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A primary motivation of this contribution is to define new locally
stationary Markov models for categorical or integer-valued data. For
this initial purpose we propose a new general approach for dealing
with time-inhomogeneity that extends the local stationarity notion
developed in the time series literature. We also introduce a probabilis-
tic framework which is very flexible and allows us to consider a much
larger class of Markov chain models on arbitrary state spaces, includ-
ing most of the locally stationary autoregressive processes studied in
the literature. We consider triangular arrays of time-inhomogeneous
Markov chains, defined by some families of contracting and slowly-
varying Markov kernels. The finite-dimensional distribution of such
Markov chains can be approximated locally with the distribution of
ergodic Markov chains and some mixing properties are also available
for these triangular arrays. As a consequence of our results, some clas-
sical geometrically ergodic homogeneous Markov chain models have a
locally stationary version, which lays the theoretical foundations for
new statistical modeling. Statistical inference of finite-state Markov
chains can be based on kernel smoothing and we provide a complete
and fast implementation of such models, directly usable by the prac-
titioners. We also illustrate the theory on a real data set. A central
limit theorem for Markov chains on more general state spaces is also
provided and illustrated with the statistical inference in INAR mod-
els, Poisson ARCH models and binary time series models. Additional
examples such as locally stationary regime-switching or SETAR mod-
els are also discussed.

1. Introduction. Markov chains are one of the most basic examples of
random sequences used for the statistical modeling of dependent data. For
instance, finite-state Markov chains have important applications in queuing
systems (see for instance Bolch et al. [7]), for the modeling of DNA sequences
(see Avery and Henderson [3]) or in computer networks (see for instance
Sarukkai [42]). Moreover, some classical time series models based on AR
or ARCH processes can be seen as particular examples of Markov chains
on a continuous state space. Other examples concern integer-valued time
series modes such as the INAR process introduced by Al Osh and Alzaid
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[1] or the Poisson autoregressive process studied for instance in Fokianos
et al. [24]. Another type of Markov chain widely encountered in time series
analysis is the Markov-switching process introduced initially by Hamilton
[30] in economics.

However, a crucial limitation of Markov chain models is their time ho-
mogeneity. In practice, this assumption is violated for many data sets. For
instance, analyzing the trading activity of a traded share on the Johannes-
burg Stock Exchange (the data are binary and the sequence takes the value
1 if a trading has been recorded at time t), we have estimated locally the
probability of recording a trade at time t for two traded shares (see Sec-
tions 5 and 6.2 for details on the data set and for the smoothing used for
this estimation). Figure 1 suggests that the marginal distributions of both
sequences are far from being time-invariant.
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Fig 1. Local estimation of the probability to record a trade for the share ”Anamint” (in
blue) and ”Broadcares” (in red). The x−axis represents the time and the y−axis, the
estimated local probability.

Motivated by this type of problem, in this paper, we develop a proba-
bilistic framework for defining time-inhomogeneous Markov chain models
on arbitrary state spaces and which is can used for statistical inference.
Time-inhomogeneous Markov chains have received much less attention in
the literature than their homogeneous analogues. Such chains have been
studied mainly for their long-time behavior, often in connection with the
convergence of stochastic algorithms. An introduction to inhomogeneous
finite-state Markov chains can be found in Seneta [43] and their use in Monte
Carlo methods is discussed in Winkler [51]. More recent quantitative results
for their long-time behavior can be found for instance in Douc et al. [19]
for general state spaces, and Saloff-Coste and Zúñiga [40] or Saloff-Coste
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and Zúñiga [41] for finite state spaces. In this paper, we consider inhomoge-
neous Markov chain models for applications in statistics, in the spirit of the
notion of local stationarity introduced by Dahlhaus [12]. Locally stationary
processes have received considerable attention over the last twenty years, in
particular for their ability to model data sets for which time-homogeneity
is unrealistic. Locally stationary, autoregressive processes (here with one
lag for simplicity) can be defined by modifying a recursive equation fol-
lowed by a stationary process. If (Xk)k∈Z is a stationary process defined by
Xk = Fθ (Xk−1, εk), where (εk)k∈Z is a sequence of i.i.d. random variables
and θ ∈ Θ is a parameter, its locally stationary version is usually defined
recursively by

(1) Xn,k = Fθ(k/n) (Xn,k−1, εk) , 1 ≤ k ≤ n,

where θ : [0, 1]→ Θ is a smooth function. This formalism was exploited for
defining locally stationary versions of classical time-homogeneous, autore-
gressive processes. See for instance Dahlhaus and Subba Rao [13], Subba Rao
[45] or Vogt [50]. The term local stationarity comes from the fact that, under
some regularity conditions, if k/n is close to a point u of [0, 1], Xn,k is close
in some sense to Xk(u) where (Xk(u))k∈Z is the stationary process defined
by

(2) Xk(u) = Fθ(u) (Xk−1(u), εk) , k ∈ Z.

General Markov models of this type are considered in the recent paper of
Dahlhaus et al. [14]. However, the models we will consider in this paper
can have a quite different structure. They can be defined by a conditional
distribution (finite-state Markov chains, Poisson ARCH processes, Logistic
autoregressive processes), the autoregressive representation may have differ-
ent shape (INAR processes) or some discontinuities (SETAR models). It is
then unclear how to define local stationarity in this context. Note also that
the current approach for defining locally stationary Markov chains consists
in defining a family of autoregressive processes adapted the same sequence of
innovations (εt)t∈Z. A general result, see for instance Theorem 5.24 in Douc
et al. [20], asserts that on general state spaces, every Markov chain can be
represented by an autoregressive process. However, the function F will not
display any useful property in general. Moreover, existing constructions of
locally stationary models such as in Dahlhaus et al. [14] or Vogt [50] assume
some smoothness properties for the random function (u, x) 7→ Fθ(u)(x, ε1).
Clearly, this approach is not adapted to finite-state Markov chains and then
to more general models such as Markov switching. Moreover, even with a
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natural autoregressive representation, the contraction property in Lp−norms
required in Dahlhaus et al. [14] is invalid for stationary SETAR processes.

On the other hand, some properties of time-homogeneous Markov chains
are derived more easily by analytical methods. For instance the ergodicity
properties of finite-state Markov chains are easily derived form the transition
matrix and this example was a motivation to define a local stationarity
notion by using properties of the probability distributions instead an almost
sure autoregressive representation.

Let us now give the framework used in the rest of the paper. Let (E, d) be
a metric space, B(E) its corresponding Borel σ−field and {Qu : u ∈ [0, 1]}
a family of Markov kernels on (E,B(E)). By convention, we will assume
that Xn,0 has the probability distribution π0. We remind the reader that a
Markov kernel R : E×B(E)→ [0, 1] on (E,B(E)) is an application such that
for all (y,A) ∈ E × B(E), the application x 7→ R(x,A) is measurable and
the application A 7→ R(x,A) defines a probability measure. We will consider
triangular arrays {Xn,j : 1 ≤ j ≤ n, n ∈ Z+} such that for all n ∈ Z+, the
sequence (Xn,j)1≤j≤n is a non homogeneous Markov chain such that

P (Xn,k ∈ A|Xn,k−1 = x) = Qk/n(x,A), 1 ≤ k ≤ n.

The family {Qu : u ∈ [0, 1]} of Markov kernels will always satisfy some reg-
ularity conditions and contraction properties. Precise assumptions will be
given in the three following sections, but from now on, we assume here that
for all u ∈ [0, 1], Qu has a single invariant probability measure denoted by
πu. It could be also convenient to define all the random variables Xn,k on
the same probability space, in particular for different values of the integer n.
However, the dependence of two Markov chains with distinct values of n has
no importance in our study and one can simply assume mutual independence
between the lines of this triangular array.

For all positive integers j and k such that k + j − 1 ≤ n, we denote by

π
(n)
k,j the probability distribution of the vector (Xn,k, Xn,k+1, . . . , Xn,k+j−1)

and by πu,j the corresponding finite dimensional distribution for the ergodic
chain with Markov kernels Qu. Loosely speaking, the triangular array will
be said to be locally stationary if for all positive integer j, the probability

distribution π
(n)
k,j is close to πu,j when the ratio k/n is close to u. For com-

patibility and simplicity of our notations, the measures π
(n)
k,1 (resp. πu,1) will

be simply denoted by π
(n)
k (resp. πu). A formal definition is given below. For

all integers j ≥ 1, we denote by P(Ej) the set of probability measures on(
Ej ,B(Ej)

)
.
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Definition 1. Let ϑ = (ϑj)j≥1 ∈
∏
j≥1 P(Ej) be a sequence of proba-

bility measures which define a stronger topology than weak convergence. The
triangular array of inhomogeneous Markov chains {Xn,k, n ∈ Z+, 1 ≤ k ≤ n}
is said to be ϑ−locally stationary if the two following conditions are satisfied.

