model such the one we carry on in this paper, a problem of endogeneity arises that could bias

the estimates. That is why most often other models such as instrumental variable are used to

correct for this potential bias. In our case, however, we have good reasons to believe that the

prices of electricity in the French market have a high degree of exogeneity that derives from the

rules the French Government imposes to the price setting of the main company that delivers

electricity.

Electricity in France is mainly produced by EDF, a publicly participated company that

since 1946 has been charged by the Government of France to produce and distribute electricity
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in a regime of quasi-monopoly (i..e it excludes some very large corporations), as a public service.

This regime has been slightly changed in 2007 with the introduction of a competitive market for

electricity provision and the distinction between provision and distribution of electricity. The

company ERDF, later ENEDIS, was created and kept fully in a monopoly regime under the

government for the distribution of electricity, while together with EDF, still largely participated

and controlled by the government, other companies were allowed to provide energy to the final

customer, by using ENEDIS for distribution. However, the competition has been asymmetric

in that EDF has kept a regime of price setting entirely decided by the government while

other other companies were allowed to offer different schedules. Those companies though, still

face the same prices of EDF at source hence their competition is mainly exercised by offering

different schedules between fixed price and peak/off-peak tariffs. The price setting of EDF is

quite transparent: the variable part reflects the marginal cost of producing electricity, while

the fixed cost is calculated to cover the investment part needed to keep the capacity to produce

and deliver electricity. Therefore, we are quite confident that the EDF pricing schedules can be

taken exogenously in our analysis, while we would be less confident for the part of customers

that rely on the “market” pricing that compete with EDF. Fortunately, while our data cover

a time span from 2007 to 2015, that is after the opening to competition, up to 2015 only a

small portion of the French customers have chosen to rely on competition. In 2014 the share

of those that chose market prices was only 6.7%, while in 2017 rose to 13%. That means that

most of our observations have prices set by EDF.1

4.2 One-Price Model

Our preferred specification for the estimation of the elasticity with respect to its own price is a

fixed effects regression model in which we control for time variables, i.e. years and months (for

seasonality effects as long as year effects). Price and consumption are measured at the meter

level. We also include economic and demographic variables by location that we think may

affect the relationship between the consumption and the price of electricity. These variables

are collected at the department level and associated to the meters depending on their locations.

The average price for the basic customer is given by the variable component of the actual price

1See http://www.cre.fr/marches/marche-de-detail/marche-de-l-electricite for a full description.
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paid. For customers who pay two variable prices for peak and off-peak consumption, the

average is taken weighting by the share of total consumption at that price. That is, let Ci be

the consumption for price Pi, and let C be total consumption such that

C =
n∑
i

Ci

with n = 2, then we define the average variable price as

P =
n∑
i

WiPi

with

Wi =
Ci

C
.

Moreover, all prices are expressed in constant 2005 euros as we deflate them using the CPI

index.

4.3 Two-Price Model

Another set of models we estimated, to retain interesting information on the behaviour of

households in terms of reacting to the difference in price within different time segments of the

day are the Almost Identical Demand System (AIDS) class of models. We follow Filippini

(1995) and replicate its study done for Swiss customers using our much more comprehensive

data set.2 In order to make our estimates comparable with those in Filippini, we build our

dependent variable to represent the share of the electricity expenditure during peak and off-

peak hours. That is, rather than raw consumption of electricity, we calculate the total variable

expenditure in electricity and then the share during the two time segment of the day as follows,

m =
2∑
i

CiPi

wi =
CiPi

m

where m is the total variable expenditure in electricity.

2Naturally we restrict our sample to only those customers who pay two prices and exclude those who pay

only one price as well as the TEMPO customers.
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As independent variables we use the log of the prices of the two time segments and the log of

total expenditure in real terms for electricity. We repeated the estimation for the whole sample

and also distinguishing winter and summer seasons. This model estimates partial elasticities

of the demand of electricity in the two time segments conditional on a total consumption of

electricity kept constant. To this extent it gives us additional information on how customers

that face two different prices, allocate their consumption in one or the other segment when

the relative price changes. These models do not tell us the overall change in consumption of

electricity with respect to its price, as the one-price model does.

The equations we estimated have the following form,

wi = µi +
∑
j

γij logPij + βp log
m

P
+X ′θ (1)

where, i = p, o, j = p, o for peak and off-peak and P is the Stone index of the price of

electricity:

P =
∑
j

wj logPj (2)

and finally X ′θ is a set of demand shifters that can affect the demand of electricity.

In addition, homogeneity and symmetry are imposed to the estimation by restricting the

parameters such that,∑
i γij = 0 and γij = γji

Own price and cross elasticities can be computed as follows,

ε̂ii = −1 +
γ̂ii
ŵi
− β̂m (3)

ε̂ij =
γ̂ij
ŵi
− β̂m

ŵj

ŵi
(4)

where the share of the electricity expenditures can be estimated by the average over the

sample.

