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Mémoire pour l’obtention du diplôme
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participer à ce jury. Je leur suis sincèrement reconnaissant de leurs efforts pour participer à cette
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Présentation générale des travaux

Mon travail de recherche porte sur la théorie de l’échantillonnage et de l’estimation dans le cadre

d’une population finie. En dehors de [17], qui constitue une application des méthodes de Bootstrap

étudiées dans le cadre de ma thèse de doctorat, et de [1] qui a été écrit en parallèle de ma thèse, tous

les travaux de recherche présentés ci-dessous sont postérieurs à ma thèse. La plupart de ces travaux

peuvent être répartis en quatre domaines de recherche, qui sont : l’échantillonnage, le traitement

de la non-réponse partielle, l’estimation de variance, les méthodes de couplage.

Echantillonnage

Dans la plupart des enquêtes, on cherche à mobiliser une information auxiliaire afin d’améliorer

la précision des estimateurs. A l’étape de l’échantillonnage, cette information est incorporée

en imposant que le plan de sondage respecte des contraintes d’équilibrage. Une solution très

générale pour sélectionner des échantillons équilibrés a été proposée par Deville et Tillé (2004),

sous la forme de la méthode du Cube : une part importante de mon travail de recherche con-

cerne l’étude de ses propriétés. Dans [18], nous comparons la méthode du Cube avec une méthode

réjective d’échantillonnage équilibrée proposée par Hajek (1981) et Fuller (2009). Dans [6], nous

déterminons les probabilités d’inclusion permettant de minimiser la variance de l’estimateur de

Horvitz-Thompson pour un tirage équilibré. Dans [12], nous proposons une modification de la

méthode du cube dans le cas où la variable d’intérêt peut être représentée par un modèle linéaire

mixte. Comme l’algorithme du Cube peut être gourmand en temps de calcul, une procédure plus

rapide est proposée dans [1], avec une application de cette méthode dans [2]. Un cas particulier

important de cette procédure rapide d’échantillonnage correspond à l’algorithme appelé la méthode

du pivot ordonné (Deville et Tillé, 1998). J’ai établi dans [11] l’équivalence entre la méthode du

pivot ordonné et le tirage systématique de Deville (Deville, 1998). Dans [20], nous montrons que

toute implémentation de la méthode du pivot est plus efficace que le tirage multinomial.



Traitement de la non-réponse partielle

A l’étape de l’estimation, l’information auxiliaire peut également être utilisée pour compenser

d’une possible non-réponse. Une valeur manquante pour une variable d’intérêt est remplacée

par une valeur artificielle, mais plausible: on parle alors d’imputation de la non-réponse partielle

(Haziza, 2009). L’imputation se base sur un modèle de comportement pour la variable d’intérêt

(modèle d’imputation), que l’on cherche à reproduire lors de la création de la valeur artificielle

imputée (mécanisme d’imputation). Dans [7], nous montrons que l’utilisation d’un mécanisme

d’imputation aléatoire adapté permet de préserver la distribution de la variable imputée. Nous

proposons l’utilisation d’une méthode d’imputation équilibrée adaptée de la méthode du Cube

pour préserver la distribution de la variable, tout en réduisant la variance liée à l’imputation ; voir

également [22]. L’algorithme d’échantillonnage proposé dans [3] peut être utilisé à cet effet. Une

procédure d’imputation permettant d’éliminer complètement la variance liée à l’imputation est pro-

posée dans [26]. Une procédure d’imputation permettant de préserver la distribution de la variable

imputée si le modèle d’imputation est adapté ou si la modélisation du mécanisme de non-réponse

est adaptée est proposée dans [21]. De façon générale, le mécanisme d’imputation doit refléter les

propriétés de la variable d’intérêt. Dans [15], nous étudions des procédures d’imputation permet-

tant de traiter des variables avec sur-représentation de valeurs nulles. Des méthodes d’imputation

permettant d’imputer plusieurs variables et de respecter les relations entre elles sont étudiées dans

[10] pour des variables quantitatives, et dans [16] pour des variables qualitatives.

Estimation de variance

Les estimateurs produits dans le cadre d’une enquête sont généralement assortis d’une mesure de

précision telle qu’un estimateur de variance, un coefficient de variation ou un intervalle de confiance.

L’estimation de variance dans les enquêtes est généralement difficile, car l’ensemble du processus

d’échantillonnage et d’estimation doit être pris en compte (Ardilly, 2006). J’ai proposé dans [13]

un estimateur de variance pour l’Enquête Logement de 2006, et dans [23] nous considérons des

estimateurs de variance pour l’Etude Longitudinale Française depuis l’Enfance (ELFE). Dans [17],

nous comparons une méthode de Bootstrap (Efron, 1982; Shao et Tu, 1995) avec la linéarisation

(Deville, 1999; Goga et al., 2009), pour l’estimation de l’évolution d’un paramètre complexe. Pour

calculer un estimateur sans biais de variance, il est généralement nécessaire de connâıtre les prob-

abilités d’inclusion d’ordre deux associées au plan de sondage. Ces probabilités sont souvent dif-

ficiles à calculer exactement, et peuvent être remplacées par des approximations par simulations

(Fattorini, 2006; Thompson et Wu, 2008; Lesage, 2013). Dans [5], nous proposons une méthode

d’approximation efficace dans le cas d’un échantillon tiré selon la méthode du Cube. J’utilise

également cette méthode dans [8] pour les estimations de variance associées au nouvel Echantillon-

Mâıtre. En situation de non-réponse partielle, un mécanisme d’imputation aléatoire engendre une



variance additionnelle qui doit être pris en compte dans les mesures de précision. Dans [10] et

[16], nous décrivons une procédure de Bootstrap pour estimer la variance dans le cas de données

imputées, et une procédure d’estimation de variance par Jackknife (Shao et Tu, 1995) est proposée

dans [15].

Méthodes de couplage

Dans les enquêtes, la dépendance introduite dans la sélection des unités peut être complexe, ce

qui rend des résultats tels qu’un théorème central limite plus difficiles à établir. Les procédures

de couplage (Thorisson, 2000) constituent une solution intéressante pour relier un plan de sondage

complexe à un plan de sondage à la fois proche et plus simple, et où des propriétés asymptotiques

peuvent être plus facilement établies. Cette approche a été utilisée de façon pionnière par Ha-

jek (1960) pour coupler le sondage aléatoire simple avec le tirage de Bernoulli, et par Hajek (1964)

pour coupler le sondage réjectif avec le tirage de Poisson. Dans [19], j’utilise les méthodes de

couplage pour obtenir des résultats de normalité asymptotique pour des plans à plusieurs degrés,

et pour justifier de la consistance d’une méthode de Bootstrap des unités primaires (Rao et Wu,

1988). Dans [25], un couplage entre la méthode du pivot ordonné et une méthode de tirage stratifié

est proposé. Il permet d’obtenir un théorème central limite pour la méthode du pivot ordonné,

sous des hypothèses standard.

Autres travaux

Certains de mes travaux de recherche ne rentrent pas dans les quatre grands domaines évoqués

ci-dessus: ils sont présentés ici brièvement, mais ils ne seront pas détaillés dans mon document de

synthèse. Dans [4], nous avons proposé des méthodes d’échantillonnage et d’estimation dans le cas

d’une enquête avec un biais de couverture volontaire. Dans [9], nous avons étudié une allocation

optimale d’échantillon pour un plan à plusieurs degrés. Dans [14], nous appliquons des méthodes

d’estimation sur bases de sondage multiples (Lohr, 2011) pour mettre en commun des estimations

issues de deux vagues d’enquête, dans un plan à plusieurs degrés. Dans [24], nous proposons

d’utiliser une méthode de Bootstrap pour sélectionner des variables de calage (Deville et Särndal,

1992) en évitant une inflation de la variance due à un trop grand nombre de régresseurs.
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Chapter 1

Introduction

1.1 Framework and notation

We consider a finite labeled population U of size N , with some variable of interest y, and the pop-

ulation vector of values is denoted by yU = (y1, . . . , yk, . . . , yN )>. We are interested in estimating

some parameter θ ≡ θ(yk, k ∈ U), such as the total ty =
∑

k∈U yk or the mean µy = N−1
∑

k∈U yk.

A random sample S is selected in U by means of some sampling design p(·), i.e. according to some

probability law on the subsets in U .

In order to study the asymptotic properties of the sampling designs and estimators that we treat

below, we consider the asymptotic framework of Isaki and Fuller (1982). We assume that the pop-

ulation U belongs to a nested sequence {Ut} of finite populations with increasing sizes Nt, and that

the population vector of values yUt = (y1t, . . . , yNt)
> belongs to a sequence {yUt} of Nt-vectors.

For simplicity, the index t will be suppressed in what follows and all limiting processes will be taken

as t→∞.

Through the paper, we will note E(·) and V (·) for the expectation and the variance of some es-

timator, and E{X}(·) and V{X}(·) for the expectation and variance conditionally on some random

variable X. Also, we will note xk or zk for a vector of auxiliary variables for unit k known either

on the sample S or on the whole population U , and that will be considered as non-random.

1.2 Horvitz-Thompson estimation

Let πk(p) denote the first-order inclusion probability of unit k with the sampling design p(·), that

is, the probability for unit k to be included in the sample S. When there is no risk of confusion,

we simply note πk(p) ≡ πk. In what follows, we assume that all πk’s are positive. We note
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π = (π1, . . . , πN )>, with
∑

k∈U πk = n the (integer) average sample size. The Horvitz-Thompson

(HT) estimator

t̂yπ(S) =
∑
k∈S

yk
πk

=
∑
k∈U

yk
πk
Ik(S) (1.2.1)

is then design-unbiased for ty, with Ik(S) the sample membership indicator for unit k (see Horvitz

and Thompson, 1952). When there is no risk of confusion, we simply note Ik(S) ≡ Ik and t̂yπ ≡
t̂yπ(S). We note dk = 1/πk the sampling weight. The design variance is

V{yU}
(
t̂yπ
)

=
∑
k∈U

yk
πk

yl
πl

∆kl(p) with ∆kl(p) = πkl(p)− πk(p)πl(p), (1.2.2)

and with πkl(p) the probability that units k and l are selected jointly in the sample S with the

sampling design p(·). When there is no risk of confusion, we simply note πkl(p) ≡ πkl and ∆kl(p) ≡
∆kl. The Poisson sampling design is a particular important case where each unit k is selected in

the sample with probability πk, independently on the other units. The components of the vector

I = (I1, . . . , IN )> are then independent, which leads to

V{yU}
(
t̂yπ
)

=
∑
k∈U

(
yk
πk

)2

πk(1− πk). (1.2.3)

The three following properties would be useful for estimation with a sampling design p(·):

P1: The HT-estimator is weakly consistent, i.e.

N−1(t̂yπ − ty) −→
Pr

0,

with −→
Pr

denoting the convergence in probability.

P2: The HT-estimator is asymptotically normal, i.e.

t̂yπ − ty√
V{yU}

(
t̂yπ
) −→

L
N (0, 1),

with −→
L

denoting the convergence in distribution.

P3: There is a weakly consistent variance estimator for V{yU}
(
t̂yπ
)
.

1.3 Weak consistency of the HT-estimator

The sampling design p(·) is said to be of fixed-size if only the subsets in U of size n may have

a non-zero probability of selection. Many fixed-size sampling designs have been proposed in the

literature, such as conditional Poisson sampling (Hajek, 1964), systematic sampling (e.g. Tillé,
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2011), or pivotal sampling (Deville and Tillé, 1998) which will be further studied in Section 2.6. In

case of a fixed-size sampling design, the variance of the HT-estimator may be rewritten as

V{yU}
(
t̂yπ
)

= −1

2

∑
k 6=l∈U

(
yk
πk
− yl
πl

)2

∆kl(p), (1.3.1)

which is known as the Sen-Yates-Grundy variance formula (see Sen, 1953; Yates and Grundy, 1953).

If the so-called Sen-Yates-Grundy conditions are fulfilled, namely the sampling design p(·) is such

that

C1: for any vector π of inclusion probabilities, we have ∆kl(p) ≤ 0 for any k 6= l ∈ U ,

then formula (1.3.1) leads to a variance estimator which is always positive (see Section 4). The

Sen-Yates-Grundy conditions have two other interesting consequences. For any variable y with

positive values, the variance of the HT-estimator under a sampling design respecting C1 will be

systematically lower than the variance of the HT-estimator under Poisson sampling. Also, if the

additional moment condition

C2: There exists some constant C such that N−1
∑
k∈U

(
yk
πk

)2

< C,

is respected, then the property P1 holds true for any variable y with positive values. This property

may be extended to the case of any variable of interest (with positive or negative values) if the

condition C1 is replaced by

C3: for any vector π, the variance of the HT-estimator under the sampling design p(·) with

inclusion probabilities π is lower than the variance of the Hansen-Hurwitz (1953) estimator

under n independent draws in U , with drawing probabilities (π1/n, . . . , πN/n)>.

The property C3 has been shown to hold for the Sampford design (Gabler, 1981 and 1984) and for

the conditional Poisson sampling design (Qualité, 2008), for example; see Section 2.6 for pivotal

sampling.

1.4 Asymptotic normality

Several results of asymptotic normality have been proved for specific sampling designs; see for

example Hajek (1960,1961) for simple random sampling without replacement, Hajek (1964) for

rejective sampling, Rosen (1972a,1972b), Sen (1979) and Gordon (1983) for successive sampling,

and Ohlsson (1986) for the Rao-Hartley-Cochran (1962) procedure. Branden and Jonasson (2012)

state a central-limit theorem for the class of sampling algorithms satisfying the strongly Rayleigh

property, which includes Sampford sampling, Pareto sampling and the pivotal method. Chen and

3



Rao (2007) prove asymptotic normality for a class of estimators under two-phase sampling designs,

see also Saegusa and Wellner (2013). Asymptotic normality of estimators resulting from multistage

samples has been considered by Krewski and Rao (1981) and Ohlsson (1989).