1. For all j ≥ 1, the application u 7→ πu,j is continuous from ([0, 1], | · |)
to
(
P(Ej), ϑj

)
.

2. For all j ≥ 1, lim
n→∞

sup
1≤k≤n−j+1

ϑj(π
(n)
k,j , π k

n
,j) = 0.

Note that Definition 1 is not restricted to Markov chains and can be used
as a general definition for local stationarity of time series. In this case, the
πu,j ’s are simply the finite dimensional distributions (f.d.d. in the sequel)
of some stationary time series. Under the two conditions of Definition 1,
for all continuous and bounded functions f : Ej → R and some integers
1 ≤ k = kn ≤ n− j + 1 such that limn→∞ k/n = u ∈ [0, 1], we have

lim
n→∞

Ef (Xn,k, . . . , Xn,k+j−1) = Ef (X1(u), . . . , Xj(u)) =

∫
fdπu,j ,

where (Xk(u))k∈Z denotes a stationary Markov chain with transition ker-
nel Qu. Note that the coordinates of this last Markov chain are defined
for convenience but the process need not to be defined on the same prob-
ability space as the triangular array. Definition 1 gives minimal conditions
for defining triangular arrays of random variables for which the f.d.d. are
locally approximable by stationary processes with continuously changing
f.d.d. However, this definition is not sufficient for statistical inference. Mak-
ing a parallel with stationary processes, the simple definition of stationarity
is not sufficient for constructing a valid asymptotic theory and mixing type
conditions for the stochastic process are needed. Additionally, for locally sta-
tionary processes, a rate is needed in point 2. of Definition 1 as well as some
regularity assumptions for the functions u 7→

∫
fdπu,j , j ≥ 1, for example

Lipschitz continuity or existence of some derivatives.
Another important issue is to find some suitable probabilistic metrics

ϑj for which Definition 1 is satisfied. Of course, the metrics ϑj will be of
the same nature for different integers j, e.g. the total variation distance
on P(Ej). In view of the nonparametric estimation of the transition kernel
u 7→ Qu, it is necessary to obtain a convergence rate in the condition 2 of
Definition 1. In this paper, this rate will be obtained using a contraction
property for the Markov kernels function Qu (sometimes after iteration)
as well as Lipschitz continuity of the application u 7→ Qu for the metric
ϑ1. Interestingly, the contraction properties will also guarantee some mixing
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properties for the triangular array and its stationary approximations at the
same time. A direct consequence of these properties is a control of the bias
and the variance of localized partial sums of the process, which is basis for
deriving asymptotic properties of localized minimum of contrast estimators.
See for instance Theorem 4 in Section 4.

In the literature, there exists another recent contribution that defines
local stationarity using probability distances. In Birr et al. [6], the authors
use the Kolmogorov-Smirnov distance to control the approximation of a
locally stationary process by a stationary one. However this metric is only
interesting for finite-dimensional state-spaces and more natural for E = Rd.
Since this metric will not provide additional examples of locally stationary
Markov chains, we will not use it and we will focus in this paper on three
types of metrics of classical use for studying geometric ergodicity properties
of Markov chains. To this end, we will extensively make use of the so-called
Dobrushin’s contraction coefficient.

Let us also mention that our approach provides a rigorous framework to
some previous contributions devoted to the fitting of time-inhomogeneous,
finite-state Markov chains. The approach of Vergne [48] for modeling DNA
sequences, Rajagopalan et al. [38] in hydrology or Brillinger et al. [10], are
also closely related to the concept of local stationarity but no precise sta-
tistical model is introduced to support the applications considered in these
papers. In a different context, one can also mention the work of Hall and
Bura [29] which is devoted to the nonparametric estimation of nonhomoge-
neous continuous time Markov process sampled at i.i.d. random times.

The paper is organized as follows. In Section 2, we consider the total
variation distance. This is the metric for which the contraction coefficient
for Markov kernels has been introduced originally by Dobrushin [17]. Con-
traction properties of the kernels Qu or their iteration with respect to this
metric is mainly adapted to compact state spaces and will enable us to con-
sider a model of inhomogeneous finite-state space Markov chains for which
we will study a nonparametric estimator of the time-varying transition ma-
trix. Our results in total variation apply when all the Markov kernels Qu
are absolutely continuous with respect to a given reference measure.

In Section 3, we consider Markov kernels contracting in Wasserstein met-
rics. The contraction coefficient for the Wasserstein metric of order 1 has
been first considered by Dobrushin [18] for giving sufficient conditions under
which a system of conditional distributions defines a unique joint distribu-
tion. Our goal in this section will be simply to show that many autoregressive
processes with time-varying coefficients considered in the literature satisfy
our assumptions and can be seen as particular examples of our general ap-
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proach. In Section 4, we extend the results of Section 1 by considering some
Markov kernels which satisfy classical drift/small set conditions. The results
of Section 2 can be deduced from the results of Section 4. However for the
reader’s convenience, we present a separate result for compact state spaces
with sharper mixing properties. Our third approach is illustrated with sev-
eral new examples of locally stationary processes, including INAR processes,
Markov switching autoregressive processes and SETAR models. We also dis-
cuss statistical inference for some of these models, such as INAR, Poisson
ARCH and binary time series, using local least-squares or local likelihood es-
timators. Section 5 is devoted to the practical implementation of finite-state
Markov chains and in Section 6, we consider an illustration on a real data
set. A discussion of our results and a guideline for applying them is given
in Section 7. The proofs of all our results are available in the supplemen-
tary material which also contains additional examples of locally stationary
Markov chains as well as a discussion of the mixing properties of the Markov
chains studied in Section 3.

2. Total variation distance and finite-state space Markov chains.
This section is mainly motivated by finite-state Markov chains. The limit-
ing behavior of finite-state Markov chains is often studied using the total
variation distance. See for instance Seneta [43] or Winkler [51]. However,
the result stated in this section can be used to construct locally stationary
Markov chains on more general compact state spaces. Let us first intro-
duce some notations that we will extensively use in the rest of the paper.
If µ ∈ P(E) and R is a probability kernel from (E,B(E)) to (E,B(E)), we
will denote by µR the probability measure defined by

µR(A) =

∫
R(x,A)dµ(x), A ∈ B(E).

Moreover if f : E → R is a measurable function, we set µf =
∫
fdµ and

Rf : E → R will be the function defined by Rf(x) =
∫
R(x, dy)f(y), x ∈ E,

provided these integrals are well defined. Finally, the Dirac measure at point
x ∈ E is denoted by δx.

2.1. Contraction and approximation result for the total variation distance.
We remind the reader that the total variation distance between two proba-
bility measures µ, ν ∈ P(E) is defined by

‖µ− ν‖TV = sup
A∈B(E)

|µ(A)− ν(A)| = 1

2
sup
‖f‖∞≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ,
where for a measurable function f : E → R, ‖f‖∞ = supx∈E |f(x)|.
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For the family {Qu : u ∈ [0, 1]}, the following assumptions will be needed.

A1 There exists an integer m ≥ 1 and r ∈ (0, 1) such that for all (u, x, y) ∈
[0, 1]× E2,

‖δxQmu − δyQmu ‖TV ≤ r.

A2 There exists a positive real number L such that for all (u, v, x) ∈ [0, 1]2×
E,

‖δxQu − δxQv‖TV ≤ L|u− v|.

The Dobrushin contraction coefficient of a Markov kernel R is defined by

c(R) = sup
µ6=ν∈P(E)

‖µR− νR‖TV
‖µ− ν‖TV

= sup
(x,y)∈E2

‖δxR− δyR‖TV .