Finally, the elasticity of substitution is obtained by,

σ̂ij = 1 +
γ̂ij
ŵiŵj

(5)
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5 Results

Tables 1 report the results relative to the one-price model. The elasticity of the demand of

electricity with respect to its own price is about -0.8. Our result seems to be in line with esti-

mates obtained in other studies especially for European countries. For example Krishnamurthy

and Kristrm (2015) find, using very different data, an elasticity for France of -0.96, quite close

to our result. To notice also that the correlation between the consumption of electricity and

its fixed price is positive. This result is induced by the structure of the contracts that make

pay more those households that need larger power absorbtion, and, therefore, will inevitably

consume more. For this reason, and being impossible to disentangle this effect from the elas-

ticity effect of price on demand, we include the fixed price to control for power subscription

but do not interpret this coefficient as an effect of price on demand. This also suggests that

using the average price to estimate the elasticity of electricity implies a downward bias as the

fix component of the average price will tend to counter the negative relationship between the

price per Kw and the consumption of electricity.

In Table 2 we reproduce the previous model but for seasonal consumption. That is, we

split the same for winter and summer consumption and look at the elasticity during those two

different seasons. As we can observe from the Table, the elasticity in winter results higher than

in summer. To some extent this may seem counter intuitive as during winter months customers

consume more electricity needing more electricity for heating. However, heating electricity can

be derived by different sources such as fuel, gas, etc... and, in fact, the market offers more

choices for heating needs than for other types of energy consumption. This probably explains

why during winter customers are more sensitive to the price of electricity. During summer

months, instead, the demand of energy is generally lower but often more difficult to be satisfied

by alternative sources of energy.

5.1 Almost Identical Demand System

As our data records actual electricity consumption and actual variable prices directly related

to peak and off-peak consumption, we can replicate, using our large and representative dataset,

the AIDS model used in Filippini et Al. (1995) and extend it to a seasonal model as well. The
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Table 1: One-Price Model

Variable Parameter Estimate Standard Error

Intercept 0.7769 0.0117

logP -0.7997 0.0031

logPfixed 1.1044 0.0006

TR 0.0002 0.0000

Nj -0.0035 0.0001

Time Dummies yes

System R-Square 0.2989

Dependent Variable: Consumption of electricity. For more details on the control variables see Table A.1

Table 2: One-Price Seasonal Model

Winter Summer

Variable Parameter Estimate Standard Error Parameter Estimate Standard Error

Intercept -0.7053 0.0225 0.9075 0.0150

logP -1.1611 0.0050 -0.6358 0.0039

logPfixed 1.2279 0.0009 1.0089 0.0007

TR 0.0002 0.0000 0.0003 0.0000

Time Dummies yes yes

System R-Square 0.3054 0.2630

Dependent Variable: Consumption of electricity. For more details on the control variables see Table A.2

AIDS model gives us additional information on how customers shift their consumption from one

time segment to another when the relative price of consumption in those segments changes,

and, as such, adds precious information on the behavior of customers. Table 3 reports the

results from the general regression model, while Table 4 reports the implied elasticities. Our

results are immediately comparable with the estimates of Filippini as, except for the variables

we control for, the methodology is exactly the same. We therefore include the estimates from
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his study in column 2. Our estimates are remarkable close to the estimates of Filippini even

though our data are for a different country and for a different period. Especially the price

elasticity for peak hours is -1.47 in our study compared to -1.41 in Filippini, therefore basically

the same. Our off-peak elasticity results instead lower, but it is still higher than the elasticity

for peak hour. This result is quite expected as off-peak are low demand hours and customers

decide to shift from peak to off-peak to take advantage of lower prices. Overall, the elasticity

of substitution tells us that for our estimates the two segments are slightly less substitutable

than in Filippini, but the substitution is still substantial.3 Table 5 shows the results for the

seasonal model, i.e. the estimates are taken only for winter or for summer months. In this

case we can notice that the estimates are not very different in the two seasons, however we see

slightly higher elasticities during summer compare to winter. The one-price model told us that

the overall elasticity of the demand of electricity with respect to the one average variable price

is higher in winter than in summer, however, the two-price model tells us that conditional on

reacting more strongly to the average price in winter, the allocation between peak and off-peak

during this time is more rigid.

6 Conclusion

In this paper, we use data of electricity consumption within France from 2007 and 2015 and

estimate the price elasticity of electricity expenditure of private households. We propose three

different specifications for the study of price elasticity. We first regress electricity consumption

on a price per kilowatt/hour and find an elasticity of electricity consumption on price equal

to -0.8, a result remarkably in line with the previous literature. In our second specification

we follow Filippini (1995) and estimate an Almost Identical Demand System (AIDS) model

obtaining results very similar results in spite of the different data we use. In particular price

elasticities of -1.46 and -1.86 for peak and off-peak prices (Filippini reports -1.41 and -2.57).