The dependence in the selection of units may be complex, which makes limiting results quite dif-

ficult to prove. Coupling methods (see Thorisson, 2000) can be used to link a sampling design

under study to a close, simpler sampling design where useful limiting properties may be more eas-

ily derived. In a pioneering work, Hajek (1961) introduced a coupling procedure between Bernoulli

sampling and simple random sampling without replacement (SI) to obtain a central-limit theorem

for the latter. In Hajek (1964), a similar approach was used to link Poisson sampling and rejec-

tive sampling, and to derive a central-limit theorem and a variance approximation for rejective

sampling. Coupling methods are considered in Section 5 to derive asymptotic normality results

for the HT-estimator under without-replacement multistage designs, and to prove the consistency

of a Bootstrap procedure. A specific coupling procedure (not presented in this manuscript) has

been used in [25] to obtain the asymptotic normality of the HT-estimator under ordered pivotal

sampling.

1.5 Variance estimation

When the second-order inclusion probabilities may be computed for the sampling design, an unbi-

ased variance estimator is available (see equation 4.0.1). Otherwise, simulation-based approxima-

tions for the variance-covariance matrix of the sampling design can be used. In case of variance

estimation for complex parameters, we may resort to linearization (Deville, 1999) or Bootstrap

(e.g., Shao and Tu, 1995) for variance estimation. These points will be further developed in Section

4.

The consistency of variance estimators typically relies on assumptions on fourth order inclusion

probabilities (see Breidt and Opsomer, 2000). These properties are usually difficult to prove for

unequal probability sampling algorithms (see Boistard, Lopuhaä and Ruiz-Gazen, 2012, for con-

ditional Poisson sampling). Alternatively, coupling methods could be a promising tool for the

consistency of variance estimators, and are a matter of further research for that purpose.

1.6 Use of models in finite population sampling

This is often useful to model the variable of interest y, making use of some vector xk of auxiliary

variables. For example, we may assume that the variable y follows the linear model

yk = x>k β + εk, (1.6.1)

4



with β a q-vector of unknown parameters, and some assumptions on the distribution of the residual

terms εk.

At the sampling stage, the model (1.6.1) is used as a working model to define an efficient sampling

design. It is not required that underlying model assumptions hold true for the HT-estimator to be

unbiased, but the HT-estimator is expected to be more efficient if these assumptions hold true. The

model (1.6.1) may also be used as a working model at the estimation stage to define an efficient

estimation strategy, e.g. through calibration (see Deville and Särndal, 1992). If the variable xk is

known prior to sampling for any unit k ∈ U , and if the sampling design is such that

t̂xπ(S) = tx,

the sampling design is said to be balanced on xk. It leads to V{yU}(t̂yπ) = V{yU}(t̂επ), so that the

variance can be strongly reduced (as compared to an unbalanced sampling design) if the variability

of the residuals εk’s is much lower than that of the yk’s. Balanced sampling strategies will be further

studied in Section 2.

At the imputation stage, the model (1.6.1) is used as an imputation model so as to justify replacing

some missing value with an artificial, imputed value. In such case, explicit assumptions are needed

for the imputation procedure to lead to valid (and at least, asymptotically unbiased) estimators.

The imputation model needs to be adapted to the type of variable considered (e.g., continuous or

categorical), and the imputation process needs to be adapted to the type of estimation needed (e.g.,

total or distribution function). These considerations will be further studied in Section 3.

5



Chapter 2

Balanced sampling

The accuracy of HT-estimators relies on auxiliary information available for any unit in the popu-

lation, and which is used to define the sampling design. This auxiliary information is frequently

incorporated by using some form of balanced sampling, where the sample S is selected so that HT-

estimators for the totals of auxiliary variables match (exactly or at least, very closely) the known

totals.

Suppose that a q-vector xk = (x1k, . . . , xqk)
> of auxiliary variables is known at the design stage for

any unit k ∈ U . The N × q matrix

A = (xk/πk)k∈U (2.0.1)

is called the matrix of constraints. A sample s selected with inclusion probabilities π = (π1, . . . , πN )>

is said to be balanced on xk if the set of balancing equations

t̂xπ(s) ≡
∑
k∈s

xk
πk

= tx (2.0.2)

is fulfilled, which means that the HT-estimator exactly match the known vector of totals tx. A

sampling design p(·) is said to be balanced on xk if

∀s ⊂ U p(s) > 0⇒ t̂xπ(s) = tx, (2.0.3)

which means that the support of the sampling design is restricted to balanced samples.

A number of common sampling designs may be seen as balanced for a particular vector x. In

case of STSI sampling when the population is stratified inside H non-overlapping sub-populations

U1, . . . , UH of sizes N1, . . . , NH , and the sample S is selected by SI sampling of size nh inside Uh,

we have πk = nh
Nh

for any unit k ∈ Uh and

N̂hπ ≡
∑
k∈S

1(k ∈ Uh)

πk
= Nh.
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Therefore, the sizes of strata are perfectly estimated and the sampling design is balanced on the

H-vector xk = {1(k ∈ U1), . . . , 1(k ∈ UH)}>. In case of any sampling algorithm with unequal prob-

abilities and fixed size n =
∑

k∈U πk, we have n(S) = n, and the sampling design is balanced on

xk = πk.

The variance of the HT-estimator is given by formula (1.2.2) or (1.3.1), but second-order inclusion

probabilities are usually difficult to compute for a general balanced sampling design. Deville and

Tillé (2005) therefore proposed variance approximations for balanced sampling, under the assump-

tions that the sampling design is exactly balanced, and performed with maximum entropy among

sampling designs balanced on the same variables, with the same inclusion probabilities. Then,

under an additional assumption of asymptotic normality of the multivariate HT-estimator under

Poisson sampling, they derived the following variance approximation:

VDT (t̂yπ) =
N

N − q
∑
k∈U

b(πk) {yk − y∗k(π)}
2
, (2.0.4)

where

b(πk) = 1/πk − 1 (2.0.5)

and

y∗k(π) = x>k B(π) with B(π) =

{∑
l∈U

b(πl)xlx
>
l

}−1∑
l∈U

b(πl)xlyl. (2.0.6)

Other slightly different approximations are proposed in Deville and Tillé (2005), but their simula-

tion results suggest that the approximation (2.0.4) performs well among variance approximations

that may be computed in case of any set of inclusion probabilities.

Several partial solutions have been proposed for balanced sampling (see Deville et al., 1988, Ardilly,

1991), before the cube method was introduced (Deville and Tillé, 2004). This method enables to

select (approximately) balanced samples for any set of inclusion probabilities π and any auxiliary

vector x, and is described in Section 2.1. An alternative rejective procedure studied by Hajek (1981)

and Fuller (2009) is presented in Section 2.2. In Section 2.3, we present a method to compute in-

clusion probabilities so that an approximation of the variance of the HT estimator is minimized.

Adapting the cube method to the case when the variable of interest may be better described by a

linear mixed model is the purpose of Section 2.4. The initial implementation of the cube method

involved the search for vectors in the kernel of a large matrix, and could thus be time-consuming.

A fast implementation proposed by [1] is described in Section 2.5. In case when the vector of

auxiliary variables reduces to the inclusion probability, which means fixed-size sampling, this fast

implementation leads to the so-called pivotal sampling (Deville and Tillé, 1998). This sampling
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algorithm is presented in Section 2.6, and some useful properties are derived.

2.1 The Cube method

The cube method proceeds in two steps: a flight phase, at the end of which an exact balancing is

maintained, and a landing phase during which the balancing equations may be partly relaxed until

the complete sample is obtained, while the inclusion probabilities remain exactly respected.

Algorithm 1 A general procedure for the cube method

First initialize at π(0) = π. Next, at time t = 0, · · · , T , repeat the following steps:

1. If there exists some vector u(t) 6= 0 such that u(t) ∈ Ker(A) and uk(t) = 0 if πk(t) is an

integer, then:

(a) Take any such vector u(t) (random or not), and compute λ∗1(t) and λ∗2(t), the largest

values of λ1(t) and λ2(t) such that

0 ≤ π(t) + λ1(t)u(t) ≤ 1 and 0 ≤ π(t)− λ2(t)u(t) ≤ 1.

(b) Take π(t+ 1) = π(t) + δ(t), where

δ(t) =

{
λ∗1(t)u(t) with probability λ∗2(t)/{λ∗1(t) + λ∗2(t)},
−λ∗2(t)u(t) with probability λ∗1(t)/{λ∗1(t) + λ∗2(t)}.

2. Otherwise, drop the last column from the matrix A and go back to Step 1.

A general procedure for the cube method (see [1]; Tillé, 2011) which covers both the flight phase

and the landing phase is presented in Algorithm 1. It proceeds through a random walk from the

vector of inclusion probabilities π to the random vector I ≡ π(T ) of sample membership indicators.

During the flight phase, a vector u(t) is chosen in Step 1.a so that the balancing equations remain

exactly respected and the units already selected/rejected during the previous steps are not affected.

The scalars λ∗1(t) and λ∗2(t) are then determined so that at least one additional unit is definitely

selected or rejected. In Step 1.b, the vector π(t+ 1) is randomly updated, in such a way that the

inclusion probabilities remain exactly respected.

The flight phase ends at time TF , when it is no more possible to find a suitable vector u(t). We

have πk(TF ) = 0 if unit k is definitely rejected from the sample, πk(TF ) = 1 if unit k is selected.

Also, we have 0 < πk(TF ) < 1 if the decision for unit k remains pending: the associated set of units

8



is at most of size q (see Deville and Tillé, 2004), and will be denoted as U(TF ). At the end of the

flight phase, we have

E{yU} {π(TF )} = π, (2.1.1)∑
k∈U

xk
πk
πk(TF ) =

∑
k∈U

xk. (2.1.2)

The landing phase included in Algorithm 1 enables to end the sampling, by successively relaxing in

Step 2 one balancing constraint to gain one degree of freedom, and by applying the flight phase to

the reduced matrix. Alternatively, the landing phase may be performed by means of an enumerative

algorithm on the remaining units in U(TF ) (Tillé, 2011, p. 163). In any case, the landing phase

leads to a vector of sample selection indicators I such that

E{yU ,π(TF )} (I) = π(TF ), (2.1.3)

t̂xπ ≡
∑
k∈U

xk
πk
Ik '

∑
k∈U

xk. (2.1.4)

The inclusion probabilities are exactly respected, since from (2.1.1) and (2.1.3) we have E{yU}(I) =

π, and the HT-estimator t̂yπ is exactly design-unbiased for ty. Deville and Tillé (2004) show in

their Proposition 4 that, for any variant of the landing phase, the cube method achieves |t̂xπ− tx| ≤
qmaxk∈U |xk|π−1k element-wise, so that under reasonable hypotheses on x and for standard designs

with (N mink∈U πk)
−1 = O(n−1), we have

t̂xπ = tx +O
(
q ×Nn−1

)
. (2.1.5)

In (2.1.5), the remainder term is non-stochastic and can be much smaller for fixed q than the usual

Op(Nn
−1/2) remainder in the unbalanced case.

2.2 A rejective method for balanced sampling

To ensure that the sampling design is balanced, at least approximately, a rejective procedure may

alternatively be used (see Hajek, 1981; Fuller, 2009). Under rejective sampling, a basic sampling

procedure pb(·) is repeatedly applied to select a random sample Sb with inclusion probabilities

pk = Pr(k ∈ Sb), until

(t̂xp − tx)>V{yU}(t̂xp)
−1(t̂xp − tx) ≤ γ2, (2.2.1)

where t̂xp =
∑

k∈Sb p
−1
k xk and γ > 0 is a specified balancing tolerance specified by the survey

statistician. The resulting rejective sampling procedure p(·) and the associated random sample S

are not to be confused with pb(·) and Sb, since in particular πk ≡ Pr(k ∈ S) 6= pk.
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There is an important distinction between the Cube method and the rejective method. In the first,

the inclusion probabilities π are exactly satisfied but one has no explicit control on the (possible)

discrepancy between estimates and the true population totals. In the second, the discrepancy is

perfectly controlled through the balancing tolerance γ but the exact inclusion probabilities πk are

usually unknown. For rejective sampling, Fuller (2009) suggests the use of a GREG type estimator

based on the initial inclusion probabilities pk. Suppose that the basic sampling procedure pb(·) is

such that there exists some φk satisfying

E{yU , k∈Sb}(t̂ap − ta) = p−1k φkak (2.2.2)

for any vector of interest ak. The proposed GREG-type estimator is then

t̂y,pgreg =
∑
k∈U

x>k B̂ where B̂ =

(∑
k∈S

p−2k φkxkx
>
k

)−1∑
k∈S

p−2k φkxkyk, (2.2.3)

and is shown to be design-consistent provided that there exists a vector of constants λ such that

p−2k φkx
>
k λ = p−1k , (2.2.4)

see Fuller (2009). However, the estimator t̂y,pgreg may suffer from substantial bias for finite sample

sizes when the pk’s do not provide a good approximation of the true πk.