See for instance Bartoli and Del Moral [4], Theorem 4.3.3, for a proof of the
second equality. Note that c(R) ∈ [0, 1]. Hence, assumption A1 means that
supu∈[0,1] c (Qmu ) < 1. We will still denote by ‖ · ‖TV the total variation
distance (or the total variation norm if we consider the space of signed mea-
sures) on P(Ej) for any integer j. Moreover, let (Xk(u))k∈Z be a stationary
Markov chain with transition kernels Qu, for u ∈ [0, 1]. We remind the reader

that for an integer j ≥ 1, π
(n)
k,j (resp. πu,j) denotes the probability distribu-

tion of the vector (Xn,k, . . . , Xn,k+j−1) (of the vector (Xk(u), . . . , Xk+j−1(u))
resp.). The following result is proved in the supplementary material, Section
1.

Theorem 1. Suppose that Assumptions A1−A2 hold. Then for all
u ∈ [0, 1], the Markov kernel Qu has a unique invariant probability measure
πu. The triangular array of Markov chains {Xn,k, n ∈ Z+, k ≤ n} is locally
stationary for the total variation distance. Moreover, all integers j ≥ 1, there
exists a positive real number Cj, not dependent on k, n, u and such that

(3) ‖π(n)
k,j − πu,j‖TV ≤ Cj

[∣∣∣∣u− k

n

∣∣∣∣+
1

n

]
.

Notes.

1. Assumption A1 is satisfied if there exist a positive real number ε, a
positive integer m and a family of probability measures {νu : u ∈ [0, 1]}
such that

Qmu (x,A) ≥ ενu(A), for all (u, x,A) ∈ [0, 1]× E × B(E).

In the homogeneous case, this condition is the so-called Doeblin’s con-
dition (see Meyn and Tweedie [36], Chapter 16 for a discussion about
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this condition). Note that the lower bound is uniform with respect to
x and Doeblin’s condition is then mostly interesting when E is com-
pact. To show that this condition is sufficient for A1, one can use the
inequalities

Qmu (x,A)−Qmu (y,A) ≤ 1− ε+ ενu(E \A)−Qmu (x,E \A) ≤ 1− ε.

For a Markov chain with a finite state space, the Doeblin’s condition
is satisfied if min(x,y)∈E2 infu∈[0,1]Q

m
u (x, y) > 0, with νu the counting

measure on E.
2. One can also consider more general state spaces E. Set Qu(x, dy) =
f(u, x, y)µ(x, dy) where µ is a probability kernel and the family of
conditional densities {(x, y) 7→ f(u, x, y), u ∈ [0, 1]} satisfies

inf
(u,x,y)∈[0,1]×E2

f(u, x, y) ≥ ε, sup
x,y∈E

|f(u, x, y)− f(v, x, y)| ≤ C|u− v|,

for positive constants ε and C. In this case, setting L = C/2 for A2,
we have

‖δxQu − δxQv‖TV =
1

2

∫
|f(u, x, y)− f(v, x, y)|µ(x, dy) ≤ L|u− v|.

3. One can also consider higher-order Markov processes, in particular
higher-order finite-state Markov chains. For instance if
{S(u,x, dy) = f(u,x, ym)γ(x, dym), u ∈ [0, 1]} is a family of probabil-
ity kernels from (Em, E⊗m) to (E, E), we define Qu as the probability
kernel from (Em, E⊗m) to itself such that

Qu(x, dy) = f(u,x, ym)µ(x, dy), µ(x, dy) =
m−1∏
i=1

δxi+1(dyi)γ(x, dym).

If f is lower bounded, then the Doeblin condition is satisfied for Qmu .
See model (4) discussed below for a particular example of this type.
Note that this approach allows to define a nonparametric model in
time and space.

2.2. Uniform mixing properties. In this subsection, we consider the prob-
lem of mixing for the locally stationary Markov chains introduced previously.
Such mixing conditions will be crucial to control the limiting behavior of
partial sums of locally stationary Markov chains. Under our contraction as-
sumptions (see Assumption A1), the stationary Markov chains with Markov
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kernels Qu are uniformly geometric ergodic and the following φ−mixing co-
efficients are adapted to our purpose. If 1 ≤ i ≤ j ≤ n, we set

F (n)
i,j = σ (Xn,` : i ≤ ` ≤ j) .

Now we set for 0 ≤ j ≤ n− 1,

φn(j) = max
1≤i≤n−j

sup
{
|P (B|A)− P(B)| : B ∈ F (n)

i+j,n, A ∈ F
(n)
1,i ,P(A) 6= 0

}
.

We will say that the triangular array is φ−mixing (or uniformly mixing)
if φ(j) = supn≥j+1 φn(j) →j→∞ 0. For a time-homogeneous Markov chain,
φ−mixing is equivalent to uniform ergodicity (see Ibragimov and Linnik [32],
p. 368). Under our assumptions, the φ−mixing coefficients decrease expo-
nentially fast. A proof of the following result is given in the supplementary
material, Section 3.1.

Proposition 1. Assume that assumptions A1−A2 hold true. Then
there exist C > 0 and ρ ∈ (0, 1), only depending on m,L and r such that

φ(j) ≤ Cρj .

2.3. Finite state space Markov chains. This part is devoted to the ex-
ample of finite-state Markov chains which was our main motivation for this
paper. Let E be a finite set. In this case, we obtain the following result. Its
proof can be found in the supplementary material, Section 3.2.

Corollary 1. Let {Qu : u ∈ [0, 1]} be a family of transition matrices
such that for each u ∈ [0, 1], the Markov chain with transition matrix Qu
is irreducible and aperiodic. Assume further that for all (x, y) ∈ E2, the
application u → Qu(x, y) is Lipschitz continuous. Then Theorem 1 applies
and the φ−mixing coefficients are bounded as given in Proposition 1.�

2.4. Inference of finite-state Markov chains. We consider the nonpara-
metric kernel estimation of the invariant probability πu or the transition ma-
trix Qu. To this end, a classical method used for locally stationary time series
is based on kernel estimation. See for instance Dahlhaus and Subba Rao [13],
Fryzlewicz et al. [26], Vogt [50] or Zhang and Wu [52] for the nonparamet-
ric kernel estimation of locally stationary processes. Let K : R → R+ be
a probability density, supported on [−1, 1] and of bounded variation. For
b = bn ∈ (0, 1) and Kb(·) = b−1K(·/b), we set

ei(u) = Kb(u− i/n)/

n∑
j=`

Kb(u− j/n), u ∈ [0, 1], ` ≤ i ≤ n.
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LOCAL STATIONARITY AND TIME-INHOMOGENEOUS MARKOV CHAINS 11

Now, we consider some estimators of πu and Qu. Let

π̂u(x) =
n∑
i=2

ei(u)1{Xn,i−1=x} and Q̂u(x, y) =
π̂u,2(x, y)

π̂u(x)
,

where π̂u,2(x, y) =
∑n

i=2 ei(u)1{Xn,i−1=x,Xn,i=y}. Properties of these estima-
tors, which have standard nonparametric rates of convergence, are given in
the supplementary material, Section 3.3.

Notes.

1. The estimator Q̂u is a localized version of the standard estimator used
in the homogeneous case. Let us also mention that our estimators
coincide with the localized maximum likelihood estimator. Indeed the
localized log-likelihood function is defined by

`n(P ) =
n∑
k=2

Kb(u− k/n)
∑

(x,y)∈E2

1{Xn,k−1=x,Xn,k=y} log (P (x, y)) .

Maximizing this contrast with respect to P under the constraints∑
y∈E P (x, y) = 1, x ∈ E, we find a unique solution which is Q̂u.

In the homogeneous case, this result was derived in Billingsley [5]. We
will give a general result for local maximum likelihood estimators in
Section 4.6 in a more general setup.

2. Assuming that u 7→ Qu is of class C3 (i.e. three times continuously
differentiable), on can get a second order approximation of the bias
Eπ̂u(x)− πu(x), u ∈ (0, 1). Here we assume that the kernel K is sym-
metric. Using the perturbation result given in Cao [11], Section 2,
one can show that u 7→ πu(x) is also of class C3. Then, using The-
orem 1 and some standard properties for the kernel K and setting
bn(x) = Eπ̂u(x)− πu(x) and κj =

∫
vjK(v)dv, we get

bn(x) =
n∑
i=2

ei(u)
[
πi/n(x)− πu(x)

]
+O(1/n)

= −bπ′u(x)κ1 +
b2π′′u(x)

2
κ2 +O(b3 + 1/n).