Finally, we extend the AIDS model allowing elasticities to be season-dependent and differ

3The difference might be due to the fact that the share of electric heating in the total of electricity con-

sumption in Switzerland is lower (in %) than in France while the consumption component of electricity due to

heating is though to be the least elastic among households.
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Table 3: Two-Price AIDS Model

Variable Parameter Estimate Standard Error

Intercept 0.1443 0.0009

logPp -0.3025 0.0002

logPo 0.3025 0.0002

log m
P -0.0087 0.0001

logPfixed -0.0328 0.0001

TR -0.0001 0.0000

Nj 0.0031 0.0000

Time Dummies yes

System R-Square 0.2974

N. Obs . 16,133,468

Dependent Variable: Share of consumption of electricity during peak hours. The SYSLIN Procedure Iterative

Seemingly Unrelated Regression Estimation.

Table 4: Price Elasticity of Electricity Demand - ERDF (Two Price Model)

This Study Filippini 1995a

Price elasticity, peak -1.47 - 1.41

Price elasticity, off-peak -1.87 - 2.57

Cross-price elasticity peak/off-peak 0.46 0.41

Cross-price elasticity, off-peak/peak 0.85 1.57

Elasticity of substitution 2.32 2.98
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Table 5: Price Elasticity of Electricity Demand - ERDF (Two Price Seasonal Model)

This Study Filippini 1995a

Winter Summer

Price elasticity, peak -1.42 -1.63 - 1.41

Price elasticity, off-peak -1.80 -2.11 - 2.57

Cross-price elasticity peak/off-peak 0.41 0.61 0.41

Cross-price elasticity, off-peak/peak 0.78 1.08 1.57

Elasticity of substitution 2.20 2.72 2.98

between summer and winter. In our seasonal model we report elasticities for winter of -1.45

and -1.85, and for summer slightly higher in absolute value, equal to -1.61 and -2.08. In all

models we control for years and months fixed effects as well as weather and another set of

economic variables at the department level.
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7 Appendix

This appendix contains more details of the regressions presented in the text.

Table A.1: Full Regression for Table 1

Variable Par. Est. Std Error

Intercept 0.7681 0.0118

lp -0.7992 0.0031

lfix 1.1044 0.0006

TR 0.0002 0.0001

Nj -0.0035 0.0001

Txactifs 0.4117 0.0066

AgeMoyenPop -0.0083 0.0001

TXresPrinc 1.2524 0.0033

TxMaison 0.4005 0.0013

TxNonScolariseDiplomesSupBac 0.0968 0.0032

TxResConbstrAv1990 -0.5468 0.0106

OilPrice 0.0002 0.0000

Time Fixed Effects YES

Number of Obs. 19,768,361

R-Square 0.2989

Dependent variable lc: (natural) log of consumption; lp: (natural) log of average variable price; lfix: (natural) log

of fix price; TR: number of days in which the temperature is below 15 degree C; Nj: number of days recorder in

the month; Txactifs: Share of people in the labor force; AgeMoyenPop: Average age of population; TXresPrinc:

Share of home as main residence; TxMaison: Share of houses over all dwellings; TxNonScolariseDiplomesSupBac:

Share of College Educated; TxResConbstrAv1990: Share of Dwelling built before 1990.
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Table A.2: Full Regression for Table 2

Winter Summer

Variable Par. Est. Std Error Par. Est. Std Error

Intercept -0.7054 0.0225 0.9075 0.0150

lp -1.1611 0.0050 -0.6358 0.0040

lfix 1.2279 0.0009 1.0089 0.0007

TR 0.0003 0.0000 0.0003 0.0000

Nj 0.0000 0.0005 0.0021 0.0002

Txactifs 0.7482 0.0105 0.1825 0.0085

AgeMoyenPop -0.0086 0.0001 -0.0081 0.0001

TXresPrinc 1.3117 0.0053 1.2192 0.0043

TxMaison 0.4476 0.0021 0.3686 0.0017

TxNonScolariseDiplomesSupBac 0.0299 0.0051 0.1396 0.0042

TxResConbstrAv1990 -0.6773 0.0168 -0.4890 0.0136

OilPrice 0.0002 0.0000 -0.0002 0.0001

Time Fixed Effects YES YES

Number of Obs. 8,455,612 11,312,749

R-Square 0.3054 0.2630

Dependent variable lc: (natural) log of consumption; lp: (natural) log of average variable price; lfix: (natural) log

of fix price; TR: number of days in which the temperature is below 15 degree C; Nj: number of days recorder in

the month; Txactifs: Share of people in the labor force; AgeMoyenPop: Average age of population; TXresPrinc:

Share of home as main residence; TxMaison: Share of houses over all dwellings; TxNonScolariseDiplomesSupBac:

Share of College Educated; TxResConbstrAv1990: Share of Dwelling built before 1990.
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