Two alternative estimation strategies for rejective balanced sampling are proposed in [18]. The first

consists in estimating the true πk’s through Monte Carlo simulations to obtain a Horvitz-Thompson

like estimator (see Fattorini, 2006, and Lesage, 2013). The second consists in approximating the

inclusion probabilities through an Edgeworth expansion, when Poisson sampling is used as the basic

procedure. In case of a scalar x, the final inclusion probability for rejective sampling is

πk = pk
Pr{yU}(−γ ≤ X ≤ γ|Ibk = 1)

Pr{yU}(−γ ≤ X ≤ γ)
, (2.2.5)

where X = d−1/2
∑

k∈U p
−1
k xk(Ibk− pk) and d =

∑
k∈U x

2
kp
−1
k (1− pk). Using the formal Edgeworth

expansion (see Thompson, 1997, equation (3.41)), it is obtained in [18] after some algebra that

πk = pk

{
1− 1

d

γφ(γ)

2ψ(γ)− 1

(
xk
pk

)2

(1− pk)(1− 2pk) +
κ3√
d

γφ(γ)(3− γ2)
3(2ψ(γ)− 1)

xk
pk

(1− pk)

}
+ o(d−1),

(2.2.6)

where ψ(·) and φ(·) are the cumulative distribution function and the probability density function

of a standard normal distribution, where

κ3 ≡ µ3(X) = d−3/2
∑
k∈U

(
xk
pk

)3

pk(1− pk)(1− 2pk),

κ4 ≡ µ4(X)− 3{µ2(X)}2 = d−2
∑
k∈U

(
xk
pk

)4

pk(1− pk){1− 6pk(1− pk)},
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and µm(X) denotes the centered moment of order m of the random variable X. When the balancing

tolerance may be seen as small, approximation (2.2.6) simplifies as

πk = pk

{
1− 1

2d

(
xk
pk

)2

(1− pk)(1− 2pk) +
κ3

2
√
d

(
xk
pk

)
(1− pk)

}
+ o(d−1). (2.2.7)

2.3 Optimal inclusion probabilities for balanced sampling

In many cases, inclusion probabilities are fixed and chosen to be proportional to an auxiliary

variable known for any unit in the population. However, if some information on the variable of

interest is available at the design stage, it may be of interest to look for inclusion probabilities

that minimize, at least approximately, the variance of the HT-estimator. An optimal vector π of

inclusion probabilities should minimize the variance in (1.2.2), under the constraints that

0 ≤ πk ≤ 1 for any unit k ∈ U and
∑
k∈U

πk = n. (2.3.1)

Since second-order inclusion probabilities are usually untractable, and following Tillé and Favre (2005),

it is proposed in [6] to minimize the variance approximation (2.0.4) instead. If the balancing vari-

ables xk do not depend on the inclusion probabilities, they proved that the solution to this problem

satisfies

πk = n
|yk − y∗k(π)|∑

l∈U

∣∣yl − y∗l (π)
∣∣ for any k ∈ U, (2.3.2)

where y∗l (π) is given in (2.0.6). Formula (2.3.2) states that larger inclusion probabilities should be

given to the units for which yk may not be well predicted by the balancing variables.

In practice, formula (2.3.2) may not be used since the y-values are not available on the whole

population U . An alternative optimization problem is proposed in [6], where U is partitioned into

J non-overlapping subsets U1, . . . , UJ of sizes N1, . . . , NJ , and the target inclusion probabilities are

required to satisfy

πk = αj for any unit k ∈ Uj , j = 1, . . . , J, (2.3.3)

so that inclusion probabilities are equal inside each subset Uj . The variance approximation in

(2.0.4) may then be rewritten as

VDT (t̂yπ) ≡ V (α) =
N

N − q

J∑
j=1

b(αj)
∑
k∈Uj

{yk − ỹk(α)}2, (2.3.4)

where α = (α1, . . . , αJ)>, and

ỹk(α) = x>k


J∑
j=1

b(αj)Gj


−1

J∑
j=1

b(αj)g1j(y)
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with Gj =
∑

k∈Uj xkx
>
k and g1j(y) =

∑
k∈Uj xkyk. The vector α that minimizes (2.3.4) under the

constraints (2.3.1) and (2.3.3) satisfies

αj = n
σj(α)∑J

i=1Niσi(α)
where σj(α) =

1

Nj

∑
k∈Uj

{yk − ỹk(α)}2. (2.3.5)

Algorithm 2 Fixed-point algorithm to compute optimal inclusion probabilities for balanced sam-

pling

First initialize with any vector α0 = (α0
1, . . . , α

0
J)>. Then:

1. At step t, compute αt = (αt1, . . . , α
t
J)′ such that

αtj = n
σj(α

t−1)∑J
i=1Niσi(αt−1)

for any j = 1, . . . , J.

2. The procedure ends at step T when Maxj‖αtj − α
t−1
j ‖ is lower than a pre-specified bound ε.

The fixed-point Algorithm 2 may be used to determine the inclusion probabilities. From Theorem

1 in [6], it always leads to a reduction in variance, since the sequence (αt)t∈N tends to a local

minimum. In practice, the needed parameters Gj , g1j(y) and g2j(y) =
∑

k∈Uj y
2
k are unknown and

need to be estimated. In case when another sample Sp (e.g., associated to a former survey) has

been selected in U with inclusion probabilities πp = (πp1 , . . . , π
p
N )>, Algorithm 2 can be used by

replacing Gj , g1j(y) and g2j(y) with

Ĝpj =
∑
k∈Spj

xkx
>
k

πpk
, ĝp1j(y) =

∑
k∈Spj

xkyk
πpk

, ĝp2j(y) =
∑
k∈Spj

y2k
πpk
,

where Spj = Sp ∩ Uj .

2.4 Penalized balanced sampling

Suppose that a particular variable y follows a linear mixed model of the form

yU = Xβ + Zγ + εU , (2.4.1)

where

E

(
γ

εU

)
= 0, V

(
γ

εU

)
= σ2

(
λ−2Q 0

0 I

)
,

X is a full rank N × q matrix, Z is a full rank N ×K matrix, and I will denote an identity matrix

of appropriate dimension. We suppose that Q is positive definite and known, and it is typically an
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identity matrix. The parameter σ2 is unknown and the parameter λ2 is to be determined.

It is convenient to first orthogonalize the fixed and random effects in model (2.4.1) via

C = {X, (I − PX)Z} = (c1, . . . , cq+K) where PX = X(XTX)−1XT .

One approach to the problem of using model (2.4.1) in survey design would be to use the cube

algorithm to draw samples balanced on cj , so that by (2.1.5),

t̂cπ = tc +O{N(q +K)n−1}. (2.4.2)

The flexibility and power of linear mixed models, however, typically come with large K, so that

(2.4.2) may have unacceptably large errors. Such balance also ignores the mixed effect structure of

the linear mixed model, and treats it essentially as an ordinary regression model with q +K fixed

effects.

The cube method of Deville and Tillé (2004) is modified in [12] to draw penalized balanced samples.

Instead of working directly with the linear mixed model covariates cj , a new set of balancing

variables bj and an ordering of these variables is specified. More precisely, with C as defined above,

let

M = CTC + Λ =

{
XTX 0

0 ZT (I − PX)Z + λ2Q−1

}
and compute

M−1CTC =

(
I 0

0 A1DA
T
2

)
,

where D = diag(d1, . . . , dK), A1DA
T
2 is the singular value decomposition of{

ZT (I − PX)Z + λ2Q−1
}−1

ZT (I − PX)Z,

and 1 ≥ d1 ≥ · · · ≥ dK ≥ 0. The q singular values corresponding to the fixed effects are identically

equal to one, and q+
∑K

i=1 di = tr(CM−1CT ) are the degrees of freedom of the linear mixed model.

The factors dk can be interpreted as fractional degrees of freedom. They decay rapidly to zero for

many linear mixed models of interest.

The balancing variables are defined as the columns of the N × (q +K) matrix

B = C

(
I 0

0 A1D

)
= (b1, . . . , bq+K), (2.4.3)

the first q columns of which are X. An alternative to the balancing variables (2.4.3) that is useful in

practice is to keep only the first r columns of B, where
∑K

i=r+1 di << 1; that is, dropping columns
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that all together account for much less than one degree of freedom. In Monte Carlo experiments

using nonparametric and temporal linear mixed models, the strategy of penalized balanced sampling

with Horvitz-Thompson estimation was shown to dominate a variety of standard strategies.

2.5 A fast method for balanced sampling

It is noticed in [1] that in Step 1 of Algorithm 1, the search for a vector in the kernel of A may be

time-consuming. Finding such vector defines a system of q equations, and therefore q+1 degrees of

freedom are sufficient. A faster solution is thus as follows: at any step t, let Et ⊂ {1, . . . , N} denote

the set of the j = 1, . . . , q + 1 first columns of A such that uj(t) is not an integer. This set Et also

corresponds to the q + 1 first units in the population U that are still neither selected nor rejected

at step t. Also, let At denote the sub-matrix of A containing the columns in Et. Then a vector

u(t) of Ker(A) is obtained by finding a vector v(t) in Ker(At), and by complementing v(t) with

zeros for the columns of A that are not in At. This fast implementation is described in Algorithm 3.

Algorithm 3 A fast procedure for the cube method

First initialize at π(0) = π. Next, at time t = 0, · · · , T , repeat the following steps:

1. If there exists some vector v(t) 6= 0 such that v(t) ∈ Ker(At), then:

(a) Take any such vector v(t) (random or not), and take u(t) such that

uk(t) =

{
vk(t) if k ∈ Et,
0 otherwise.

Compute λ∗1(t) and λ∗2(t), the largest values of λ1(t) and λ2(t) such that

0 ≤ π(t) + λ1(t)u(t) ≤ 1 and 0 ≤ π(t)− λ2(t)u(t) ≤ 1.

(b) Take π(t+ 1) = π(t) + δ(t), where

δ(t) =

{
λ∗1(t)u(t) with probability λ∗2(t)/{λ∗1(t) + λ∗2(t)},
−λ∗2(t)u(t) with probability λ∗1(t)/{λ∗1(t) + λ∗2(t)}.

2. Otherwise, drop the last column from the matrix At and go back to Step 1.

Balanced sampling can be implemented using existing software for the cube method, such as the R

function samplecube in the sampling library (Tillé and Matei, 2008; R Development Core Team,

2008), or the SAS Macro Fastcube ([1],[2]). Making use of this fast algorithm, a stratified balanced

sampling procedure is proposed in [3]. This procedure is in particular useful for balanced imputation
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purpose (see Section 3.3).

2.6 The pivotal method

The fast procedure for the cube method in Algorithm 3 leads to a very simple sampling algorithm

when xk is reduced to the inclusion probability πk, which means that achieving a fixed sample size is

the only balancing constraint. In this case, the matrix of constraints is the N -vector A = (1, . . . , 1)>

and at any step t of Algorithm 3, At = (1, 1)>. If we note k1t and k2t the two units in Et, we have

(up to a scaling factor) v(t) = (1,−1)>. This leads to

{λ∗1(t), λ∗2(t)} =

{
{πk2t(t), πk1t(t)} if πk1t(t) + πk2t(t) ≤ 1,

{1− πk1t(t), 1− πk2t(t)} if πk1t(t) + πk2t(t) > 1.

In the case when πk1t(t) + πk2t(t) ≤ 1, we obtain

{πk1t(t+ 1), πk2t(t+ 1)} =

 {πk1t(t) + πk2t(t), 0} with probability
πk1t (t)

πk1t (t)+πk2t (t)
,

{0, πk1t(t) + πk2t(t)} with probability
πk2t (t)

πk1t (t)+πk2t (t)
.

In the case when πk1t(t) + πk2t(t) > 1, we obtain

{πk1t(t+ 1), πk2t(t+ 1)} =

 {1, πk(t) + πl(t)− 1} with probability
1−πk2t (t)

2−πk1t (t)−πk2t (t)
,

{πk(t) + πl(t)− 1, 1} with probability
1−πk1t (t)

2−πk1t (t)−πk2t (t)
.

In any case, we have πm(t+ 1) = πm(t) for m /∈ Et.

This method is known as ordered pivotal sampling, and may be more simply described as follows.

At the first step, only the two first units 1 and 2 are involved. If π1 + π2 ≤ 1, then with proba-

bility π1/(π1 + π2), unit 2 is eliminated while unit 1 gets the cumulated probability π1 + π2; with

probability π2/(π1 + π2), unit 1 is eliminated while unit 2 gets the cumulated probability π1 + π2.

If π1 + π2 > 1, then with probability (1− π2)/(2− π1 − π2), unit 1 is selected while unit 2 gets the

residual probability π1 +π2−1; and with probability (1−π1)/(2−π1−π2), unit 2 is selected while

unit 1 gets the residual probability π1 + π2− 1. In other words, units 1 and 2 fight. If π1 + π2 ≤ 1,

the loser is definitely eliminated while the winner gets the cumulated probability. If π1 + π2 > 1,

the winner is selected in the sample while the loser goes on with the residual probability. In any

case, the remaining unit then faces unit 3 in a similar principle. The algorithm stops at step N −1,

when the two last units fight.

This sampling algorithm has some appealing properties, but we need further notation for their

exposition. We define Vk =
∑k

l=1 πl for any unit k ∈ U , and V0 = 0. A unit k ∈ U is said to be

cross-border if Vk−1 < i and Vk ≥ i for some positive integer i. The cross-border units are denoted
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as ki, i = 0, . . . , n. We note ai = i− Vki−1 and bi = Vki − i for i = 1, . . . , n− 1. For k0 and kn, we

take by convention a0 = b0 = 0 and an = bn = 0. The units k0 and kn are in fact phantom units

with zero associated probabilities.

The N sampling units are grouped to obtain a population Uc = {u0, . . . , u2n} of clusters. There

are the clusters of cross-border units (n + 1 singletons), denoted as u2i with associated prob-

ability φ2i = πki = ai + bi for i = 0, . . . , n. There are the n clusters of units that are not

cross-borders and are between two consecutive integers, denoted as u2i−1 with associated prob-

ability φ2i−1 = Vki−1 − Vki−1
= 1 − bi−1 − ai, for i = 1, . . . , n. We note φ = (φ0, . . . , φ2n)>.

Let Yi =
∑

k∈ui yk denote the subtotal of the variable y on the cluster ui, and Y̌i = Yi/φi, with

Y̌0 = Y̌2n = 0. To fix ideas, useful quantities for population Uc are presented in Figure 2.1.

The microstratum Ui, i = 1, . . . , n, is defined as

Ui = {k ∈ U ; ki−1 ≤ k ≤ ki}. (2.6.1)

For any unit k ∈ Ui, we note

αik =


bi−1 if k = ki−1,

πk if ki−1 < k < ki,

ai if k = ki.