3. One can also study higher-order Markov chains. In this case, vec-
tors of some successive coordinates form a Markov chain of order
one and one can apply Theorem 1. However, the number of transi-
tions increases exponentially fast with the order of the Markov chain.
A solution for getting parsimonious models is to consider the time-
varying versions of the probit or logit models as in Fokianos and
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Moysiadis [23] or Moysiadis and Fokianos [37]. For instance, for bi-
nary time series taking values 0 or 1, one can consider triangular arrays
{Zn,k : 1 ≤ k ≤ n, n ≥ 1} of binary random variables such that

(4) P (Zn,k = 1|Zn,k−j , j ≤ 1) = F

a0(k/n) +

p∑
j=1

aj(k/n)Zn,k−j

 ,
where F is a Lipschitz cumulative distribution function taking values in
(0, 1) and the a′js are Lipschitz continuous functions. Local stationarity
and mixing properties can be obtained for Xn,k = (Zn,k, . . . , Zn,k−p+1)
which defines a time-inhomogeneous Markov chain satisfying the as-
sumptions of Theorem 1. Moreover, statistical inference in such models
can be conducted using local likelihood estimation as in Dahlhaus and
Subba Rao [13] for time-varying ARCH models or Dahlhaus et al. [14].
See Section for a discussion of local maximum likelihood estimation.

3. Local stationarity in Wasserstein metrics. In this section, we
consider another metric for considering additional locally stationary Markov
chains. This part is more illustrative and only of theoretical interest in this
paper. Our aim is to show that many locally stationary autoregressive pro-
cesses introduced in the literature can be seen as particular examples of
locally stationary Markov chains in the sense of Definition 1, using Wasser-
stein metrics. Many examples are given in the supplementary material (see
Section 14) which also contain a discussion about the mixing properties of
such triangular arrays (see Section 5). However, the statistical inference will
not be developed for this part. In this sequel, we consider a Polish space
(E, d). For p ≥ 1, we consider the set Pp(E) of probability measures µ on
(E, d) such that

∫
d(x, x0)pµ(dx) < ∞. Here x0 is an arbitrary point in E.

It is easily seen that the set Pp(E) does not depend on x0. The Wasserstein
metric Wp of order p associated with the metric d is defined by

(5) Wp(µ, ν) = inf
γ∈Γ(µ,ν)

{∫
E×E

d(x, y)pdγ(x, y)

}1/p

where Γ(µ, ν) denotes the collection of all probability measures on E×E with
marginals µ and ν. It is well-known that an optimal coupling always exists
when the state space is Polish. An optimal coupling is a coupling γ which
realizes the infimum in (5). See Villani [49] for the properties of Wasserstein
metrics and the existence of optimal couplings. Note that the total variation
distance can be seen as a particular example of the Wasserstein metric by
setting d(x, y) = 1x 6=y and the case of finite-state Markov chains can be
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LOCAL STATIONARITY AND TIME-INHOMOGENEOUS MARKOV CHAINS 13

treated with the results of this section. However, in this section, we have
in mind the case of an Euclidean norm on E = Rp or more generally a
Banach space (E, ‖ · ‖). In this case, Dedecker and Prieur [16] have defined
some mixing coefficients for contracting Markov chains. But we will keep a
general metric d for the exposure. Note that for a real-valued Markov chain
defined by (2), we have Qu(x,A) = P

(
Fθ(u)(x, ε1) ∈ A

)
and

Wp (δxQu, δyQv) ≤ ‖Fθ(u)(x, ε1)− Fθ(u)(y, ε1)‖p.

This inequality shows that an autoregressive process contracting for the
Lp−norm (i.e the right hand term of the previous equation can be bounded
by α|x−y| with α ∈ (0, 1)) entails a contraction of the corresponding Markov
kernel in Wasserstein metric. This will be a particular case of our general
result.

In the sequel, we will use the following assumptions.

B1 For all (u, x) ∈ [0, 1]× E, δxQu ∈ Pp(E).
B2 There exist a positive integer m and two real numbers r ∈ (0, 1) and

C1 ≥ 1 such that for all u ∈ [0, 1] and all x ∈ E,

Wp (δxQ
m
u , δyQ

m
u ) ≤ rd(x, y), Wp (δxQu, δyQu) ≤ C1d(x, y).

B3 The family of Markov kernels {Qu : u ∈ [0, 1]} satisfies the following
Lipschitz continuity condition. There exists C2 > 0 such that for all
x ∈ E and all u, v ∈ [0, 1],

Wp (δxQu, δxQv) ≤ C2 (1 + d(x, x0)) |u− v|.

Note. If R is a Markov kernel, the Dobrushin contraction coefficient is now

defined by c(R) := supµ 6=ν∈Pp(E)
Wp(µR,νR)
Wp(µ,ν) = sup (x,y)∈E2

x 6=y

Wp(δxR,δyR)
d(x,y) . The

second inequality is guaranteed using Lemma 5 (2.) given in the supplemen-
tary material and the equality Wp(δx, δy) = d(x, y). Then Assumption B2
means that supu∈[0,1] c (Qu) < ∞ and supu∈[0,1] c (Qmu ) < 1. Using straight-
forward arguments, one can check that under Assumptions B1-B3, a chain
with transition kernel Qu is geometrically ergodic and its unique invariant
probability measure πu is Lipschitz continuous with respect to u, for the
metric Wp. See Section 5 in the supplementary material.

Now let us present the main result of this section. For j ∈ N∗, we endow
the space Ej with the distance dj(x, y) = (

∑j
s=1 d(xs, ys)

p)1/p, x, y ∈ Ej .
We will still denote by Wp the Wasserstein metric for Borel measures on
Ej . The proof of the following result can be found in the supplementary
material, Section 4.
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Theorem 2. Assume that assumptions B1−B3 hold true. Then the
triangular array of Markov chains {Xn,k : n ∈ Z+, k ≤ n} is locally station-
ary. For all integers j, there exists a real number C > 0 such that for all
u ∈ [0, 1] and 1 ≤ k ≤ n− j + 1,

Wp

(
π

(n)
k,j , πu,j

)
≤ C

[∣∣∣∣u− k

n

∣∣∣∣+
1

n

]
.

Notes.

1. Theorem 2 can be used to approximate some expectations
∫
fdπ

(n)
k,j

when f : Ej → R is a smooth function. For instance, assume that
there exist C > 0 such that for all (z1, z2) ∈ Ej × Ej ,

|f(z1)− f(z2)| ≤ C
[
1 + dj(z1, x0)p−1 + dj(z2, x0)p−1

]
· dj(z1, z2)

and let γ
(n)
k,u be a coupling of

(
π

(n)
k,j , πu,j

)
. Using the Hölder inequality,

we have, setting q = p
p−1 ,∣∣∣∣∫ fdπ

(n)
k,j −

∫
fdπu,j

∣∣∣∣ ≤ ∫
|f(z1)− f(z2)| dγk,n,u(z1, z2)

≤ C3
q−1
q d

(n)
k,u

(∫
dj(z1, z2)pdγ

(n)
k,u(z1, z2)

)1/p

,

d
(n)
k,u = 1+

(∫
dj(z1, x0)pdπ

(n)
k,j (z1)

)1/q

+

(∫
dj(z1, x0)pdπu,j(z1)

)1/q

.

Then under the assumptions of Theorem 2, there exists a constant
D > 0 such that∣∣∣∣∫ fdπ

(n)
k,j −

∫
fdπu,j

∣∣∣∣ ≤ D [∣∣∣∣u− k

n

∣∣∣∣+
1

n

]
.

2. When E is a separable Banach space, and a stationary Markov ker-
nel is contracting for the Wasserstein metric, Dedecker and Prieur [16]
have defined the coefficients of τ−dependence coefficients for the corre-
sponding Markov chains. Since we will not use these coefficients in the
rest of the paper, we defer the reader to the supplementary material,
Section 7, for a discussion of these coefficients. Using these mixing co-
efficients and the previous point, a study of the asymptotic behavior of
localized partial sums

∑n−j
k=1 ei(u)f (Xn,k, . . . , Xn,k+j−1) as in Section

2 or in Section 4 should be possible. For autoregressive processes con-
tracting in Lp, some results such as Theorem 2.10 in Dahlhaus et al.
[14] can be also obtained from our approach.
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LOCAL STATIONARITY AND TIME-INHOMOGENEOUS MARKOV CHAINS 15

3.1. Examples of locally stationary Markov chains . In this part, we give
two examples different from the standard autoregressive processes considered
in the literature. Additional examples as well as some justifications can be
found in the supplementary material, Section 11.

A locally stationary functional time series. As suggested by one referee, we
give an example of locally stationary functional time series. Stationary func-
tional time series have received a considerable attention over the recent years.
See for instance Horváth and Kokoszka [31] for a recent survey. Here, we pro-
vide a locally stationary version of a very simple functional autoregressive
process. See Horváth and Kokoszka [31], Chapter 13 for a more general sta-
tionary version. Let p = 2, E = L2([0, 1]) and d(x, y)2 =

∫ 1
0 (x(s)− y(s))2 ds.

Let B1, B2, . . . be a sequence of independent Brownian motions over [0, 1].
We assume that

Xn,k(t) =

∫ 1

0
ak/n(t, s)Xn,k−1(s)ds+

∫ 1

0
σk/n(t, s)dBk(s), t ∈ [0, 1],

where the kernel functions au and σu satisfy, for a constant C > 0,

sup
u∈[0,1]

∫ 1

0

∫ 1

0
au(t, s)2dsdt < 1, sup

u∈[0,1]

∫ 1

0

∫ 1

0
σu(t, s)2dsdt <∞,

∫ 1

0

∫ 1

0

[
|au(t, s)− av(t, s)|2 + |σu(t, s)− σv(t, s)|2

]
dsdt < C2|u− v|2.

Here δxQu is defined as the probability distribution of the random vari-
able

∫ 1
0 au(t, s)x(s)ds +

∫ 1
0 σu(t, s)dB1(s). Additional justifications for this

example are given in the supplementary material, Section 6.

Poisson GARCH process. Stationary Poisson GARCH processes are widely
used for analyzing series of counts. See Fokianos et al. [24] for the proper-
ties and the statistical inference of such processes. In this paper, we con-
sider a time-varying version of this model. More precisely, we assume that
the conditional distribution Yn,k|σ (Yn,k−j , j ≥ 1) is a Poisson distribution
of parameter λn,k given recursively by

λn,k = γ(k/n) + α(k/n)Yn,k−1 + β(n, k)λn,k−1, max
u∈[0,1]

[α(u) + β(u)] < 1,

where γ, α, β are positive Lipschitz functions such that To construct a Markov
chain, we consider Xn,k = (Yn,k, λn,k)

′. One can show that our assumptions
are satisfied for p = 1 and d(x, y) =

∑2
i=1 |xi − yi|. A coupling of differ-

ent paths can be obtained using Poisson processes. See the supplementary
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material, Section 8, for details. However, let us mention that this result
only guarantees the approximation of integral

∫
fdπu,j for Lipschitz func-

tions which seems to be too restrictive for statistical inference. On the other
hand, contraction for p > 1 is unclear. Let us also mention that approxima-
tion in Wp−metric, p > 1, seems not satisfying for the Poisson distribution.
Indeed, suppose that µu denotes the Poisson distribution of parameter λu.
Since xp ≥ x for any nonnegative integer x, we have

Wp (µu, µv) ≥W1 (µu, µv)
1/p = |λu − λv|1/p .

Then if u 7→ λu is differentiable, we have Wp (µu+h, µu) ∼ h1/p in a neigh-
borhood of point u. Then the regularity in Wp−metric is only of Hölder type
even for a smooth functional parameter which is an undesirable property.
This is why for integer-valued processes, we will use the results of the next
section which will give sharper results for the approximation of the station-
ary distributions. Unfortunately, the assumptions will be only satisfied for
the Poisson ARCH process (β = 0). See Section 4.3 for details.

4. Local stationarity from drift and small set conditions. Our
motivation for this section is to define some locally stationary versions of
Markov chains models that satisfy a drift and a small set condition. This
approach will be interesting for unbounded state spaces and models for which

1. the Doeblin condition discussed in Section 2 does not hold,
2. it is difficult or even impossible to get a natural coupling of the Markov

kernels in such a way the contraction and continuity conditions B2-B3
are satisfied when E is a separable Banach space.

This is in particular the case for some integer-valued autoregressive processes
such as Poisson ARCH, for which we already mentioned the difficulties in
using the Wp−metric for p > 1. But we will also consider additional mod-
els such as Markov-switching or SETAR processes for which contraction in
Wassertein metric with the euclidean metric seems difficult to get. This sec-
tion can be seen as an extension of the Dobrushin’s contraction technique
used in Section 2. A key point for this is a result obtained by Hairer and
Mattingly [28] who revisited geometric ergodicity using contraction proper-
ties of Markov kernels with respect to some V−norms. This result can also
be found in Douc et al. [20], Lemma 6.29, a reference in which the authors
give many examples of autoregressive processes satisfying the corresponding
assumptions. From this important result (see Lemma 6 in the supplemen-
tary material for a statement in our context), we will consider additional
examples of locally stationary Markov chains with unbounded state spaces.
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LOCAL STATIONARITY AND TIME-INHOMOGENEOUS MARKOV CHAINS 17

For a positive real number ε and a positive integer m, we set

Im(ε) = {(u1, . . . , um) ∈ [0, 1]m : |ui − uj | ≤ ε, 1 ≤ i 6= j ≤ m} .

For a function V : E → [1,∞), we define the V−norm of a signed measure
µ on

(
Ej ,B(Ej)

)
by

(6) ‖µ‖V = sup

{∫
fdµ : |f(x1, . . . , xj)| ≤ V (x1) + · · ·+ V (xj)

}
.

4.1. General result. Let V : E → [1,∞) be a measurable function, ε a
positive real number and m a positive integer. We will use the following
assumptions.

F1 there exist λ ∈ (0, 1) and two real numbers b > 0,K ≥ 1 such that for
all (u1, . . . , um) ∈ Im(ε),

Qu1V ≤ KV, Qu1 · · ·QumV ≤ λV + b.

F2 There exist η > 0, R > 2b/(1− λ) (λ and b are defined in the previous
assumption) and a probability measure ν ∈ P(E) such that for

δxQu1 · · ·Qum ≥ ην, if V (x) ≤ R,

F3 there exists a function Ṽ : E → (0,∞) such that supu∈[0,1] πuṼ < ∞
and for all x ∈ E, ‖δxQu − δxQv‖V ≤ Ṽ (x)|u− v|.

We first give some properties of the Markov kernels Qu with respect to
the V−norm. The proof of the next proposition can be found in the supple-
mentary material, Section 12.

Proposition 2. Suppose that Assumptions F1− F3 hold. Then the two
following statements are valid.

1. There exist C > 0 and ρ ∈ (0, 1) such that for all x ∈ E,

sup
u∈[0,1]

‖δxQju − πu‖V ≤ CV (x)ρj , sup
u∈[0,1]

πuV <∞.

2. There exists C > 0 such that for all (u, v) ∈ [0, 1]2, ‖πu − πv‖V ≤
C |u− v| .

Now, we give our result about local stationarity. A proof can be found in
the supplementary material, Section 13.
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Theorem 3. 1. Suppose that Assumptions F1− F2 hold true. Then
there exists a positive real number C, only depending on m,λ, b,K and
supu∈[0,1] πuṼ such that

‖π(n)
k − πu‖V ≤ C

[∣∣∣∣u− k

n

∣∣∣∣+
1

n

]
.

2. In addition, suppose that for all (u, v) ∈ [0, 1]2,

‖δxQu−δxQv‖TV ≤ L(x)|u−v| with sup
u∈[0,1]
1≤`′≤`

E [L (X`(u))V (X`′(u))] <∞.

Let j ≥ 1 be an integer. Then there exists Cj > 0, not depending on
k, n, u and such that

(7) ‖π(n)
k,j − πu,j‖V ≤ Cj

[∣∣∣∣u− k

n

∣∣∣∣+
1

n

]
.

Moreover, the triangular array of Markov chains {Xn,k : n ∈ Z+, k ≤ n}
is locally stationary.

Notes.