(2.6.2)

We have in particular
∑

k∈Ui αik = 1. To fix ideas, useful quantities for population U are

presented in Figure 2.2. The microstrata are overlapping, since one cross-border unit belongs to

two adjacent microstrata: the cross-border unit ki belongs both to the microstratum Ui (with an

associated probability ai) and to the microstratum Ui+1 (with an associated probability bi).

i− 1 i i+ 1

-�
ai−1

-�
bi−1

-�
ai

-�
bi

-�
ai+1

-�
bi+1

-�
φ2i−2

-�
φ2i−1

-�
φ2i -�

φ2i+1
-�

φ2i+2

Figure 2.1: Probabilities and cross-border units in the population Uc

It is demonstrated in [11] that ordered pivotal sampling is equivalent to the sampling algorithm

known as Deville’s systematic sampling (Deville, 1998), in the sense that both algorithms lead

16



i− 1 i

Vki−1−1 Vki−1
Vki−1+1 . . . Vki−2 Vki−1 Vki

Vki+1
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ai−1

-�
bi−1

-�
ai

-�
bi

-�
πki−1

-�
πki−1+1 . . .

-�
πki−1

-�
πki -�

πki+1

Ui−1

Ui

Ui+1

Figure 2.2: Probabilities and cross-border units in microstratum Ui, for population U

to the same sampling design. This characterization enables in particular the computation of the

second-order inclusion probabilities, which are given below:

Theorem 2.6.1 (Deville, 1998). Let k and l be two distinct units in U . If k and l are two non

cross-border units that belong to the same microstratum Ui, then πkl = 0, if k and l are two non

cross-border units that belong to distinct microstrata Ui and Uj, respectively, where i < j, then

πkl = πkπl {1− c(i, j)} ,

if k = ki−1 and l is a non cross-border unit that belongs to the microstratum Uj where i ≤ j, then

πkl = πkπl

[
1− bi−1(1− πk) {πk(1− bi−1)}−1 c(i, j)

]
,

if l = kj−1 and k is a non cross-border unit that belongs to the microstratum Ui where i < j, then

πkl = πkπl
{

1− (1− πl)(1− bj−1)(πlbj−1)−1c(i, j)
}
,

if k = pi−1 and l = pj−1, where i < j, then

πkl = πkπl

[
1− bi−1(1− bj−1)(1− πk)(1− πl) {πkπlbj−1(1− bi−1)}−1 c(i, j)

]
,

where c(i, j) =
∏j−1
l=i cl, cl = albl {(1− al)(1− bl)}−1 and with c(i, i) = 1.

As noticed by Deville (1998), it follows from Theorem 2.6.1 that many of the second-order

inclusion probabilities are zero. As a result, no unbiased variance estimator may be found for the

HT-estimator. In [20], using alternative representations of ordered pivotal sampling and multi-

nomial sampling, it is proved that any implementation of pivotal sampling is more efficient than

multinomial sampling.
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2.7 Future work

As shown above, ordered pivotal sampling has several interesting features which make it appealing

for sample selection. Since it is more efficient than multinomial sampling, the HT-estimator is

weakly consistent under a second-order moment condition (see Section 1.3). A result of asymp-

totic normality for the HT-estimator has been proved in [25], but under the assumption that the

inclusion probabilities tend to zero. The use of a coupling algorithm (see Section 5) to weaken

this assumption is currently under study. Also, since it may not exist a design unbiased variance

estimator for the HT-estimator, this is desirable to exhibit a variance estimator consistent under

reasonable assumptions. These aspects are currently under study.

These properties (weak consistency of the HT-estimator, asymptotic normality, weak consistency

of a variance estimator) are also of interest for the general Cube algorithm, though they seem

much more difficult to prove. The comparison of the penalized balanced sampling strategy with

the nonparametric model-assisted estimators considered in Goga and Ruiz-Gazen (2014) is also a

matter of further research.
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Chapter 3

Treatment of item non-response

Imputation is typically used in surveys to compensate for item non-response. It consists of replacing

missing values with artificial values in order to reduce the bias and possibly control the variance due

to non-response. Imputation methods may be classified into two broad classes: deterministic and

random. Unlike random imputation methods, if the imputation process is repeated, deterministic

methods yield a fixed imputed value given the sample.

We denote by Sr of size nr the subset of respondents for the variable y in the sample S, and by rk

a response indicator for unit k. Let pk be the response probability of unit k. We assume that the

units respond independently of one another, so that pkl ≡ Pr(rk = 1, rl = 1) = pkpl for k 6= l. We

assume there exists a constant κ > 0 such that κ < pk for any k ∈ s, so that the response proba-

bility is bounded away from 0. An estimated response probability attached to unit k is denoted as

p̂k.

In case of imputation, an artificial value y∗k is used to replace the missing yk and leads to the

imputed estimators. For example, the imputed version of the HT-estimator t̂yπ is

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)y∗k, (3.0.1)

and the imputed version of the estimated distribution function

F̂N (t) =
∑
k∈S

d̃k1(yk ≤ t) (3.0.2)

is

F̂I(t) =
∑
k∈S

d̃krk1(yk ≤ t) +
∑
k∈S

d̃k(1− rk)1(y∗k ≤ t), (3.0.3)
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where d̃k = (
∑

l∈s dlrl)
−1dk. In what follows, we assume that Max d̃k = O(n−1), so that no extreme

sampling weight dominates the others.

Under item non-response, inference may be based on the modeling of the imputed variable or/and

of the response mechanism. These two approaches are presented in Section 3.1, and deterministic

and random imputation methods are introduced in Section 3.2. The use of random imputation

methods results in an additional source of variability, and balanced random imputation methods

may be used to reduce or eliminate this imputation variance. In Section 3.3, we explain how

the cube method can be adapted for balanced imputation. In Section 3.4, the particular case

of estimating the population distribution function is considered. It is shown that an appropriate

balanced imputation method leads to a consistent estimation of the distribution function, and a

doubly robust imputation procedure is proposed under the common mean model within imputation

cells. Tailor-made imputation methods, so as to account for the particular features of imputed data,

are presented in Section 3.5.

3.1 Approaches for inference

Many imputation methods used in practice can be motivated by the general model

m : yk = f(zk;β) + σv
1/2
k εk, (3.1.1)

where f(·; ·) is a given function, zk is a K-vector of auxiliary variables available at the imputation

stage for all k ∈ s, β is a K-vector of unknown parameters, σ2 is an unknown parameter and vk

is a known constant. We assume that the components of zk and the number K of components

are bounded. The εk are independent and identically distributed random variables with mean 0

and variance 1, and their common distribution function is denoted by Fε(·). The model (3.1.1)

is often called an imputation model (e.g., Särndal, 1992). To simplify the presentation, we let

f(zk;β) = z>k β in (3.1.1), which leads to the imputation regression model

m : yk = z>k β + σv
1/2
k εk, (3.1.2)

We assume that the data are Missing At Random (e.g., Rubin, 1976):

E{zk,rk=1} (yk) = E{zk,rk=0} (yk) . (3.1.3)

The first approach for inference is called the Imputation Model (IM). Inference is made with re-

spect to the joint distribution induced by the imputation model, the sampling design, and the

non-response model, but an explicit modeling of the response probabilities is not needed. In such

case, we assume that (3.1.1) and (3.1.3) hold.
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Alternatively, we may assume that the response probabilities follow some parametric non-response

model

pk = p (zk, α) (3.1.4)

for some vector of unknown parameters α. The estimated response probability is then p̂k =

p (zk, α̂) , where α̂ is an estimator of α. The second approach for inference is called the Non-

response Model (NM). Inference is made with respect to the joint distribution induced by the

sampling design and the assumed non-response model in (3.1.4), but an explicit modeling of the

variable of interest y is not needed.

Imputation procedures that lead to a consistent estimator if either the imputation model (3.1.1)

and/or the non-response model (3.1.4) is correctly specified are often called doubly robust pro-

cedures; e.g., Haziza and Rao (2006), Haziza (2009). Doubly robust procedures provide some

protection when either the non-response model or the imputation model is misspecified.

3.2 Imputation methods

In case of deterministic imputation motivated by the imputation regression model (3.1.2), the

imputed value is

y∗k = z>k B̂r where B̂r =

(∑
k∈S

ωkrkv
−1
k zkz

>
k

)−1∑
k∈S

ωkrkv
−1
k zkyk, (3.2.1)

and ωk is an imputation weight attached to unit k. Several choices of ωk are possible, depending of

the approach used for inference. The choice ωk = dk leads to the customary survey weighted impu-

tation, whereas the choice ωk = 1 leads to unweighted imputation. Both choices lead to an imputed

estimator t̂yI approximately unbiased for ty under the IM approach. The choice ωk = dkp̂
−1
k (1− p̂k)

leads to an imputed estimator t̂yI approximately unbiased under both the IM approach and the

NM approach; see Haziza and Rao (2006). Hence, this last choice provides a doubly robust esti-

mator for ty. We note ω̃k = (
∑

l∈s ωlrl)
−1ωk, and in what follows we assume that Max ω̃k = O(n−1).

Random imputation can be seen as a modified deterministic imputation to which a random noise

ε∗k is added. That is, the imputed value is

y∗k = z>k B̂r + σ̂v
1/2
k ε∗k, (3.2.2)

where σ̂ is an estimator of σ. Although they may be generated from a given parametric distribution,

it is natural to select the quantities ε∗k at random from the empirical distribution function of the

respondent residuals. More precisely, denote by ek = σ̂−1v
−1/2
k

{
yk − z>k B̂r

}
the estimated residual

with mean ēr =
∑

k∈s ω̃krkek. We assume that there exists a vector a of known constants such that

v
1/2
k = a>zk (3.2.3)
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so that ēr = 0. As argued by Deville and Särndal (1994), imposing the variance structure in (3.2.3)

does not severely restrict the range of imputation models, and many special cases of (3.1.2) satisfy

this condition. The random residuals ε∗k are selected independently and with replacement from

the set, Er = {el ; l ∈ sr} of standardized residuals observed from the responding units, with

probabilities

Pr (ε∗k = el) = ω̃l. (3.2.4)

This method for selecting the random residuals ε∗k is nonparametric in nature since it consists of

generating random residuals from the empirical distribution function of the respondent residuals

F̂ε,r(t) =
∑
k∈s

ω̃krk1(ek ≤ t), (3.2.5)

where 1(·) is the usual indicator function. Random hot-deck imputation is a special case of random

regression imputation with zk = 1 and vk = 1 for all k.

3.3 Balanced random imputation

One drawback of random imputation methods is that they introduce additional variability due

to the random selection of residuals. In some cases, the contribution of the imputation variance

is appreciable resulting in potentially inefficient estimators. In the literature, three general ap-

proaches for reducing the imputation variance have been considered. The fractional imputation

approach consists of replacing each missing value with M ≥ 2 imputed values selected randomly,

and assigning a weight to each imputed value (Kalton and Kish, 1981, 1984; Fay, 1996; Kim and

Fuller, 2004; Fuller and Kim, 2005). It can be shown that the imputation variance decreases as

M increases. The second approach consists of first imputing the missing values using a standard

random imputation method, and then adjusting the imputed values in such a way that the impu-

tation variance is eliminated; see Chen, Rao and Sitter (2000). The third approach that we study

consists of selecting donors or residuals at random in such a way that the imputation variance is

eliminated (Kalton and Kish, 1981, 1984; Deville, 2006).

We consider the case when the total ty is estimated. Using imputed values given by (3.2.2), the

imputed estimator may be written as

t̂yI =
∑
k∈S

dkrkyk +
∑
k∈S

dk(1− rk)(z>k B̂r) + σ̂
∑
k∈S

dk(1− rk)(v
1/2
k ε∗k). (3.3.1)

In (3.3.1), the imputation variance is only due to the third term on the right-hand side. A balanced

random imputation method is proposed in [6]. It consists of selecting the residuals ε∗k so that∑
k∈S

dk(1− rk)(v
1/2
k ε∗k) = 0. (3.3.2)
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If the equation (3.3.2) is exactly satisfied, then the imputation variance is completely eliminated

and the resulting estimator is fully efficient (Kim and Fuller, 2004). In some situations, equation

(3.3.2) may only be approximately satisfied and the imputation variance is not completely elim-

inated but is expected to be significantly reduced. Additional constraints may be added for the

selection of the residuals if it is desired to eliminate the imputation variance for other parameters.

Equation (3.3.2) may be seen as a balancing equation which is imposed in the with-replacement

selection of the random residuals ε∗k in the set Er of observed standardized residuals. So as to adapt

the Cube method to the with-replacement set-up, we consider the population of cells U∗ of size

nm×nr given in Table 3.1. Each cell (k, l) is given the value of the standardized residual el and the

probability of selection ψkl = ω̃l. A random imputation obtained from (3.2.2) may alternatively be

seen as selecting a random sample S∗ of cells in U∗ without replacement, where the non-respondent

k is given the residual associated to the respondent l if the cell (k, l) is selected in S∗. The sample

must be drawn so that each cell has a probability of selection equal to ψkl, and so that exactly one

cell per row is selected in S∗, since one residual exactly must be selected for each nonrespondent.

This is equivalent to select S∗ while respecting the system of nm balancing equations∑
(k,l)∈S∗

xkl
ψkl

=
∑

(k,l)∈U∗
xkl (3.3.3)

on a nm vector of variables x = (x1, . . . , xnm)>, where the variable xi takes the value xikl = ψklδik

on the cell (k, l), and δik equals 1 if k = i and 0 otherwise. The equation (3.3.2) may be written as

the additional balancing equation ∑
(k,l)∈S∗

x0kl
ψkl

=
∑

(k,l)∈U∗
x0kl, (3.3.4)

with x0kl = dkv
1/2
k ψklel for the cell (k, l). Selecting the sample S∗ balanced on variables x̃ =

(x>, x0)> with inclusion probabilities ψkl ensures that each non-respondent is given a random

residual such that the variance imputation is eliminated.