1. The continuity assumption F3 means that the application u 7→ Qu is
Lipschitz continuous for a particular operator norm. More precisely,
we set

‖Qu‖V,Ṽ := sup
‖µ‖

Ṽ
≤1
‖µQu‖V = sup

|f |V ≤1
|Quf |Ṽ ,

where |f |V = supx∈E
|f(x)|
V (x) . The equality between the two expressions

given above results from straightforward computations. Assumption
F3 is then equivalent to the continuity of the application u 7→ Qu
for the norm ‖ · ‖

V,Ṽ
. An important remark is the following. For un-

bounded state spaces, the continuity of the Markov kernel may not
hold if V = Ṽ . For instance Ferré et al. [22] have shown that for an
AR(1) and V (x) = 1+ |x|, the transition kernel is never continuous for
this simpler norm, whatever the density of the absolutely continuous
noise distribution. In general, it is necessary to choose a function Ṽ
larger than V to get the continuity of the Markov kernels with respect
to the parameters of the models.

2. Note that this result automatically gives the bound

P (Xn,k ∈ A)− P (Xk(u) ∈ A) = O (|u− k/n|+ 1/n)

for any measurable set A.
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3. In the stationary case, conditions F1 and F2 are often satisfied for au-
toregressive processes for which the regression function is contracting
outside a ball. Locally stationary versions of autoregressive processes
satisfying this contraction ”at infinity” have been studied by Vogt [50].
We claim that his conditions more or less guarantee our assumptions
when V is a suitable power function, because his results are based on
assumptions ensuring geometric ergodicity in the stationary case. For
stationary autoregressive models, we refer the reader to Douc et al.
[20], Chapter 6 for some examples satisfying Assumptions F1-F2.

Assumptions F1-F2 also guarantee some mixing properties for the tri-
angular array of Markov chains. In our context, the notion of β−mixing is
adapted. See Doukhan [21] for the various mixing notions adapted to ran-
dom sequences and in particular the properties of β−mixing and φ−mixing
sequences. In particular, the φ−mixing property derived in Section 2 im-
plies the β−mixing property discussed in the present section. However, for
Markov chains, the φ−mixing property is related to the Doeblin’s condition
and rarely holds for unbounded state spaces. See Bradley et al. [9] for a dis-
cussion of different mixing conditions for Markov chains. For Markov chains,
the β−mixing coefficients can be defined as follows (see Proposition 3.22 in
Bradley [8]). For an integer n ≥ 1 and 0 ≤ j ≤ n, we set

βn(j) =
1

2
max

1≤i≤n−j
E sup
‖f‖∞≤1

|E (f(Xn,i+j)|Xn,i)− Ef(Xn,i+j)| .

Similarly, we define the coefficients (β(u)(j))j≥0 of the stationary Markov
chain (Xk(u))k∈Z. The following result, whose proof is straightforward, can
be obtained by bounding the larger coefficients

β(V )
n (j) = sup

k≤n
E‖π(n)

k − δXn,k−jQ k−j+1
n
· · ·Q k

n
‖V .

Proposition 3. Assume that Assumptions F1− F2 hold true and that
n ≥ m/ε. Then if j = mg + s, we have

(8) βn(j) ≤ δ−1 sup
k≤n

π
(n)
k V ·Ksγg, β(u)(j) ≤ δ−1 sup

u∈[0,1]
πuV ·Ksγg

where δ, γ ∈ (0, 1) are given in Lemma 6 of the supplementary material.

Notes.

1. In checking assumptions F1-F2, one can find some conditions under
which the time-varying ARCH process is β−mixing. This gives a short
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alternative proof to the result derived in Fryzlewicz and Subba Rao
[25]. See the supplementary material, Section 14 for precise assump-
tions.

2. From the drift condition in F1, we have π
(n)
k V ≤ b

1−λ for n ≥ m/ε.

Hence supn∈Z+,k≤n π
(n)
k V <∞.

3. Assumptions F1− F2 guarantee a geometric decay for the β−mixing
coefficients of the triangular array of Markov chains and of the corre-
sponding stationary approximations. One can observe that the bound
can be made uniform over n ≥ 1 and u ∈ [0, 1].

4.2. Example 1: Markov switching autoregressive processes. Markov switch-
ing autoregressive processes have been introduced by Hamilton [30] to an-
alyze business cycles in economics. These processes have been widely stud-
ied in the literature. We consider a simple autoregressive process with one
lag and regime switching and which is a locally stationary version of the
CHARME model considered in Stockis et al. [44]. Let {Zn,k : 1 ≤ k ≤ n, n ≥ 1}
be a triangular array of Markov chains on a finite state space E2 and as-
sociated with a family

{
Qu : u ∈ [0, 1]

}
of transition matrices which are as-

sumed to satisfy the assumptions of Corollary 1. We also consider a sequence
(εn)n∈Z of i.i.d. random variables with an absolutely continuous distribution.
Then we define

Yn,k = m

(
k

n
, Zn,k, Yn,k−1

)
+ σ

(
k

n
, Zn,k, Yn,k−1

)
εk, 1 ≤ k ≤ n,

where m : [0, 1]×E2×R→ R and σ : [0, 1]×E2×R→ R∗+ are given functions.
We assume that for each n ≥ 1, the Markov chain (Zn,k)k is independent of
the sequence (εk)k. We set E = R×E2 and Xn,k = (Yn,k, Zn,k)

′. Then as for
the homogeneous case, the bivariate process (Xn,k)k forms a Markov chain.
One can choose some power drift functions V (y, z) = 1 + |y|p. More precise
assumptions on the noise density fε and the functions m,σ that guaranty
local stationarity can be found in the supplementary material, Section 15.
When the functions m,σ do not depend on the time, weaker assumptions
can be used. See the supplementary material for details.

4.3. Example 2: Integer-valued autoregressive processes . Stationary INAR
processes are widely used in the time series community for analyzing integer-
valued data. This time series model has been proposed by Al Osh and Alzaid
[1] and a generalization to several lags was studied in Jin-Guan and Yuan
[33]. In this paper, we introduce a locally stationary version of such processes,
with one lag for simplicity. For u ∈ [0, 1], we consider a random binomial op-
erator αu◦, i.e. for each integer x, αu ◦x follows a binomial distribution with

imsart-aos ver. 2014/10/16 file: locMCFinal.tex date: June 14, 2018



LOCAL STATIONARITY AND TIME-INHOMOGENEOUS MARKOV CHAINS 21

parameters (x, αu). One can also set αu ◦ x =
∑x

i=1 Yi(u) where (Yi(u))i≥1

is a sequence of i.i.d. Bernoulli random variables. Moreover, let ζ(u) be the
Poisson distribution on the nonnegative integers with mean λ(u). Now let

Xn,k = αk/n ◦Xn,k−1 + ηn,k, 2 ≤ k ≤ n

where for each integer n ≥ 1, ηn,k, which is assumed to be independent of
αk/n◦, has probability distribution ζ(k/n). Note that if the Bernoulli ran-
dom variables are replaced with Poisson random variables, we obtain the
Poisson ARCH process already discussed in the last section. In both case,
the parameters αu (λu resp.) of the counting sequence (the Poisson noise
resp.) are assumed to be Lipschitz continuous and maxu∈[0,1] αu < 1. One
can then show that Theorem 3 applies with drift functions Vp(x) = xp + 1
for an arbitrary integer p ≥ 1. Details are given in the supplementary mate-
rial, Section 16. Parameters αu and λu can be estimated using a local least
squares method. Details are given in the supplementary material, Section
17. Note that, as in the homogeneous case, the Poisson GARCH process does
not satisfies a small set condition. See Fokianos et al. [24] for a discussion.

4.4. Example 3: a locally stationary version of SETAR processes. We
assume here that

Xn,k = (a(k/n)Xn,k−1 + b(k/n))1{Xn,k−1<r}

+ (c(k/n)Xn,k−1 + d(k/n))1{Xn,k−1≥r} + εk,

where (εk)k∈Z is a sequence of i.i.d. random variables with mean zero. This
model is a time-varying version of the stationary threshold model of Tong
[46]. Note that the threshold level r is not time-varying, otherwise Assump-
tions F3 cannot be checked. We assume that the functions a, b, c, d are Lip-
schitz continuous with α = max(maxu∈[0,1] |a(u)|,maxu∈[0,1] |c(u)|) < 1 and
the noise has a density fε of class C1, positive everywhere and such that for
a positive integer p > 0,∫

|z|p+1fε(z)dz <∞,
∫
|z|p ·

∣∣f ′ε(z)∣∣ dz <∞.
Then local stationarity in V−norm holds, with V (y) = 1+|y|p. Justifications
are given in the supplementary material, Section 18. If the threshold param-
eter r is known, local least-squares estimators for a, b, c, d can be shown to
be asymptotically Gaussian, using Theorem 3 and Proposition 4 below. De-
tails are omitted. Estimating r is more difficult. One solution could be to
estimate it in a second step after plugging the estimates of the autoregres-
sive parameters. See for instance Li et al. [35], Section 3.1 for details in the
stationary case.
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4.5. Limiting behavior of partial sums. In this subsection, we show how
our results can be used to obtain some asymptotic normality properties for
partial sums. We will use the following terminology. The triangular array of
Markov chains {Xn,k : 1 ≤ k ≤ n, n ≥ 1} will be said to be locally station-
ary for the V−norm if (7) holds and geometrically β−mixing if (8) holds.
Conditions ensuring both properties are given in Theorem 3. The following
result is central to derive asymptotic properties of local least-squares or lo-
cal likelihood estimators. Its proof uses a central limit theorem for strong
mixing sequences and is given in the supplementary material, Section 19.