In practice, there may exist no sample S∗ such that both equations (3.3.3) and (3.3.4) are exactly

satisfied. The Cube method then involves the landing phase in order to end the sampling while

exactly respecting the inclusion probabilities. A careful treatment of this landing phase is needed

since the balancing equations (3.3.3) must be preserved until the very end of the selection proce-

dure. The stratified balanced sampling algorithm proposed in [3] may be used for this purpose, see

also Hasler and Tillé (2014). It is proved in [7] that the landing phase involves no more than two

units. Since the balancing constraint x0 is maintained during the whole sampling process, except

perhaps for the last step, the imputation variance will be considerably reduced, though perhaps

not totally eliminated. An imputation procedure for quantitative variables where the imputation
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Table 3.1: Population of cells used for the random selection od residuals

1 . . . j . . . nr

1 (ψ11, e1) . . . (ψ1j , ej) . . . (ψ1nr , enr)

· · · · · · · · · · · ·
i (ψi1, ei) . . . (ψij , ej) . . . (ψinr , enr)

· · · · · · · · · · · ·
nm (ψnm1, e1) . . . (ψnmj , ej) . . . (ψnmnr , enr)

variance can be fully eliminated is studied in [26].

The proposed imputation method may be readily extended to the case of a categorical variable y

with Q possible characteristics. The population U∗ is then constituted of nm×Q cells, each column

being associated to one of the possible characteristics of y. The random balanced imputation

process then follows the same lines as described above, each non-respondent i being given the j-th

characteristic of the variable y if the cell (i, j) is selected in s∗.

3.4 Estimation of the distribution function

While deterministic imputation methods lead to asymptotically unbiased estimators of totals if

the underlying imputation or non-response model is correctly specified, they are not appropriate

when the objective is to estimate the distribution function because this type of imputation tends to

distort the distribution of the variables being imputed. To preserve distributions, it is customary

to use some form of random imputation.

The asymptotic properties of the estimated distribution function, under the random regression

imputation described in (3.2.2), are studied in [7]. Under the additional assumptions that (B̂r, σ̂)

is weakly consistent for (β, σ) and that the distribution function of residuals Fε(·) is absolutely

continuous, they prove that under the IM approach

F̂I(t)− FN (t) −→
Pr

0, (3.4.1)

where −→
Pr

stands for the convergence in probability. It is also proved in [7] that equation (3.4.1)

remains true when using the balanced random regression imputation procedure described in Section

3.3, where the random residuals are selected so that (3.3.2) is satisfied.

Doubly robust estimation for the distribution function is considered in [21], assuming a particular

form of the imputation model. In this case, the population U is divided into G mutually disjoint
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imputation cells U1, . . . , UG. The elements in Ug are assumed to be a realization of independently

and identically distributed random variables with mean µg and variance σ2g , which we note as

m : yi ∼ (µg, σ
2
g), i ∈ Ug, (3.4.2)

and which is called the common mean model within imputation cells. This model is frequently used

in practice, with the imputation cells being formed on the basis of auxiliary information recorded

for both respondents and non-respondents. This is a special case of the imputation regression

model (3.1.2), with zk = {1(k ∈ U1), . . . , 1(k ∈ UG)}>, β = (µ1, . . . , µG)> and vk = (σg/σ)2 for

k ∈ Ug. Under the imputation model (3.4.2), a missing value is treated through random hot-deck

imputation within imputation cells where missing yk in cell Ug is replaced with

y∗k = yl for l ∈ srg, (3.4.3)

with probability

Pr(y∗k = yl) = ω̃k where ωk = dk
1− p̂k
p̂k

,

and where srg = sr ∩ Ug.

The use of the imputed values in (3.4.3) leads to a doubly robust estimator of a population total.

Also, from (3.4.1), F̂I,y(t) − FN,y(t) converges in probability to 0 under the IM approach for any

t ∈ R. Under some additional regularity conditions, it is proved in [21] that (3.4.1) remains valid

under the NM approach. Therefore, the imputed distribution function using the imputed values in

(3.4.3) is doubly robust.

3.5 Tailor-made imputation methods

The imputation regression model in (3.1.2) is not always appropriate. The variable of interest y

may be better modeled as a mixture of variables, in which case the model (3.1.2) does not properly

reflect the mixture of values. Also, if we are interested in multivariate parameters, it is necessary

to model the joint distribution of the variables involved. Such situations are treated below.

3.5.1 Zero-inflated data

In some cases, the study variables contain a large number of zeroes. This situation is frequent in

business surveys, which collect economic variables (revenue, expenses, etc.). In statistical agencies,

it is customary to use some form of regression imputation to fill in the missing values. In the presence

of zeroes to item y, the finite population U can be viewed as the mixture of a subpopulation U0 of
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units for which yk = 0 and of a subpopulation U1 for which y is strictly positive. For this type of

populations, it seems natural to postulate the following mixture regression model:

m : yk =

{
z>k β + εk if δk = 1,

0 if δk = 0,
(3.5.1)

where δk follows a Bernoulli distribution with parameter φk. We assume that εk and δk are not

related after accounting for zk. Also, we assume that conditionally on δk = 1 the variable yk follows

the imputation regression model in (3.1.2), so that

E(εk) = 0, Cov(εk, εl) = 0 for k 6= l, V (εk) = σ2(a>zk) (3.5.2)

where the variance structure V (εk) follows from (3.2.3). In practice, the φk’s are unknown and

need to be estimated. We assume that

φk = f(uk, γ), (3.5.3)

for some function f(·, ·), where uk is a vector of auxiliary variables attached to unit k and γ is a

vector of unknown parameters. An estimate of φk is

φ̂k = f(uk, γ̂), (3.5.4)

where γ̂ is an estimator of γ. We assume that the data are missing at random. In the context of

zero-inflated data, the IM approach assumes that (3.1.3), (3.5.1) and (3.5.3) hold.

Several imputation procedures motivated by the mixture regression model (3.5.1) are proposed in

[15]. The first proposal, called deterministic φ-regression imputation, consists in replacing missing

yk with

y∗k = φ̂kzkB̂φr where B̂φr =

(∑
k∈S

ωkrkφ̂
−1
k v−1k zkz

>
k

)−1∑
k∈S

ωkrkv
−1
k zkyk (3.5.5)

and ωk = dkp̂
−1
k (1− p̂k). Under some regularity conditions, they demonstrate that t̂yI is consistent

for ty under both the IM approach and the NM approach. The estimator t̂yI that uses the imputed

values (3.5.6) is thus doubly robust, but it does not respect the mixed structure of the data.

Therefore, an alternative procedure is proposed in [15], called random φ-regression imputation,

which consists in replacing missing yk with

y∗k =

{
z>k B̂φr with probability φ̂k,

0 with probability 1− φ̂k.
(3.5.6)

Under the same regularity conditions, it is demonstrated that t̂yI is also consistent for ty under both

the IM approach and the NM approach. A balanced version of random φ-regression imputation is

also proposed in [15].
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3.5.2 Continuous bivariate data

Sometimes, the interest lies in estimating bivariate parameters such as the correlation coefficients

ρxy =
t11 − t10t01/N(

t20 − t210/N
)1/2 (

t02 − t201/N
)1/2 ,

where tij =
∑

k∈U x
i
ky
j
k for (i, j) ∈ {(1, 0), (2, 0), (1, 1), (0, 1), (0, 2)}. The imputed version of ρxy is

ρxyI =
t11,I − t10,It01,I/N̂(

t20,I − t210,I/N̂
)1/2 (

t02,I − t201,I/N̂
)1/2 , (3.5.7)

where t̂ij,I =
∑

k∈S dk{rxkxk + (1 − rxk)x∗k}i{rykyk + (1 − ryk)y∗k}j , where rxk is a response indi-

cator for xk, and ryk is a response indicator for yk. While marginal imputation is appropriate for

univariate parameters, it may lead to considerably biased estimators of bivariate parameters such

as ρxy. Extending the work of Srivastava and Carter (1986), Shao and Wang (2002) considered the

bivariate imputation model:

m :
yk = z>k β + σε

√
vkεk,

xk = z>k γ + ση
√
ukηk,

(3.5.8)

where zk is a K-vector of auxiliary variables, β and γ are unknown K-vectors of parameters, vk

and uk are known, and εk and ηk are random terms independent of zk with mean 0 and variance

1. Note that εk and ηk are not independent in general, and their covariance is denoted as σεη. In

practice, we often have σεη > 0.

Shao and Wang (2002) showed that marginal random regression imputation does not preserve the

coefficient of correlation between the study variables x and y. Motivated by (3.5.8), they proposed

a joint random regression imputation procedure, which can be described as follows:

(i) If yk is observed and xk is missing, we use the imputed values

x∗k = z>k γ̂r +

√
ukσ̂εη√
vkσ̂2ε

(
yk − z>k β̂r

)
+
√
ukη

∗
k,

where

γ̂r =

(∑
k∈S

dkrxku
−1
k zkz

>
k

)−1∑
k∈S

dkrxku
−1
k zkxk, (3.5.9)

β̂r =

(∑
k∈S

dkrykv
−1
k zkz

>
k

)−1∑
k∈S

dkrykv
−1
k zkyk, (3.5.10)
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and, given the observed data, the η∗k’s are independent random variables with mean 0 and

variance σ̃2η = σ̂2η − σ̂2εη/σ̂2ε with

σ̂2ε =
1∑

l∈S wlrxlryl

∑
l∈s

wlrxlrylv
−1
l

(
yl − z>l β̂r

)2
, (3.5.11)

σ̂2η =
1∑

l∈S wlrxlryl

∑
l∈S

wlrxlrxlu
−1
l

(
xl − z>l γ̂r

)2
, (3.5.12)

σ̂εη =
1∑

l∈S wlrxlryl

∑
l∈S

wlrxlrylu
−1/2
l v

−1/2
l

(
xl − z>l γ̂r

)(
yl − z>l β̂r

)
. (3.5.13)

(ii) If xk is observed and yk is missing, the imputation procedure is similar.

(iii) If both xk and yk are missing, we use the imputed values

x∗k = z>k γ̂r +
√
ukη

∗
k

y∗k = z>k β̂r +
√
vkε
∗
k,

where (ε∗k, η
∗
k)’s are independently distributed with mean 0 and covariance matrix

Σ̂1 =

(
σ̂2ε σ̂εη

σ̂εη σ̂2η

)

Under the IM approach, Shao and Wang (2002) showed that this joint regression imputation method

leads to asymptotically unbiased estimators of coefficients of correlation, provided the ε̃∗k’s and η̃∗k’s

are independently selected from any distribution with appropriate mean and variance. They argued

that the random residuals should be generated from the respondents’ residuals if other non-linear

parameters such as quantiles are of interest.

The properties of the Shao and Wang procedure under a particular bivariate non-response model

are studied in [10]. If pk,� stands for the probability of pattern � ∈ {rr, rm,mr,mm} for unit k,

this non-response model assumes that a given pattern occurs with the same probability for any

unit k ∈ S, so that we may simply note pk,� = p�. Also, it assumed that the sample units respond

independently of one another. Then Chauvet and Haziza (2012) proved that under the Shao-Wang

procedure, the imputed estimator ρ̂xyI is asymptotically unbiased for ρxy under the NM approach

when the first component of the zk-vector is equal to 1 and uk = vk = 1.

A balanced version of the Shao and Wang imputation procedure is also proposed in [10]. It succeeds

in preserving the coefficient of correlation, while being fully efficient for this parameter.
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3.5.3 Categorical bivariate data

In household and social surveys, variables are often categorical so that the methods described

above are not directly applicable: rather than dealing with means and correlations, we are inter-

ested in marginal and joint proportions. Let x denote a study variable with possible characteristics

a = 1, . . . , A. Similarly, let y denote a study variable with possible characteristics b = 1, . . . , B.

We are interested in estimating pa• = N−1
∑

k∈U 1(xk = a) the marginal proportion of units who

possess the characteristic a for x; p•b = N−1
∑

k∈U 1(yk = b) the marginal proportion of units who

possess the characteristic b for y; and pab = N−1
∑

i∈U 1(xk = a)1(yk = b) the joint proportion of

units who possess both characteristics a for x and b for y.

We assume that the finite population U is partitioned into G imputation cells U1, . . . , UG of sizes

N1, . . . , NG, based on auxiliary variables. Within each class, we assume that the units respond in-

dependently of one another. Denote by sg = s∩Ug the sample members in class g; sgrr the set of ngrr

respondents to both items in this class; sgrm the set of ngrm respondents to just item x in this class;

sgmr the set of ngmr respondents to just item y in this class; sgmm the set of ngmm non-respondents

in this class. We note pgk� ≡ Pr(k ∈ sg�|k ∈ s) for any pattern � ∈ {rr, rm,mr,mm}. We assume

that a given pattern occurs with the same probability for any unit k ∈ sg, so that we simplify the

notation as pgk� = pg�.

We focus on survey weighted random hot-deck imputation within cells (see Section 3.4), with the

choice ωk = dk for the imputation weights. This leads to the following procedure:

(i) for k ∈ sgmr, missing xk is imputed by x∗k = a with probability

p̂ga•,ac ≡ (N̂g
r•)
−1
∑
k∈sgr•

wk1(xk = a) (3.5.14)

estimated from the available cases (ac) for item x, and N̂g
r• =

∑
k∈sgr• wk;

(ii) for k ∈ sgrm, missing yk is imputed by means of an analogous procedure;

(iii) for k ∈ sgmm, missing (xk, yk) is imputed by (x∗k, y
∗
k) = (a, b) with probability

p̂gab,cc ≡ (N̂g
rr)
−1
∑
k∈sgrr

wk1(xk = a)1(yk = b) (3.5.15)

estimated from the complete cases (cc) for x and y, with N̂g
rr =

∑
k∈sgrr wk.

When one variable only is missing, random hot-deck imputation estimates its distribution sep-

arately from complete cases for this variable. When both variables are missing, their distribution

is estimated jointly from complete cases for both. Random hot-deck imputation succeeds in esti-

mating the marginal distributions of x and y, since for any characteristics a and b BqI(p̂a•,I) ' 0
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and BqI(p̂•b,I) ' 0. Although this imputation procedure generates less bias than marginal random

hot-deck imputation, there generally remains some bias when estimating the joint proportions,

since:

BqI(p̂ab,I) ' −N̂−1
G∑
g=1

(pgrm + pgmr)
∑
k∈sg

wk{1(xk = a)− p̂ga•}{1(yk = b)− p̂g•b}.

(3.5.16)

To account for the existing relationship between variables, two imputation procedures are proposed

in [16]. The distribution of x is estimated conditionally on y if x only is missing, and e distribution

of y is estimated conditionally on x if y only is missing. For any unit k ∈ Ug, we note

p̂ga|b,cc =

∑
k∈sgrr wk1(xk = a)1(yk = b)∑

k∈sgrr wk1(yk = b)

the estimated probability that xk = a when yk = b, and

p̂gb|a,cc =

∑
k∈sgrr wk1(xk = a)1(yk = b)∑

k∈sgrr wk1(xk = a)

the estimated probability that yk = b when xk = a. The joint random hot-deck imputation proce-

dure is as follows:

(i) for k ∈ sgmr, missing xk is imputed by x∗k = a with probability p̂ga|yk,cc,

(ii) for k ∈ sgrm, missing yk is imputed by y∗k = b with probability p̂gb|xk,cc,

(iii) for k ∈ sgmm, missing (xk, yk) is imputed by (x∗k, y
∗
k) = (a, b) with probability p̂gab,cc.

It can be shown that BqI(p̂�,I) ' 0 under this imputation procedure, for � ∈ {a•, •b, ab} and any

characteristics a and b. Guidelines are given in [16] to extend the joint random hot-deck imputation

procedure to the case of more than two missing items, and a balanced version of the joint random

hot-deck imputation is also described.

3.6 Future work

In practice, when using imputed survey data, we may not only be interested in estimating totals or

distribution functions, but also complex parameters such as a quantile, a coefficient of regression or

a coefficient of logistic regression. It would thus be of interest to develop imputation mechanisms

which succeed in obtaining consistent estimators for such parameters, or to prove that existing

imputation mechanisms succeed in doing so. Extending the mixture imputation mechanism (see

Section 3.5) to a more general mixture imputation model is also currently under investigation.
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Chapter 4

Variance estimation

Estimators arising from surveys are usually provided with some measure of accuracy, such as a

variance estimator, a coefficient of variation or a confidence interval. Variance estimation is usually

an intricate task, since it must account for the whole sampling and estimation process, including

possible adjustments for non-response. Variance estimation in case of the 2006 French Housing

Survey is studied in detail in [13]. The basic national sample was selected by means of stratified

multistage sampling with regional extensions, and complementary samples were selected from ex-

ternal databases and local areas, and all samples were joined by composite estimation. Variance

estimation for the ELFE sample cohort, with a selection of maternity units, an independent selec-

tion of days, and with the survey performed in the maternity units selected for the chosen days,

is considered in [23]. The specificity of the ELFE sampling design is that the same sample of

days is used for each of the selected maternity units (unlike the usual approach commonly used in

two-stage sampling, with independent sub-samplings inside the primary units).

In the situation of full-response, the variance of the HT-estimator may be estimated by

V̂HT
(
t̂yπ
)

=
∑
k,l∈S

∆kl

πkl

yk
πk

yl
πl

(4.0.1)

for any sampling design, or by

V̂Y G
(
t̂yπ
)

= −1

2

∑
k 6=l∈S

∆kl

πkl

(
yk
πk
− yl
πl

)2

. (4.0.2)

if the sampling design is of fixed-size. These estimators are design-unbiased provided that the

second-order inclusion probabilities πkl are strictly positive. Otherwise, there exists no design-

unbiased variance estimator for the HT-estimator and we may resort to model-assisted variance

estimation.
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The estimators (4.0.1) and (4.0.2) are computable if so are the second-order inclusion probabilities,

which is true for common sampling designs but not for some complex sampling strategies. In

Section 4.1, we present simulation-based approximations of the variance-covariance matrix in the

context of balanced sampling. Also, if we are interested in estimating non-linear parameters,

unbiased variance estimators are usually not available. We may then resort to linearization or

Bootstrap variance estimation, which is the purpose of Section 4.2. When the sample suffers from

item non-response which is handled by means of random imputation, estimators usually suffer

from an additional variance which must be accounted for. We justify in Section 4.3 that the use

of balanced imputation makes variance estimation easier, since the imputation variance is usually

almost eliminated and need therefore not to be accounted for.

4.1 Simulation-based variance estimation

In case of balanced sampling by means of the cube method, second-order inclusion probabilities are

usually difficult to compute. We may use the maximum-entropy variance approximation in (2.0.4),

and substitute each total by its HT estimator in a plug-in principle to get the variance estimator

V̂DT (t̂yπ) =
n

n− q
∑
k∈S

1− πk
π2k

(yk − ỹ∗k)2 with ỹ∗k = x>k

(∑
l∈S

1− πl
π2l

xlx
>
l

)−1∑
l∈S

1− πl
π2l

xlyl. (4.1.1)

The hypothesis of exact balancing assumed by Deville and Tillé (2005) implies that approximation

(2.0.4) accounts for the variance due to the flight phase only. Consequently, the variance estimator

given in (4.1.1) may lead to serious bias in variance estimation if the variance due to the landing

phase is appreciable.

A second approach consists in using a simulation-based approximation of the design variance-

covariance matrix ∆ = (∆kl)k,l∈U , see Fattorini (2006), Thompson and Wu (2008) and Lesage (2013).

Since E{yU}[(I − π)(I − π)>] = ∆, a first unbiased simulation-based estimation of ∆ is

∆SIM =
1

C

C∑
c=1

{I(Sc)− πSIM}{I(Sc)− πSIM}>, (4.1.2)

where S1, . . . , SC are C independent replicates of the sample, and πSIM = C−1
∑C

c=1 I(Sc). A

corresponding variance estimator for a given sample S is then obtained by plugging (4.1.2) into

(4.0.2), which leads to

V̂SIM
(
t̂yπ
)

= −1

2

∑
k 6=l∈S

∆SIM,kl

∆SIM,kl + πkπl

(
yk
πk
− yl
πl

)2

. (4.1.3)

This estimator is not exactly unbiased, and has greater variance than V̂HT due to the simulation,

but both the bias and the additional variance can be made arbitrarily small for sufficiently large C.
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It may be used for any fixed-size sampling design, selected or not by means of the cube method.

An alternative simulation-based approximation for ∆, proposed in [5], makes uses of the martingale

structure of the cube method. Specifically, note that if the sample S is selected by means of

Algorithm 1 or Algorithm 3, we have I = π +
∑T

t=1 δ(t) where the innovations {δ(t)}t=1,...,T are

given in the Algorithm. By construction, {δ(t)} is a martingale difference (MD) sequence with

respect to the sequence of sigma-fields Ft−1 = σ (δ(0), . . . , δ(t− 1)), and so these random vectors are

uncorrelated and have mean zero. This leads to ∆ = E
{∑T

t=1 λ
∗
1(t)λ

∗
2(t)u(t)u(t)>

}
. Consequently,

the ∆ matrix is unbiasedly estimated by

∆MD =
1

C

C∑
c=1

T∑
t=1

λ∗c1 (t)λ∗c2 (t)uc(t)uc(t)>, (4.1.4)

where S1, . . . , Sc, . . . , SC are C independent replicates of the sample, and the quantities λ∗c1 (t),

λ∗c2 (t) and uc(t) are associated to the sample Sc. The corresponding variance estimator for a given

sample S is then obtained by plugging (4.1.4) into (4.0.2), which leads to

V̂MD

(
t̂yπ
)

= −1

2

∑
k 6=l∈S

∆MD,kl

∆MD,kl + πkπl

(
yk
πk
− yl
πl

)2

. (4.1.5)

The simulation results in [5] indicate that the variance estimator V̂MD

(
t̂yπ
)

is essentially unbiased

and tracks well the variance due to the landing phase, but exhibits a large variability as compared to

the maximum entropy variance estimator V̂DT
(
t̂yπ
)
. The Martingale Difference variance estimator

was also used in [8] for estimators arising from the French Master Sample.

4.2 Linearization and replication-based variance estimation

Suppose that we are interested in some parameter θ. Let M =
∑

k∈U δyk denote the discrete mea-

sure taking unit mass on any point yk in the population and 0 elsewhere. Most of the parameters

of interest θ studied in surveys can be written as a functional T of M , namely θ = T (M). For

instance, the total ty =
∑

k∈U yk equals
∫
ydM . Let M̂ =

∑
k∈S dkδyk denote the discrete measure

taking mass dk on any point in the sample and 0 elsewhere. Substituting M̂ into θ yields the estima-

tor θ̂ = T (M̂). In the linear case, the substitution estimator yields the HT estimator for the total ty.

The influence function linearization technique (Deville, 1999) consists in giving a first-order expan-

sion of the substitution estimator θ̂ = T (M̂) around the true value θ = T (M), to approximate the

error by a linear estimator of some artificial linearized variable. More precisely, the first derivatives

of T with respect to M1 are the influence functions

IT (M ; y) = lim
h→0

T (M + hδy)− T (M)

h
,
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and uk = IT (M ; yk) is the linearized variable for all k ∈ U . Suppose that T (·) is homogeneous,

namely there exists some positive number α dependent on T such that T (rM) = rαT (M) for any

real r > 0. Assume also limN→∞N
−αT (M1) < ∞. Under additional regularity assumptions upon

T (·) and the sampling design, Deville (1999) establishes that

N−α(θ̂ − θ) = N−α

(∑
k∈s

dkuk −
∑
k∈U

uk

)
+ op(n

−1/2),

so that the error θ̂−θ can be approximated by the error of the Horvitz-Thompson estimator for the

total of the linearized variable uk. Plugging a sample-based estimator ûk of the linearized variable

uk inside (4.0.2) yields the variance estimator of θ̂

vLIN (θ̂) = −1

2

∑
k 6=l∈S

∆kl

πkl

(
ûk
πk
− ûl
πl

)2

. (4.2.1)

If in addition the sampling design is such that the HT-estimator satisfies a central-limit theorem,

an approximately (1 − 2α)% confidence interval is

[
θ̂1 − zα

√
vlin(θ̂1), θ̂1 + zα

√
vlin(θ̂1)

]
where zα

is the upper α% cutoff for the standard normal distribution. The linearization technique has been

extended to the two-sample case by Goga et al. (2009).

The use of bootstrap techniques in survey sampling has been extensively studied in the literature.

The main bootstrap techniques may be thought as particular cases of the weighted bootstrap

(Bertail and Combris, 1997; Antal and Tillé, 2011; Beaumont and Patak, 2012); see also Shao and

Tu (1995, chap. 6), Davison and Hinkley (1997, section 3.7) and Davison and Sardy (2007) for

detailed reviews. Under a weighted bootstrap procedure, the measure M̂ =
∑

s dkδyk is estimated,

conditionally on the sample s, by the bootstrap measure

M̂∗ =
∑
k∈S

dkDkδyk (4.2.2)

where D = {Dk}k∈s denotes a (random) vector of resampling weights. The vector D is usually

generated in such a way that the two first moments of the Horvitz-Thompson estimator are matched,

at least approximately. That is, we wish to have

E{yU ,S}

(∑
s

dkDkyk

)
' t̂y1 and V{yU ,S}

(∑
s

dkDkyk

)
' V̂Y G(t̂y1).

A bootstrap technique is not suitable for general sampling designs: that is, a particular sampling

design usually requires a tailor made resampling scheme.

In case when the sample S is selected by means of SI sampling, we consider the without replacement

bootstrap (BWO) introduced by Gross (1980). Suppose that N/n is an integer. Then the vector
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D is obtained by, first creating a pseudo-population U∗ of size N by duplicating N/n times each

unit k in the original sample s, and then by selecting a SI resample S∗ in U∗. The resampling

weight Dk is given by the number of times unit k ∈ S is selected in s∗. The building of U∗ may

be avoided by noting that under the BWO procedure, the vector D follows a multivariate hyper-

geometric law; therefore, the resampling weights may be directly generated. Several solutions have

been proposed to handle the case when N/n is not an integer, see Chao and Lo (1985), Bickel and

Freedman (1984), Sitter (1992b), Booth et al. (1994), Presnell and Booth (1994), among others.

The generalization of BWO variance estimation for unequal probability sampling designs is con-

sidered in Särndal et al. (2002) and Chauvet (2007, doctoral dissertation). A two-sample BWO

technique is developed in [17] for the two-dimensional simple random sampling without replacement.

In case when the sample S is selected by means of multistage sampling, we consider the bootstrap

of Primary Sampling Units (PSUs) introduced by Rao and Wu (1988). Assume that the N units are

grouped inside NI non-overlapping PSUs u1, . . . , uNI . A with-replacement first-stage sample SI of

size nI is selected, and a second-stage sample Si is selected in any ui ∈ SI by means of some sampling

design pi(·). The estimated measure is then M̂ =
∑

ui∈SI
∑

k∈Si dkδyk . Then, a with-replacement

resample S∗I of size nI−1 is selected in SI , and the bootstrap measure is M̂∗ =
∑

ui∈S∗I

∑
k∈Si dkδyk ;

the resampling weight Dk is simply the number of times the PSU ui 3 k is selected in S∗I . The

resampling size nI − 1 is used to reproduce the usual unbiased variance estimator in the linear case

(see Rao and Wu, 1988). A justification for this technique, making use of coupling arguments, is

given in [19] (see Section 5).