Proposition 4. Let {Xn,k : 1 ≤ k ≤ n, n ≥ 1} be a triangular array of
Markov chains locally stationary for the V−norm and geometrically β−mixing.
For some integer j ≥ 1, let f : [0, 1] × Ej → R be a measurable function
continuous with respect to its first argument and δ ∈ (0, 1) such that

sup
u∈[0,1],x1,...,xj∈E

|f (u, x1, . . . , xj)|
[V (x1) + · · ·+ V (xj)]

1
2+δ

<∞.

For j ≤ k ≤ n, we set Zn,k = f (k/n,Xn,k−j+1, . . . , Xn,k) and Zk(u) =
f (u,Xk−j+1(u), . . . , Xk(u)) for the stationary approximation. We have the
two following properties.

1. The partial sum Sn := 1√
n

∑n
i=j [Zn,i − EZn,i] is asymptotically Gaus-

sian with mean 0 and variance

σ2 =

∫ 1

0

∑
k∈Z

Cov (Z0(u), Zk(u)) du.

2. If K is a kernel of bounded variation and with compact support [−1, 1]
and b = bn is such that b → 0 and nb → ∞, then the weighted par-
tial sum Sn(u) := 1√

nb

∑n
i=jK(u−i/nb ) [Zn,i − EZn,i] is asymptotically

Gaussian with mean 0 and variance

σ(u)2 =

∫ 1

−1
K2(v)dv ·

∑
k∈Z

Cov (Z0(u), Zk(u)) .

4.6. Statistical inference of local parameters . For models satisfying the
assumptions of Theorem 3, we derive the asymptotic properties of the local
maximum likelihood estimator in the spirit of the recent approach used in
Dahlhaus et al. [14] for autoregressive processes. We assume that the family
of Markov kernels {Qu : u ∈ [0, 1]} satisfies the assumptions F1− F3 and
that

Qu(x, dy) = exp (S(θ0(u), x, y))µ(x, dy)
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where θ0 : [0, 1] 7→ Θ is a function taking values in a subset Θ of Rd,
S : Θ× E2 → R is a known function and µ is a measure kernel from (E, E)
to itself. The local MLE at point u ∈ (0, 1) is defined by

θ̂(u) = arg max
θ∈Θ
Ln(θ), Ln(θ) = n−1

n∑
j=2

Kb(u− j/n)S (θ,Xn,j−1, Xn,j) .

Let ∇1f , ∇2
1f be the gradient vector and the Hessian matrix with respect

to the first argument of a real-valued function f . The following assumptions
will be needed.

L1(`) For all (x, y) ∈ E2, the function θ 7→ S (θ, x, y) is of class C`.
L2 There exist a constant C > 0 such that for all (x, y) ∈ E2,

sup
θ∈Θ
|S (θ, x, y)|2+δ ≤ C [V (x) + V (y)] .

L3 Θ is a compact set and θ0(u) ∈ int (Θ) is the unique minimizer of
θ 7→ ES (θ,X0(u), X1(u)) over θ ∈ Θ.

L4 There exist a constant C > 0 such that for all (x, y) ∈ E2,

sup
θ∈Θ

[
|∇1S (θ, x, y)|2+δ +

∣∣∇2
1S (θ, x, y)

∣∣2+δ
]
≤ C [V (x) + V (y)] .

L5 The function gu : v 7→ E∇1S (θ0(u), Xk−1(v), Xk(v)) is of class C2.

Assumptions L2 and L4 (for the second derivative) are probably not optimal
because we did not prove a sharp law of large number for localized sums.
However they are sufficient for illustrating our results. Here we propose to
expand the bias of the local MLE up to the second order. A proof of the
following result can be found in the supplementary material, Section 20.

Theorem 4. Let K be a symmetric kernel, supported on [−1, 1] and of
bounded variation.

1. Let b→ 0 and nb→∞. If Assumptions L1(0) and L2−L3 hold true,
then θ̂(u) is consistent.

2. If b→ 0, nb→∞, nb5 = O(1) and the assumptions L1(2) and L2-L5
hold true, then

√
nb

(
θ̂(u)− θ0(u)− b2κ2

2
ζ(u)

)
⇒ N

(
0,

∫
K2(v)dv ·M(u)−1

)
,

with M(u) = E
[
−∇2

1S (θ0(u), X0(u), X1(u))
]
, ζ(u) = M(u)−1g′′u(u)and

κ2 =
∫
v2K(v)dv.
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Notes.

1. In Section 20 of the supplementary material, we check the previous
assumptions for the binary time series (4) and the Poisson ARCH
process. Assumption L5 is not guaranteed by our approximation re-
sults. In Dahlhaus et al. [14], an expression for the first order ap-
proximation of the bias of the local likelihood estimator is obtained
by using a notion of derivative process d

duXt(u). For categorical or
integer-valued data, this notion does not make sense. However, it is
still possible to study the regularity of the function u 7→

∫
fdπu,2 =

Ef (X0(u), X1(u)). Using our results, it is only possible to obtain the
Lipschitz continuity of this function. However, in Truquet [47], we
give a general result which guarantees existence of derivatives for such
functions when power functions satisfy the drift condition. In the sup-
plementary material, we use this result to show that Assumption L5
is satisfied for binary time series and Poisson ARCH process as soon
as u 7→ θ(u) is two times continuously differentiable.

2. Theorem 4 can also be applied to some standard autoregressive models
such as ARCH processes for instance. However, the assumptions F2-
F3 can only be checked using some smoothness assumptions for the
noise density. Our assumptions are then more restrictive than that of
Dahlhaus et al. [14] which do not require existence of a density for
the noise distribution. On the other hand, considering for instance the
EXPAR model studied in Dahlhaus et al. [14], Proposition 3 and the
result of Section 4.3 in Truquet [47] can be used to check Assumption
L5 under suitable moment conditions on the noise density and its
derivatives. An expansion of the bias of the local MLE (or QMLE for
non Gaussian inputs) up to any order is also possible. We will not give
precise assumptions in the present paper.

5. Practical implementation for finite-state Markov chains. This
section is devoted to the implementation of finite-state Markov chains. In
particular, we discuss bandwidth selection and prove the consistency of an
adapted bootstrap procedure for getting confidence intervals for the elements
of the transition matrix.

5.1. Simulation study. One of the important issue for the practical im-
plementation of our estimator is bandwidth selection. Interpreting our es-
timator as a least-squares estimator, we propose a very simple procedure
based on Generalized cross validation. The same approach can be used for
local least-squares estimators in other locally stationary Markov chain mod-
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els such as the time-varying integer valued process discussed in Section 4.
For some y ∈ E, we know that

P (Xn,k = y|Xn,k−1) = Qk/n (Xn,k−1, y) =
∑
x∈E

Qk/n(x, y)1{Xn,k−1=x}.

Moreover, Q̂k/n is a minimizer of the loss function

P 7→
∑
y∈E

n∑
j=2

K

(
k − j
nb

)(
1{Xn,j=y} − P (Xn,k−1, y)

)2
.

Then Zy,j = 1{Xn,j=y} has a fitted value Ẑy,j = Q̂j/n (Xn,j−1, y). The hat

matrix H defined by the equality by Ẑ = HZ has diagonal elements not
depending on y and given by

gj =
∑
x∈E

K(0)1{Xn,j−1=x}∑n
i=2K

(
k−i
nb

)
1{Xn,i−1=x}

.

Then one can minimize the criterion C defined by

C(b) =
∑
y∈E

∑n
k=2

(
1{Xn,j=y} −Qk/n (Xn,k−1, y)

)2

(
1− 1

n−1

∑n
k=2 gk

)2 .