Under any weighted bootstrap technique, the plug-in estimator of θ = T (M) is θ̂∗ = T (M̂∗), and

the variance of θ̂ = T (M̂) is estimated by

V{yU ,S}

(
θ̂∗
)

= E{yU ,S}

{
θ̂∗ − E{yU ,S}(θ̂

∗)
}2
. (4.2.3)

Since the variance estimator (4.2.3) may be difficult to compute exactly, a simulation-based variance

estimator may be used instead. More precisely, C independent realizations D1, . . . , DC of the vector

D are generated, and we denote θ̂∗c = T (M̂∗c ) with M̂∗c the Bootstrap measure associated to the

vector Dc. Then V (θ̂) is estimated by

V̂B(θ̂) =
1

C − 1

C∑
c=1

{
θ̂∗c −

1

C

C∑
c′=1

θ̂∗c′

}2

. (4.2.4)

Two types of confidence intervals are usually computed. The percentile method makes use of the

ordered bootstrap estimates θ̂∗(c), c = 1, . . . , C to form a (1− 2α)% confidence interval
[
θ̂∗(L), θ̂

∗
(U)

]
with L = αC and U = (1 − α)C. The bootstrap-t involves the estimation of the pivotal statistic

t = (θ̂ − θ)/
√
vBWO(θ̂) by its bootstrap counterpart t∗ = (θ̂∗ − θ̂)/

√
v∗BWO(θ̂∗), where v∗BWO(θ̂∗)
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is obtained by applying the bootstrap procedure to the resample S∗. The bootstrap-t is highly

computationally intensive since a double bootstrap is required, and is thus less attractive for a data

user.

4.3 Variance estimation for imputed data

Suppose that the sample S is prone to item non-response corrected by means of simple impu-

tation, and that we consider estimating θ = T (M) by the imputed estimator θ̂I = T (M̂I) where

M̂I =
∑

k∈S dkrkδyk +
∑

k∈S dk(1−rk)δy∗k denotes the discrete measure taking mass dk on any point

in the imputed sample, and 0 elsewhere. To produce a variance estimator for θ̂I , it is convenient to

consider the so-called reverse framework; see Fay (1996), Shao and Steel (1999) and Haziza (2009).

Under the usual framework, a sample S is first selected by means of the sampling design p(·),
in which the response mechanism q(·) then leads to the sets of item non-respondents for which

imputed values are generated through the imputation mechanism Imp. That is, the natural order

of the random mechanisms involved is conceptually ”p,q,Imp”. Under the reverse framework, it is

assumed that the sampling design and the non-response mechanism are independent. As a result,

we may think of the set of final values as obtained by: first, randomly generating in the whole

population U the vector r of response indicators by means of the response mechanism q(·); then,

generating by means of the sampling design p(·) the vector I of sample membership indicators for

all units, respondents or not; and finally, replacing missing values in the sample through the impu-

tation mechanism Imp. That is, the order of the random mechanisms under the reverse framework

is conceptually ”q,p,Imp”.

Under the reverse framework and using an analysis of variance decomposition, we obtain

V{yU}(θ̂I) = E{yU}V{yU ,r}E{yU ,r,I}(θ̂I) + E{yU}E{yU ,r}V{yU ,r,I}(θ̂I) + V{yU}E{yU ,r}E{yU ,r,I}(θ̂I)

= E{yU}V{yU ,r}(θ̃I) + E{yU}E{yU ,r}V{yU ,r,I}(θ̂I) + V{yU}E{yU ,r}(θ̃I), (4.3.1)

where

θ̃I = E{yU ,r,I}(θ̂I).

Under mild regularity conditions, the contribution of the third term V3 ≡ V{yU}E{yU ,r}(θ̃I) to

the total variance is of order O(n/N), and is therefore negligible when the overall sampling

fraction is small. In such case, we only need to account for V1 ≡ E{yU}V{yU ,r}(θ̃I) and V2 ≡
E{yU}E{yU ,r}V{yU ,r,I}(θ̂I). In case of deterministic imputation, we have V2 = 0. This is also ap-

proximately true in case of balanced random imputation for the parameter θ, since then

V{yU ,r,I}(θ̂I) ' 0.
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In case of a small sampling fraction and deterministic/balanced random imputation, a variance

estimator of V
(
θ̂I

)
is thus simply given by an estimator V̂1 of V1 ≡ E{yU}V{yU ,r}(θ̃I). To estimate

V1 consistently, it suffices to estimate V{yU ,r}(θ̃I). In the case when the parameter of interest is a

smooth function of K totals

θ = f(ty1 , . . . , tyK ),

we have

θ̃I ' f(t̃y1I , . . . , t̃yKI)

with t̃yjI = E{yU ,r,I}(t̂yjI), so that θ̃I may also be (approximately) written as a smooth function of

estimated totals. Estimating V1 thus reduces to the classical problem of estimating the sampling

variance of a smooth function of estimated totals. Any complete data variance estimation method

can thus be used (Taylor linearization, jackknife or bootstrap), and the estimation of V1 can be

performed using a complete data variance estimation software, which is attractive for a data user

since no specialized variance estimation software is required. Using this approach, a bootstrap

procedure for variance estimation with imputed data is proposed in [10] and [16], and a Jackknife

procedure is described in [15].

4.4 Future work

When the second-order inclusion probabilities are difficult to compute, or when some of them are

zero, it is of interest to develop consistent variance estimators for totals, under reasonable model

assumptions on the variable of interest. The consistency of such variance estimators for complex

parameters (through linearization) is also of interest.

Guidelines for variance estimation with imputed data and a small sampling fraction are described

above. In practice, it is of interest to develop variance estimation procedures (e.g., using Bootstrap)

suitable in case of non-negligible sampling fractions (e.g., Mashregi et al., 2014).
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Chapter 5

Coupling methods

So as to improve the accuracy of HT-estimators, many common sampling designs make use of

some form of balanced sampling (see Section 2) where a dependence in the selection of units is

introduced, and expected to provide a decrease of the variance. For example, when the units are

selected independently with equal probabilities πk = n/N (no dependence), which means Bernoulli

sampling, the variance of the HT-estimator is

V{yU}(t̂yπ) = N2 1− f
n

1

N

∑
k∈U

y2k.

If this sampling design is conditioned to obtain a sample of fixed size equal to n (which corresponds

to one balancing variable xk = 1), we obtain SI sampling and the variance of the HT-estimator is

V{yU}(t̂yπ) = N2 1− f
n

1

N − 1

∑
k∈U

(yk − µy)2.

The variance is thus reduced to the degree of which the variable y may be explained by the bal-

ancing variable xk = 1.

The dependence in the selection of units may be complex, which makes limiting results quite difficult

to prove. In this chapter, we consider the use of coupling methods (see Thorisson, 2000) to link a

sampling design under study to a close, simpler sampling design where useful limiting properties

may be more easily derived. The method basically consists in generating a random vector (Xt, Zt)
>

so that (i) Xt has an appropriate marginal law (e.g., that of the HT estimator for the sampling

design under study); (ii) the marginal law of Zt is simpler to study; and (iii) Xt and Zt are close,

e.g., so that E(Xt − Zt)2 is smaller than the rate of convergence of Xt. In this case, Xt and Zt

share the same limiting variance and the same limiting distribution, as stated in Lemma 5.0.1.

Lemma 5.0.1. Let Xt and Zt denote two random variables such that E(Xt) = E(Zt). Assume
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that E(Xt − Zt)2 = o(at) and that V (Xt) = O(at), where at −→
t→∞

0. Then

V (Zt)

V (Xt)
−→
t→∞

1. (5.0.1)

Also, if
√
at{Xt − E(Xt)} −→

L
X0, then

√
at{Zt − E(Zt)} −→

L
X0.

In a pioneering work, Hajek (1961) introduced a coupling procedure between Bernoulli sampling

and SI sampling to obtain a central-limit theorem for the latter. In Hajek (1964), a similar approach

was used to link Poisson sampling and rejective sampling, and to derive a central-limit theorem and

a variance approximation for rejective sampling. In Section 5.1, we extend the coupling algorithm

by Hajek (1961) so as to derive asymptotic normality results for the HT-estimator under without-

replacement multistage designs. In Section 5.2, we consider the Bootstrap for multistage sampling.

We introduce a new coupling algorithm between SI sampling of PSUs and SIR sampling of PSUs,

and we prove that the Hansen-Hurwitz estimator and the HT estimator are close when the first-

stage sampling fraction becomes negligible. This coupling algorithm is used to prove a long-standing

issue; namely, that the so-called with-replacement Bootstrap of PSUs (see Rao and Wu, 1988) is

consistent in case of SI sampling of PSUs with a small first-stage sampling fraction, and yields

consistent variance estimators for smooth functions of means.

5.1 Asymptotic normality for multistage sampling

In Sections 5.1 and 5.2, we consider multistage sampling and we suppose that the units are grouped

inside NI non-overlapping subpopulations u1, . . . , uNI called primary sampling units (PSUs). We

are interested in estimating the population total

ty =
∑
k∈U

yk =
∑
ui∈UI

Yi,

where Yi =
∑

k∈ui yk is the sub-total of the variable y on the PSU ui. In Sections 5.1 and 5.2, we

denote by Ŷi an unbiased estimator of Yi, and by Vi ≡ V{yU}(Ŷi) its variance. Also, we denote by

V̂i an unbiased estimator of Vi.

In the population UI = {u1, . . . , uNI} of PSUs, a first-stage sample SI is selected according to some

sampling design pI(·). For clarity of exposition, we consider non-stratified sampling designs for pI(·),
but the results may be easily extended to the case of stratified first-stage sampling designs with a

finite number of strata. If the PSU ui is selected in SI , a second-stage sample Si is selected in ui by

means of some sampling design pi(·|SI). We assume invariance of the second-stage designs: that is,

the second stage of sampling is independent of SI and we may simply write pi(·|SI) = pi(·). Also,

we assume that the second-stage designs are independent from one PSU to another, conditionally
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on SI . This implies that

Pr

 ⋃
ui∈SI

{Si = si}

∣∣∣∣∣∣SI
 =

∏
ui∈SI

pi(si|SI)

=
∏
ui∈SI

pi(si) (5.1.1)

for any set of samples si ⊂ ui, i = 1, . . . , NI , where the second line in (5.1.1) follows from the

invariance assumption; see Särndal et al (1992, chapter 4) for further details. The second-stage

sampling designs pi(·) are left arbitrary. For example, they may involve censuses inside some PSUs

(which means cluster sampling), or additional stages of sampling.

We will make use of the following assumptions:

H1: NI −→
t→∞

∞ and nI −→
t→∞

∞. Also, fI = nI/NI −→
t→∞

f ∈ [0, 1[.

H2: There exists δ > 0 and constants C1, C2 such that C1 < N−1I

∑
ui∈UI

E{yU}|Ŷi|
2+δ < C2.

It is assumed in (H1) that a large number nI of PSUs is selected. The assumption (H2) implies

that the sequence of {Yi}ui∈UI has bounded 2+δ moments and that the sequence of {V{yU}(Ŷi)}ui∈UI
has a bounded first moment; this assumption requires in particular that the total number of SSUs

within PSUs remains bounded.

5.1.1 Bernoulli sampling of PSUs

We first consider the case when a first-stage sample SBI is selected in UI by means of Bernoulli

sampling (BE) with expected size nI (Särndal et al., 1992, p. 62; Fuller, 2009, p. 16), which we

note as SBI ∼ BE(UI ;nI). That is, the PSUs are independently selected in SBI with inclusion

probabilities fI = nI/NI , and the size nBI of SBI is random. The Horvitz-Thompson estimator

ŶB =
NI

nI

∑
ui∈UI

IBi Ŷi =
NI

nI

∑
ui∈SBI

Ŷi (5.1.2)

is unbiased for Y , with IBi the sample membership indicator for the PSU ui in the sample SBI . The

variance of ŶB is

V{yU}(ŶB) =
N2
I

nI

(1− fI)
1

NI

∑
ui∈UI

Y 2
i +

1

NI

∑
ui∈UI

Vi

 (5.1.3)

where Vi = V{yU}(Ŷi). If (H1) and (H2) hold, we have

ŶB − Y√
V{yU}(ŶB)

−→
L
N (0, 1). (5.1.4)
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A coupling procedure between BE sampling and SI sampling will be used in Section 5.1.2 to extend

(5.1.4) to the context of multistage sampling with SI sampling at the first stage. Anyway, as noted

by Hajek (1964, p. 1499), the Narain-Horvitz-Thompson estimator under Bernoulli sampling of

PSUs presents a variability due to the random sample size which is unneeded for comparison with

simple random sampling. Therefore, we need to consider a modified version of ŶB, defined as

ỸB =
NI

nI

∑
ui∈UI

IBi (Ŷi − µY ) =
NI

nI

∑
ui∈SBI

(Ŷi − µY ) (5.1.5)

where µY = N−1I
∑

ui∈UI Yi; ỸB is not an estimator per se, since its definition involves the unknown

quantity µY . We have

V{yU}(ỸB) =
N2
I

nI

(1− fI)
1

NI

∑
ui∈UI

(Yi − µY )2 +
1

NI

∑
ui∈UI

Vi

 , (5.1.6)

and if (H1) and (H2) hold, we have

ỸB√
V{yU}(ỸB)

−→
L
N (0, 1). (5.1.7)

5.1.2 Without replacement simple random sampling of PSUs

We now consider the case when a first-stage sample SI is selected in UI by means of simple random

sampling without replacement (SI) of size nI , which we note as SI ∼ SI(UI ;nI). The Narain-

Horvitz-Thompson estimator is

Ŷ =
NI

nI

∑
ui∈UI

IiŶi =
NI

nI

∑
ui∈SI

Ŷi, (5.1.8)

with Ii the sample membership indicator for the PSU ui in the sample SI . We may alternatively

rewrite the Narain-Horvitz-Thompson estimator as

Ŷ = NI Z̄ with Z̄ =
1

nI

nI∑
j=1

Zj , (5.1.9)

where the sample SI of PSUs is obtained by drawing nI times without replacement one PSU in

UI , and where Zj stands for the estimator of the total for the PSU selected at the j-th draw. The

variance of Ŷ is

V{yU}(Ŷ ) =
N2
I

nI

(1− fI)S2
Y,UI

+
1

NI

∑
ui∈UI

Vi

 . (5.1.10)

with S2
Y,UI

= (NI − 1)−1
∑

ui∈UI (Yi − µY )2 the population dispersion of the sub-totals Yi.
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Like we did for Bernoulli sampling, we also define

Ỹ =
NI

nI

∑
ui∈SI

(Ŷi − µY ).

Hajek (1961) proposed a coupling procedure to draw simultaneously a BE sample and a SI sample.

This procedure is adapted in Algorithm 4 to the context of multistage sampling, and Proposition

1 below generalizes the Lemma 2.1 in Hajek (1961).

Algorithm 4 A coupling procedure for Bernoulli sampling of PSUs and simple random sampling

without replacement of PSUs

1. Draw the sample SBI ∼ BE(UI ;nI). Denote by nBI the (random) size of SBI .

2. Draw the sample SI as follows:

• if nBI = nI , take SI = SBI ;

• if nBI < nI , draw S+
I ∼ SI(UI \ SBI ;nI − nBI ) and take SI = SBI ∪ S

+
I ;

• if nBI > nI , draw S+
I ∼ SI(SBI ;nBI − nI) and take SI = SBI \ S

+
I .

3. For any PSU ui:

• if ui ∈ SBI ∩ SI , select the same second-stage sample Si for both ŶB and Ŷ ;

• if ui ∈ SBI \ SI , select a second-stage sample Si for ŶB;

• if ui ∈ SI \ SBI , select a second-stage sample Si for Ŷ .

Proposition 1. Assume that the samples SBI and SI are selected according to Algorithm 1. Then

E{yU}(Ỹ − ỸB)2

V{yU}(ỸB)
≤

√
1

nI
+

1

NI − nI
. (5.1.11)

The result in Proposition 1 can be easily generalized to the multivariate case: if yk = (y1k, . . . , yqk)
>

denotes the value taken for unit k by some q-vector of interest y, we have

V{yU}(Ỹ − ỸB) ≤
√

1

nI
+

1

NI − nI
V{yU}(ỸB),

where for symmetric matrices A and B of size q, A ≤ B means that B −A is nonnegative definite.

Under (H1) and (H2), we have V{yU}(ỸB) = O(N2
I n
−1
I ) and from Proposition 1 E{yU}(Ỹ − ỸB)2 =

o(N2
I n
−1
I ). It then follows from from Lemma 5.0.1 that

Ŷ − Y√
V{yU}(Ŷ )

−→
L
N (0, 1) (5.1.12)
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5.2 With-replacement Bootstrap for multistage sampling

Bootstrap for multistage sampling under without-replacement sampling of PSUs has been consid-

ered for example in Rao and Wu (1988), Rao, Wu and Yue (1992), Nigam and Rao (1996), Funaoka

et al. (2006), Preston (2009) and Lin et al. (2013), among others. Testing the validity of a bootstrap

procedure has primarily consisted in showing that it led to the correct variance estimator in the

linear case, and then in evaluating empirically the behavior of the method for complex parameters

through simulations. In this section, we consider the so-called with-replacement Bootstrap of PSUs

(see Rao and Wu, 1988). We prove that this Bootstrap method is suitable for multistage sampling

with SI sampling of PSUs and a small first-stage sampling fraction. More precisely, we prove that

the Bootstrap pivotal statistic (see equation 5.2.9) is asymptotically normally distributed, and that

the Bootstrap yields consistent variance estimators for smooth functions of means.

5.2.1 With replacement sampling of PSUs

We consider the case when a first-stage sample SWR
I is selected in UI according to simple random

sample with replacement (SIR) of size nI inside UI , which we note as SWR
I ∼ SIR(UI ;nI). Denote

by Wi the number of selections of the PSU ui in SWR
I , and by SdI of size ndI the set of distinct PSUs

associated to SWR
I . Each time j = 1, . . . ,Wi that unit ui is drawn in SWR

I , a second-stage sample

Si[j] is selected in ui. The total Y is unbiasedly estimated by the Hansen-Hurwitz (1942) estimator

ŶWR =
∑
ui∈SdI

1

E(Wi)

Wi∑
j=1

Ŷi[j] =
NI

nI

∑
ui∈SdI

Wi∑
j=1

Ŷi[j] (5.2.1)

where Ŷi[j] stands for an unbiased estimator of Yi computed on Si[j]. We may alternatively rewrite

the Hansen-Hurwitz estimator as

ŶWR = NIX̄ with X̄ =
1

nI

nI∑
j=1

Xj , (5.2.2)

where the sample SWR
I of PSUs is obtained by drawing nI times with replacement one PSU in UI

and where Xj stands for the estimator of the total for the PSU selected at the j-th draw. Then if

(H1) and (H2) hold, we have

ŶWR − Y√
V{yU}(ŶWR)

−→
L
N (0, 1). (5.2.3)

5.2.2 A coupling procedure between SIR/SI sampling of PSUs

The procedure is described in Algorithm 5. Conditionally on ndI , the sample SdI obtained in Step

1 is by symmetry a SI sample of size ndI from UI , which implies that SdI ∪ ScI is a SI sample of size
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nI from UI . Consequently, this procedure leads to a sample SI drawn by means of SI sampling of

PSUs.

Algorithm 5 A coupling procedure for simple random sampling with-replacement of PSUs and

simple random sampling without replacement of PSUs for multistage sampling

1. Draw the sample SWR
I ∼ SIR(UI ;nI). Denote by SdI of (random) size ndI the set of distinct

PSUs in SWR
I .

2. Draw a complementary sample ScI ∼ SI(UI \ SdI ;nI − ndI) and take SI = SdI ∪ ScI .

3. For any ui ∈ SdI :

• Each time j = 1, . . . ,Wi that unit ui is drawn in SWR
I , select a second-stage sample Si[j]

with associated estimator Ŷi[j] for ŶWR.

• Take Si = Si[1] and Ŷi = Ŷi[1] for Ŷ .

4. For any ui ∈ ScI , select a second-stage sample Si with associated estimator Ŷi for Ŷ .

Proposition 2. Assume that the samples SWR
I and SI are selected according to Algorithm 5. Then

E{yU}(ŶWR − Ŷ )2

V{yU}(ŶWR)
≤ nI − 1

NI − 1
. (5.2.4)

The right bound in (5.2.4) is mainly of interest when fI −→
t→∞

0. In this case, from the trivial

inequality nI−1
NI−1 ≤

nI
NI

, Algorithm 3 may be used to select the samples SWR
I and SI so that the

difference between ŶWR and Ŷ is asymptotically negligible. A similar result holds for the dispersions

between the estimated totals inside PSUs, as stated in Proposition 3 below.

Proposition 3. Assume that the samples SWR
I and SI are selected according to Algorithm 5. Assume

that (H1) and (H2) hold, and that fI −→
t→∞

0. Then

E{yU}(Z̄ − X̄)2 = o(n−1I ), (5.2.5)

E{yU}|s
2
Z − s2X | −→

t→∞
0. (5.2.6)

where X̄ and Z̄ are defined in equations (5.2.2) and (5.1.9), and with

s2X =
1

nI − 1

∑
ui∈SI

(Xi − X̄)2 and s2Z =
1

nI − 1

∑
ui∈SI

(Zi − Z̄)2.

5.2.3 With replacement Bootstrap of PSUs

We consider the with-replacement Bootstrap of PSUs described for example in Rao and Wu (1988).

Using the notation introduced in equation (5.1.9), let (Z1, . . . , ZnI )
> denote the sample of estimators

44



under SI sampling of PSUs. Also, let (Z∗1 , . . . , Z
∗
m)> be obtained by samplingm times independently

in (Z1, . . . , ZnI )
>. Similarly, using the notation introduced in equation (5.2.2), let (X1, . . . , XnI )

>

denote the sample of estimators under SIR sampling of PSUs. Also, let (X∗1 , . . . , X
∗
m)> be obtained

by sampling m times independently in (X1, . . . , XnI )
>.

We first consider the Bootstrap consistency. We note

Z̄∗m =
1

m

m∑
j=1

Z∗j , s∗2Z =
1

m− 1

m∑
j=1

(
Z∗j − Z̄∗m

)2
, (5.2.7)

and

X̄∗m =
1

m

m∑
j=1

X∗j , s∗2X =
1

m− 1

m∑
j=1

(
X∗j − X̄∗m

)2
. (5.2.8)

The proof proceeds by showing that, using Algorithm 5, the samples SI and SWR
I can be drawn so

that the pivotal statistics

√
m(Z̄∗m − Z̄)

s∗Z
and

√
m(X̄∗m − X̄)

s∗X
(5.2.9)

are close. More precisely, we make use of the Mallows metric (Mallows, 1972; Bickel and Freedman,

1981), also known as the Wasserstein metric. Let 1 ≤ q < ∞, and let α and β denote two

distributions on Rs with finite moments of order q. Then dq(α, β) = inf {E‖X − Z‖q}1/q, where

the infimum is taken over all couples (X,Z) with marginal distributions α and β. For two random

vectors X and Z, we note dq(α, β) for the dq-distance between the distributions of X and Z. In

what follows, we consider q = 1 or q = 2.

Proposition 4. Assume that (H1) and (H2) hold, that fI −→
t→∞

0 and that m −→
t→∞

∞. Then :

d2
[√
m(Z̄∗m − Z̄),

√
m(X̄∗m − X̄)

]
−→
t→∞

0, (5.2.10)

d1
[
s∗2Z , s

∗2
X

]
−→
t→∞

0. (5.2.11)

From Proposition 4, the pivotal statistics in (5.2.9) share the same limiting distribution. The-

orem 1 below follows from Theorem 2.1 of Bickel and Freedman (1981).

Theorem 1. Assume that m −→
t→∞

∞. Then the Bootstrap pivotal quantity

√
m(Z̄∗m − Z̄)

s∗Z

converges in distribution to the standard normal distribution.
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5.2.4 Bootstrap variance estimation for functions of means

We now consider the case when yk = (y1k, . . . , yqk)
> is multivariate, and denotes the value taken

for unit k by some q-vector of interest y. We are interested in a parameter θ = f(µY ) for some

function f : Rq −→ R. We consider the additional regularity assumption:

H4: f(·) is a differentiable function on Rq with bounded partial derivatives, and f ′(µY ) 6= 0.

Under SI sampling of PSUs, the plug-in estimator of θ is denoted by θ̂ = f(Z̄). Under SIR sampling

of PSUs, the plug-in estimator of θ is denoted by θ̂WR = f(X̄).

Proposition 5. Assume that the samples SWR
I and SI are selected according to Algorithm 3. Assume

that assumptions (H1), (H2) and (H4) hold. Assume that fI −→
t→∞

0. Then :

E{yU}(‖Z̄ − X̄‖
2) = o(n−1I ), (5.2.12)

E{yU}(θ̂ − θ̂WR)2 = o(n−1I ). (5.2.13)

with ‖ · ‖ the Euclidean norm.

In proving Proposition 5, equation (5.2.5) easily generalizes as (5.2.12). Also, equation (5.2.13)

follows directly from (5.2.12) and the regularity assumptions on f(·). We can prove a similar result

for the Bootstrap estimators, which we note as θ̂∗ = f(Z̄∗m) and θ̂∗WR = f(X̄∗m), where Z̄∗m and X̄∗m
are defined in (5.2.7) and (5.2.8).

Proposition 6. Assume that the samples SWR
I and SI are selected according to Algorithm 3. Assume

that assumptions (H1), (H2) and (H4) hold. Assume that fI −→
t→∞

0 and m −→
t→∞

∞. Then :

E{yU}(‖Z̄
∗ − X̄∗‖2) = o(m−1) + o(n−1I ), (5.2.14)

E{yU}(θ̂
∗ − θ̂∗WR)2 = o(m−1) + o(n−1I ). (5.2.15)

Since f ′(µY ) 6= 0, we have V (θ̂WR) = O(n−1I ) under (H2). Making use of Lemma 5.0.1,

Proposition 5 implies that V{yU}(θ̂WR) and V{yU}(θ̂) are asymptotically equivalent, i.e.

V{yU}(θ̂)

V{yU}(θ̂WR)
−→
t→∞

1. (5.2.16)

Similarly, Proposition 6 implies that

V{yU ,Z}(θ̂
∗)

V{yU ,X}(θ̂
∗
WR)

−→
Pr

1. (5.2.17)

If the with-replacement Bootstrap provides consistent variance estimation for θ̂WR in case of SIR

sampling of PSUs, we have
V{yU ,X}(θ̂

∗
WR)

V{yU}(θ̂WR)
−→
Pr

1. Then, from (5.2.16) and (??) follows that the with-

replacement Bootstrap also provides consistent variance estimation for θ̂ in case of SI sampling of
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PSUs. The regularity assumption (H4) is somewhat strong, and may be weakened to differentiability

of f(·) on a compact set, under additional assumptions on the vector of interest y and on the second-

stage sampling weights.

5.3 Future work

The coupling method is a promising tool to obtain asymptotic properties for estimators and sam-

pling designs. We intend to develop specific coupling procedures for unequal probability sampling

algorithms, to obtain asymptotic normality results under some mild assumptions. Also, the ex-

tension of Algorithm 5 to sampling with unequal probabilities is currently under investigation, in

order to prove consistency of the with-replacement Bootstrap of PSUs in this context. Looking for

Bootstrap techniques which are consistent under a non-negligible sampling fraction, or proving that

some existing Bootstrap methods succeed in so doing, is also a topic of practical and theoretical

interest.

47



List of papers

Published or accepted for publication
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[25] G. Chauvet, J.C. Deville (201X). Asymptotic Results for Deville’s Systematic Sampling.

[26] G. Chauvet, Do Paco, W., Haziza, D. (201X). Exact balanced imputation for sample survey

data.

49



References
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