Next, we perform a simulation study and approximate the mean squared
error for estimating the transition matrix for a binary Markov chain under
two scenarios.

• For the first scenario S1, we set Qu(0, 1) = 0.5 + 0.4 sin(2πu) and
Qu(1, 0) = 0.5 + 0.4 cos(2πu).
• For the second scenario S2, we set Qu(0, 1) = 0.1+0.8u and Qu(1, 0) =

0.9− 0.8u.

We evaluate the RMSE

√
E
∫ 1

0

(
Q̂u(0, 1)−Qu(0, 1)

)2
du using 5000 samples

of size n = 150 or n = 500. Results are reported in Table 1. With respect to
other possible bandwidths, the cross-validation works quite well even for the
smallest sample size. For the scenario S1 and n = 150, the case b = n−1/3

is not reported because for some time subscripts t, we have Xn,s 6= 0 for
s ∈ [t− nb, t+ nb]. In practice, this problem can be avoided by considering
bandwidth parameters large enough so that for each time interval of the
previous form, one can find the realization 0 for the process.
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Table 1
Approximation of the RMSE for several bandwidth choices and sample sizes n = 150, 500

n = 150 n = 500

GCV n−1/3 1.5n−1/3 2n−1/3 GCV n−1/3 1.5n−1/3 2n−1/3

S1 0.1278 × 0.1340 0.1602 0.076 0.0847 0.0708 0.1103

S2 0.1002 0.1024 0.0904 0.0903 0.0602 0.0923 0.0657 0.0548

5.2. Bootstrap procedure. In nonparametric estimation, asymptotic con-
fidence intervals are not very accurate when the sample size is moderate.
Bootstrap procedures are often used to bypass this problem. Asymptotic
properties for bootstrapping homogeneous Markov chains can be found in
Kulperger and Prakasa Rao [34] for the finite-state case and Athreya and
Fuh [2] for the denumerable case. In particular, a natural idea is to gener-
ate replicates of the path of the Markov chain by using the estimation of
the transition matrix. However in our case, the data are nonstationary and
we combine this approach with the bootstrap scheme studied in Fryzlewicz
et al. [26] for locally stationary ARCH processes. More precisely, for some
u ∈ (0, 1), an asymptotic confidence interval for Qu can be obtained using
the quantiles of the distribution of Q̂∗u − Q̂u, where

Q̂∗u(x, y) =

∑n
i=2Kb(u− i/n)1{X∗i−1=x,X∗i =y}∑n

i=2Kb(u− j/n)1{X∗i−1=x}
.

Here, X∗1 , . . . , X
∗
n is, conditionally to the observations, a path of a Markov

chain with transition matrix Q̂u. We set P∗ = P (·|σ (Xn,k : 1 ≤ k ≤ n, k ≥ 1)).
Asymptotic validity of this bootstrap is justified by the following result. For
simplicity, we only give a result for one entry of the stochastic matrix but a
vectorial extension can be easily derived. The proof of the following result
can be found in the supplementary material, Section 21.

Proposition 5. Suppose that Assumptions A1-A2 hold true. Let K be
a kernel supported on [−1, 1], symmetric and of bounded variation. If b→ 0
and nb1+ε →∞ for some ε > 0, then almost surely, the probability distribu-

tion of
√
nb
(
Q̂∗u(x, y)− Q̂u(x, y)

)
under P∗ converges to the Gaussian dis-

tribution of mean 0 and variance
∫ 1
−1K

2(v)dvQu(x,y)
πu(x) (1−Qu(x, y)). More-

over if nb3 = O(1) and u 7→ Qu is continuously differentiable, the distribu-

tion of
√
nb
(
Q̂∗u(x, y)− Q̂u(x, y)

)
under P∗ and

√
nb
(
Q̂u(x, y)−Qu(x, y)

)
under P are asymptotically equivalent.

6. Application to the analysis of trading activity. Our real data
illustration concerns the trading activity of six thinly traded shares at the
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Fig 2. Estimation of u 7→ Qu(0, 0) (left) and u 7→ Qu(1, 1) (right). The estimates are given
by the full line and the dashed lines (dotted lines resp.) represent the bootstrap pointwise
confidence intervals at level 80% (90% resp.) and which are estimated by using B = 5000
bootstrap samples of a stationary Markov chain with transition matrix Q̂u. The x−axis
represents the time and the y−axis, the estimated local probability.

Johannesburg Stock Exchange from 5th of October 1987 to 3rd of June
1991. These data are analyzed in Fokianos and Moysiadis [23] using station-
ary logistic and probit models. The data are binary, with a value equal to
1 if a trade has been recorded at time t and 0 otherwise. In Figure 1 given
in Section 1, the function u 7→ π̂u(1) is represented for two shares which
seems particularly inhomogeneous. While the probability to have a trade
for the share ”Anamint” follows a strong increase at the end of the period,
that of the share ”Broadcares” has the opposite behavior. In Fokianos and
Moysiadis [23], the autocorrelograms of these two time series seems to ex-
hibit significant correlations for large lags. For financial data, this kind of
persistence is quite usual and often due to nonstationarity problems. See for
instance Granger and Stărică [27] for a discussion of this phenomenon. We
fit a time-inhomogeneous binary Markov chain to model the dynamic of the
share ”Anamint”. An estimation of the diagonal elements of the stochas-
tic matrix is given in Figure 2. Our approach suggests that the dynamic is
strongly inhomogeneous.

One can also check that the graphs of the estimated local invariant prob-
ability in Figure 1 are compatible with the graph given in Fokianos and
Moysiadis [23] with vertical bars for the presence of trading. The main ad-
vantage of time-inhomogeneous Markov chains is to get a statistical model
which at the time is able to identify some trading patterns. Of course, one
may think of using such models for prediction but this requires investigating
higher order time-inhomogeneous Markov chains and probably parsimonious
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versions of such models with for instance the locally stationary versions of
probit/logit models. This is outside the scope of this paper.

7. Discussion. In this paper, we discussed various approaches for con-
sidering locally stationary versions of Markov chains models. The notion of
local stationarity introduced in the literature offers a nice approach to deal
with time-inhomogeneity but it is more adapted to continuous state space
autoregressive Markov processes. Existing works exclude categorical data or
integer-valued time series. We have defined a general notion of local station-
arity based on a local approximation of the finite dimensional distributions
using various probability metrics. This approach is quite flexible because
various metrics can be used to define a locally stationary model. We now
provide a guideline to precise what type of metric can be used to define a
locally stationary version of a Markov chain model.

1. If the stationary version satisfies the Doeblin condition, then the total
variation distance discussed in Section 2 is appropriate.

2. When the Doeblin condition is not satisfied but a drift and a small
set condition can be obtained for the homogeneous Markov chain, the
V−norm discussed in Section 4 could be used. Note that both ap-
proaches require the Markov kernels to be absolutely continuous with
respect to a measure not depending on the parameters.

3. When a small set condition is too restrictive or cannot be checked,
then a Wasserstein metric can be interesting when the state space
is a Banach space. In this case, there is often a natural coupling of
(δxQ, δyQ) for the Markov kernel Q, as for autoregressive processes,
to check the assumptions of Section 3.

Note that we did not develop statistical inference for the last case which
generalizes a setup largely exploited in the literature. Let us also mention
that the φ, β−mixing coefficients are those already used for the stationary
version of these Markov chains and the τ−mixing coefficients were already
discussed in Dedecker and Prieur [16] for some time-homogeneous Markov
chains satisfying similar assumptions.

For the perspectives, bandwidth selection for the local contrast estimates
studied in this paper, in the spirit of the recent work of Richter and Dahlhaus
[39], could be investigated. Estimation of Markov-switching or SETAR mod-
els remain to do and are quite challenging. Another issue could be to investi-
gate some processes involving a latent process defined by recursive equations,
such as the Poisson GARCH and its variants, see for instance in Davis et al.
[15], or the categorical time series studied in Moysiadis and Fokianos [37].
In this case, the small set condition is not satisfied and the contraction in
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Wassertein metric is difficult to obtain or too restrictive.
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[40] L. Saloff-Coste and J. Zúñiga. Convergence of some time-inhomogeneous markov
chains via spectral techniques. Stochastic Process. Appl., 117:961–979, 2007.
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